### SUPPLEMENTAL DATA

| Number | Sequence                                               | Restriction |  |  |  |  |  |
|--------|--------------------------------------------------------|-------------|--|--|--|--|--|
|        |                                                        | Enzyme      |  |  |  |  |  |
| A115   | GGTCAGACCAGTTCGGGGGGTCAC                               |             |  |  |  |  |  |
| A118   | GTGGTCATGGGGATGCGGACTTC                                |             |  |  |  |  |  |
| A193   | TGGAACTGGCCGATGCGT                                     |             |  |  |  |  |  |
| A194   | TCAAGTCACTGCCGGGGTT                                    |             |  |  |  |  |  |
| A197   | ACGTCGGCACTACCCGTCT                                    |             |  |  |  |  |  |
| A198   | ACGCGCCCGATCACATAG                                     |             |  |  |  |  |  |
| A215   | GAAGGAATTA <u>CATATG</u> GGCAACAATGTCCCG               | NdeI        |  |  |  |  |  |
| A216   | GCTAG <u>AGTACT</u> TGTCTTCCTGAACCCCGC                 | ScaI        |  |  |  |  |  |
| A217   | TTTTTTTT <u>CCAAAGAATGG</u> ATCTACGTCGTCACCGAAGC       | Van91I      |  |  |  |  |  |
| A218   | TTTTTTTT <u>CCAACGCATGG</u> GAACCCGACCACCAGTCTG        | Van91I      |  |  |  |  |  |
| A219   | TTTTTTTT <u>CCATGCGTTGG</u> GGAGTAACCATCGACCTGGC       | Van91I      |  |  |  |  |  |
| A220   | TTTTTTTT <u>CCAACTTTTGG</u> CGAGCTGACACCGGAGAC         | Van91I      |  |  |  |  |  |
| A470   | AAA <u>GGTACC</u> AAGTCCTCCCGGCTCGT                    | KpnI        |  |  |  |  |  |
| A472   | TTTTT <u>TCTAGAGCTTAGC</u> CCGCGTAGTCCGGGACGTCGTACGGGT | XbaI-BlpI-  |  |  |  |  |  |
|        | A <u>AGCTCTTCC</u> TGTCTTCCTGAACCCCGC                  | HA-BspQI    |  |  |  |  |  |
| A522   | CACCGTGACCGATTTCGGAGCAGCC                              |             |  |  |  |  |  |
| A523   | TCATGTCTTCCTGAACCCCGCCAGGTC                            |             |  |  |  |  |  |

### Table S1. Primers used in this study.

Restriction enzyme sites are underlined.

| Table  | <b>S2.</b> | Colony  | size | of | suppressor | mutants, | <b>S4</b> | and | S21, | after | transformation | of | LmeA-HA |
|--------|------------|---------|------|----|------------|----------|-----------|-----|------|-------|----------------|----|---------|
| expres | sion       | vector. |      |    |            |          |           |     |      |       |                |    |         |

| Strain     | Colony Size (mm) |
|------------|------------------|
| WT         | $3.17 \pm 0.69$  |
| S4 + LmeA  | $2.79 \pm 0.64$  |
| S21 + LmeA | $3.84 \pm 0.96$  |

The data shown are average  $\pm$  standard deviation. N = 10.

#### **Supplemental Figure Legends**

**Figure S1.** Profiles of PIMs purified from suppressor mutants analyzed by TLC and visualized by orcinol staining. None of the suppressor mutants show AcPIM6 production. Only a part of TLC plates is shown.

**Figure S2.** Characterization of LM and LAM in the suppressor mutants. LM/LAM were separated by SDS-PAGE and visualized by ProQ Emerald glycan staining. Black arrows indicate the accumulation of smaller LM or LAM.

**Figure S3.** Markerless deletion of *lmeA*. A) The genomic region covering the upstream and downstream of *lmeA*. Upper panel, WT; lower panel,  $\Delta lmeA$ . Arrows and boxes A217, A218, A219, and A220 indicates the primers used to create the knockout construct, pMUM57. Grey arrows and boxes, forward primers; green arrows and boxes, reverse primers. B) The confirmation of *lmeA* deletion by PCR using A217 and A220. Expected sizes were 3.29 kbp (open arrowhead) for WT or 2.50 kbp (filled arrowhead) for  $\Delta lmeA$  (DXO). In the single crossover (SXO) strain, both bands are expected.

**Figure S4.** Analysis of  $\Delta lmeA$ . A) Markerless deletion of *lmeA* does not impact other phospholipids. Crude lipid extracts of WT and  $\Delta lmeA$  were separated on TLC and stained with iodine. CL, cardiolipin. B) LmeA-HA carrying missense mutations found in the suppressor mutants S1 and S10 cannot rescue the  $\Delta lmeA$  phenotype.  $\Delta lmeA$  was transformed with an expression vector for LmeA G170D or V181G mutant. ProQ Emerald staining of LM/LAM separated by SDS-PAGE. C) Western blot showing that LmeA-HA carrying the G170D or V181G point mutation was not detected. Ponceau S staining shows protein loading in each lane.

**Figure S5.** LmeA is conserved in the *Corynebacteriales* order. A) A protein phylogeny of LmeA and its orthologs. Orthologs were identified throughout the *Corynebacteriales* order. A., *Amycolicicoccus*; C., *Corynebacterium*; D., *Dietzia*; G., *Gordonia*; M., *Mycobacterium*; N., *Nocardia*; R., *Rhodococcus*; S., *Segniliparus*; T., *Tsukamurella*. The phylogenic tree was created using Geneious 10.1 (Biomatters) with the following settings: cost matrix, identity; genetic distance model, Jukes-Cantor; method, neighbor joining. Branch length indicates amino acid substitutions per site. B) Homology alignment of *Msmeg* LmeA, MSMEG\_5785, and *Mtb* LmeA, Rv0817c, showing several highly conserved regions (shaded in black) and overall 60% identity. The missense mutations found in the suppressor mutants S1 and S10 are marked by \* and #, respectively.

**Figure S6.** Dose response of LmeA binding to various lipids. A) Cupric acetate staining of 0.7 nmol of PE and TAG developed with hexane / diethyl ether / formic acid (40:10:1). B-C) Cupric acetate staining of 0.7 nmol of PI and PE (panel B) or PE, PA, and GGP (panel C) developed with chloroform / methanol / 13 M ammonia / 1 M ammonium acetate / water (180:140:9:9:23). D-I) Dose response of His-LmeA to LM intermediates, PE, PI, PA, TAG, or GGP. T, lysate of *E. coli* cell transformed with the His-LmeA expression vector; UT, lysate of untransformed *E. coli*. Both lysates were prepared after 3 hour IPTG induction. Note that the concentration range of GGP is different from those of the other lipids.

**Figure S7.** Soluble mannose-containing molecules do not competitively inhibit the binding of LmeA to PE. No competitor (None), 10 mM mannose 1-phosphate (M1P), or 10 mM GDP-Man was pre-incubated with *E. coli* cell lysate expressing LmeA before addition of lysate to the microtiter plate coated with 1.25  $\mu$ M PE.















Supplemental Figure 7