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Supporting Material: “A comparison of methods for in-

ferring causal relationships between genotype and phe-

notype using additional biological measurements”

Supplementary Text

Here we present a more detailed description of the statistical methods used in our analysis.

Mendelian randomisation (MR)

The idea behind MR can be dated back to the 1980s [Katan, 1986]. This method can be

used to infer the direction of causality between two variables in the presence of confounders.

Given observed data on two quantitative (continuous) variables, a genetic variant is carefully

selected such that it acts as an instrument for one of the variables. This provides an ‘an-

chor’ from which to determine the direction of the causal relationship [Smith and Ebrahim,

2003; Lawlor et al., 2008]. The idea can be thought of in terms of a randomised control

trial [Thanassoulis and O’Donnell, 2009] with the randomisation element happening when

alleles are randomly allocated to individuals at meiosis. MR has been used extensively in

the genetic epidemiology literature to establish causality between an observable intermediate

trait and a phenotypic outcome of interest.

In our set-up, MR can be used to identify a causal relationship between X and Y in

the presence of a confounder E. This is akin to the situation displayed in model (i) of

Figure 1. Crucially, if this were a true MR analysis, the genetic variant G would need to

have been chosen to be a valid instrument for X. To be a valid instrument, G must be (1)

associated with X, (2) independent of E and (3) associated with Y only via its association

with X [Bowden and Turkington, 1984; Didelez and Sheehan, 2007]. If these conditions are

satisfied, and assuming the associations are linear, it can be shown that the causal effect

from X to Y is

β̂X,Y =
β̂G,Y

β̂G,X
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where β̂G,X is the regression coefficient resulting from a regression of X on G and β̂G,Y is

the regression coefficient resulting from a regression of G on Y [Didelez and Sheehan, 2007;

Thomas and Conti, 2004]. These coefficients may be estimated via linear regression [Burgess

et al., 2011] or Bayesian methods [McKeigue et al., 2010].

The causal inference test (CIT)

The CIT [Millstein et al., 2009] is designed to establish whether a measured variable acts as a

mediator (and is the only causal link) between a genetic factor and a phenotype. For example,

this test could be used to infer if model (b) of Figure 1 was the true causal scenario, given

observed data on the three variables. Unlike MR, the CIT does not suffer due to problems

of pleiotropy and reverse causation. Consequently, the CIT can be used where there exists

less prior knowledge about the direction of the hypothesized causal relationship.

The methodology can be summarised by stating that a causal link G → X → Y exists

if it can be shown that the following four conditions, derived from the Causal Equivalence

Theorem [Chen et al., 2007], are met:

1. G is associated with Y .

2. G is associated with X given Y .

3. X is associated with Y given G.

4. G is independent of Y given X.

The first three of these conditions are straightforward to test, however, testing the fourth

condition is more involved and amounts to an equivalence testing problem. An overall p-

value for the test is taken to be the maximum of the p-values from the four individual tests,

this is equivalent to the intersection-union test [Berger and Hsu, 1996]. The CIT can easily

be implemented in R using the package cit [Millstein, 2016].
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Structural equation modelling (SEM)

Structural equation modelling (SEM) has a vast literature spanning several disciplines [Bollen,

1989], however its origins can be traced back to the methods of path analysis [Wright, 1921;

Pearl, 2000] and confirmatory factor analysis [Bollen, 1989; Jöreskog, 1967]. SEM is typically

used as a confirmatory tool, to decide whether or not a hypothesised model is valid, rather

than to explore possible models. However, for the purposes of our study, we consider the

performance of SEM as an exploratory tool to ascertain the most plausible causal model

(from a set of possible models) given the observed data.

In a SEM analysis, the model is represented using a path diagram similar to those in

Figure 1. Unlike Figure 1, the path diagram has a more formal syntax whereby observed

and unobserved variables are distinguished by enclosing them in rectangles and circles/ovals

respectively. A single-headed straight arrow between two variables indicates a causal re-

lationship. Given a path diagram, a series of linear equations can be constructed which

represent the beliefs encoded in the path diagram. The parameters of the model θ are then

jointly estimated using, for example, maximum likelihood techniques. Using these parameter

estimates, the predicted covariance matrix Σ(θ) is constructed. This covariance matrix rep-

resents the form the covariance matrix S would take if the model were true. The predicted

covariance matrix is then compared to the sample covariance matrix to assess whether the

two are consistent with one another. There are many possible functions that can be used to

evaluate the fit of a SEM model. We choose to use the most popular, that is the maximum

likelihood function

FML = log|Σ(θ)| + tr(SΣ−1(θ)) − log |S| − n

which has asymptotic distribution

(N − 1)FML ∼ χ2.

Here, N is the number of subjects in the data set and n represents the number of variables in
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the model. There exist many criteria through which competing models can be compared. We

choose to use the Bayesian information criterion (BIC) [Schwarz, 1978]. We used the R pack-

age sem [Fox et al., 2015] for our analyses, however, other packages such as lavaan [Rosseel,

2012] will produce equivalent results.

Bayesian Unified Framework (BUF)

The Bayesian Unified Framework (BUF) approach [Stephens, 2013] was developed as a

method for analysing multivariate phenotypes, for example in GWAS. However, we con-

sider this a potentially interesting method which can be used to learn about the underlying

causal structure in data. We give a very brief overview of an implementation of the method

below, and refer the reader to the original text [Stephens, 2013] for technical details.

Let Y represent a matrix of observed phenotypes, where columns represent phenotypes

and rows represent individuals. For our analysis we have two phenotypes, X and Y , and

thus Y = (X,Y ). Assuming a single genetic variant G, the genetic data is contained in a

vector g. The method aims to partition the variables contained in Y into

γ = (U,D, I)

such that variables contained in U are unassociated with G, variables contained in D are

directly associated and variables in I are indirectly associated with G. Clearly, given these

partitions, it is possible to reconstruct path diagrams such as those in Figure 1. In our

framework, any variable classified as being in D would have an arrow going directly to it

from G, and any variable classified as I would have a path to it from G via another variable.

When a variable is classified as U , this would represent the fact that neither a direct nor an

indirect path from G to the variable exists.

For each possible partition of variables γ, there exists a probability model pγ(Y |g). Under

the assumption that, for each genotype class, the outcomes Y are multivariate normal,

Bayesian multivariate regression can be used to specify these distributions. In the BUF

framework, an exhaustive set of partitions are evaluated and the support for each model is
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given by the Bayes Factor:

BFγ =
pγ(Y |g)

p0(Y)

where p0(Y) represents the global null, that is, the model where all variables are unassociated

with G. Under certain assumptions, pγ(Y |g) can be shown to factorise in such a way that

renders the above equation relatively easy to evaluate. In our simulations, the partition

of variables with the highest Bayes Factor is considered to be the partition that is most

plausible.

Bayesian networks

The problem of inferring causal structure amongst a set of variables naturally lends itself to

the Bayesian network framework. Formally, Bayesian networks are graphical representations

of the probabilistic relationships between random variables. This graphical representation

takes the form of a graph in which nodes represent variables and directed edges represent

arrows. Since cycles within the graphs are not permitted, these are known as directed acyclic

graphs (DAGs). The diagrams in Figure 1 can be thought of as DAGs.

In any DAG, two nodes are conditionally independent if no edge between them exists.

This means that the joint (or global) probability distribution (JPD) of a Bayesian network

can be factorised into conditional probability distributions (local distributions). For example,

for model (b) in Figure 1, the JPD can be factorised as follows

P (G,X, Y ) = P (G)P (X|G)P (Y |X).

This property is very useful since, in its factorised form, the JPD can be parameterised

with far fewer parameters, this is especially useful when the network becomes large. For

Bayesian networks with discrete variables, a sensible choice for the JPD is the multinomial

distribution. In this case the local distributions are also all multinomial. When variables are

continuous, it is typical that the multivariate normal distribution is used. These networks are

known as Gaussian Bayesian Networks and in this case the local distributions are univariate
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normal. For networks containing both discrete and continuous variables the procedure is

more complex. However, if it is assumed that discrete nodes may not have continuous

parents, the local distributions can be specified such that the JPD factorises into a part that

is discrete and a part that is mixed [Böttcher, 2001]. The JPD is then conditional Gaussian.

Our interest lies in learning the structure of Bayesian networks given observed data. We

proceed by calculating for each candidate Bayesian network a score (related to the likelihood

of the data under that network) and consider the network with the highest score to be the

one that is most plausible. Given the small number of variables we consider, evaluating the

score for every possible Bayesian network is not time consuming. However, for much larger

networks, efficient algorithms can be used to move through the space of possible Bayesian

networks whilst maximizing the network score [Larranaga et al., 1997].

We choose to focus on two R packages for learning Bayesian networks: deal [Bottcher

and Dethlefsen., 2013] and bnlearn [Scutari, 2010] referring to these implementations as

DEAL and BNLEARN respectively. Although there exist many other packages [Kalisch

et al., 2012; Balov and Salzman, 2012] for learning Bayesian networks, the two we consider

are the only two (as far as we are aware) that can handle both discrete and continuous

variables. In the DEAL implementation, the network score used is the Bayesian Dirichlet

equivalent score [Böttcher, 2001; Geiger and Heckerman, 1994; Heckerman et al., 1995]. In

the BNLEARN implementation, the network score used is the Bayesian information criteria

(BIC) [Schwarz, 1978]; this has the structure of a penalised log-likelihood.
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Supplementary Figure 1: Results of applying MR and CIT to datasets simulated under scenario (b). 

Solid lines represent scenarios where ∝ varies (and 𝛾 is fixed at one). Dotted lines represent scenarios 

where 𝛾 varies (and ∝ is fixed at one). 
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Supplementary Figure 2: Results of applying SEM to simulated datasets. Each panel refers to results 

of inference on data simulated under the model given in the heading. Individual panels show the 

proportion of time (y-axis) that each model (x-axis) was selected as being the most likely causal 

model. Black and grey represent `true’ and `false’ identifications respectively of the underlying causal 

model. 
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Supplementary Figure 3: Results of applying BUF to simulated datasets. Each panel refers to results 

of inference on data simulated under the model given in the heading. Individual panels show the 

proportion of time (y-axis) that each model (x-axis) was selected as being the most likely causal 

model. Black and grey represent `true’ and `false’ identifications respectively of the underlying causal 

model. Scenario m represents the model where there is a single arrow G → X and similarly n which 

represents G → Y. 
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Supplementary Figure 4: Results of applying DEAL to simulated datasets. Each panel refers to results 

of inference on data simulated under the model given in the heading. Individual panels show the 

proportion of time (y-axis) that each model (x-axis) was selected as being the most likely causal 

model. Black and grey represent `true’ and `false’ identifications respectively of the underlying causal 

model. 
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Supplementary Figure 5: Results of applying BNLEARN to simulated datasets. Each panel refers to 

results of inference on data simulated under the model given in the heading. Individual panels show 

the proportion of time (y-axis) that each model (x-axis) was selected as being the most likely causal 

model. Black and grey represent `true’ and `false’ identifications respectively of the underlying causal 

model. 
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Supplementary Figure 6: Results showing the effect of changing the imaginary sample size (ISS) for 

the DEAL implementation. Each panel refers to data simulated under different models. The graphs 

show how the proportion of times the correct model is identified (y-axis) changes with ISS (x-axis). 

 


