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Analysis of weak-mutation Markov chain

We proceed in somewhat more generality than in the main text. Suppose that evolution

under mutation alone proceeds as a reversible, continuous-time Markov chain on a finite state

space with rate matrix (infinitesimal generator) QM and equilibrium distribution πM. If the

scaled Malthusian fitness of genotype i is given by F(i), then evolution under weak mutation

is a Markov chain with rate matrix Q whose i, j-th entry is:

Q(i, j) =

{
F(j)−F(i)

1−e−(F(j)−F(i))QM(i, j) for i 6= j

−
∑

k 6=iQ(i, k) for i = j.
(S1)

It is easy to verify that the equilibrium distribution of this chain is given by the vector π, where

π(i) ∝ πM(i) eF(i), and that this equilibrium satisfies detailed balance, so that the chain

defined by Q is also reversible. Note that the more limited definition of QM in the main text

based on some finite number of bi-allelic sites with non-zero forward and reverse mutation

rates necessarily results in a reversible Markov chain, since it is simply the rate matrix for a

collection of independent two-state chains with non-zero transition rates, and any two-state

continuous-time chain with non-zero transition rates is reversible.

Because the Markov chain defined by Q is reversible, the definition of detailed balance

implies that the matrix D
1/2
π QD

−1/2
π is symmetric, where Dx is the diagonal matrix whose

diagonal entries are given by the vector x. We can thus expand D
1/2
π QD

−1/2
π in terms of its

eigenvalues and eigenvectors as

−D1/2
π QD−1/2π =

n∑
k=1

λkukuk
T, (S2)

where 0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λn are the eigenvalues of −D1/2
π QD

−1/2
π and the

eigenvectors uk form an orthonormal basis of Rn. Multiplying the above equation by D
−1/2
π
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from the left and D
1/2
π from the right, then gives us:

−Q =
n∑
k=1

λk rk lk
T, (S3)

where lk = D
1/2
π uk and rk = D

−1/2
π uk are the left and right eigenvectors of −Q associated

with λk. Note that lkTD−1π lm = rk
TDπrm = 1 for k = m and 0 otherwise, and

lk(i) = π(i)rk(i).

The transition probabilities for the Markov chain can then be written in terms of this

expansion of Q. In particular, let Pt be the matrix whose i, j-th element is the probability that

a population that begins at time 0 fixed for genotype i is fixed for genotype j at time t. Then

we can write:

Pt(i, j) =
n∑
k=1

e−λktrk(i)lk(j). (S4)

As a result, for any function on the state space of the Markov chain, the expected value of that

function at time t for a population that begins fixed for genotype i at time 0 is given by

n∑
k=1

e−λktrk(i) lk
Tg. (S5)

where g(i) is the value of the function at genotype i. Equation 4 follows by choosing

g(i) = F(i) and noting that because the rows of Q sum to zero, we must have r1 = 1, where 1

is the vector of all 1s, for all i and thus l1 = π.

Matching the fitness trajectory using symmetric mutation rates

Our main result can be extended to the case where we specify that the non-epistatic fitness

landscape that produces the same fitness trajectory as an epistatic landscape must have equal

forward and backward mutation rates at each site (i.e. µl = νl for all l). This additional

constraint of symmetric mutation rates limits the size of the ck that can be accounted for by a
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single non-epistatic site (in particular, the greatest value ck that can be accounted for by a

single site is .278, which occurs when Sl = −1.28; negative values of ck can be matched

regardless of their magnitude). However, even with symmetric rates, one can still construct a

non-epistatic landscape to exactly match the mean fitness trajectory of an arbitrary epistatic

landscape by having multiple sites corresponding to a single term in Equation 4. In particular,

one can generalize Equation 7 to

ck = −
∑
l∈Lk

Sl
αl

αl + βl
(S6)

where Lk is the set of sites in the non-epistatic fitness landscape corresponding to the term

cke
−λkt in Equation 4, and αl + βl = λk for all l ∈ Lk. This flexibility of using additional sites

also means that one can alter the higher moments of the time-dependent fitness distribution of

a non-epistatic fitness landscape while keeping the mean (i.e. mean fitness trajectory)

unchanged.

Bound on error when attempting to match fitness trajectory using a small
number of sites

Next, we turn to deriving the bound on the error of the approximation of a mean fitness

trajectory from an arbitrary epistatic fitness landscape using a fitness landscape with m sites.

In particular, we will show that for any mean fitness trajectory f(t) produced by an arbitrary,

finite fitness landscape whose mutational dynamics take the form of a reversible Markov chain,

one can always construct an m-site non-epistatic fitness landscape and choice of starting

genotype such that the resulting mean fitness trajectory f ∗(t) satisfies

sup
t≥0
|f ∗(t)− f(t)| ≤ 1

m+ 1

√
Varπ F

π(i)
. (S7)

It is clear that this bound is far from being tight, as our main result shows that we can always

exactly match the mean fitness trajectory if m >= 2L − 1. Indeed, in our experience it is often
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possible to produce fits with a much smaller error than that given by the bound, particularly if

we only consider a finite range of times.

The derivation has two parts. First we show that we can construct a landscape such that the

error is at most
∑n

k=2 |ck|/(m+ 1), where the ck are defined in Equation 4. The proof is based

on a closely related argument from Kammler (1976, pg. 768), which the interested reader

should also consult concerning the relation to completely monotone functions and the

Laplace-Stieltjes transform. The second part of the proof then uses Hölder’s inequality

together with some linear algebra to bound
∑n

k=2 |ck| in terms of the equilibrium frequency of

the initial genotype and the variance in fitness at equilibrium for the original epistatic fitness

landscape.

It is sufficient to construct approximations to mean fitness trajectories of the form

f(t) =
n∑
k=2

cke
−λkt with λk > 0, (S8)

where we have assumed without loss of generality that c1 = 0 (we could match any value by

appropriately choosing the initial fitness on the non-epistatic fitness landscape) and ck 6= 0 for

k ≥ 2. Now, by our main result, we can construct an m-site non-epistatic fitness landscape that

produces any mean fitness trajectory of the form

f ∗(t) =
m′∑
i=1

c∗i e
−λ∗i t with λ∗i > 0, (S9)

where we choose 1 ≤ m′ ≤ m. Furthermore, we can pick the λ∗i and c∗i such that, for any

λ ≥ 0, we have ∣∣∣∣∣∣
 ∑
i:λ∗i≤λ

c∗i

−( ∑
k:λk≤λ

ck

)∣∣∣∣∣∣ ≤ 1

m+ 1

∑
k

|ck| . (S10)

For instance, we can choose

λ∗i = sup{λ > λ∗i−1 :
∑

k:λ∗i−1<λk≤λ

|ck| ≤
1

m+ 1

∑
k

|ck|} (S11)

4



c∗i =
∑

k:λ∗i−1<λk≤λ∗i

ck, (S12)

where we interpret λ∗0 as 0 and define the λ∗i iteratively for i = 1, 2, . . . until we either reach m

or the sup no longer exists in which case we set m′ equal to the last value of i for which the

sup exists. To see why this solution works, note that for λ ∈ {λ∗1, . . . , λ∗m′}∣∣∣∣∣∣
 ∑
i:λ∗i≤λ

c∗i

−( ∑
k:λk≤λ

ck

)∣∣∣∣∣∣ = 0 (S13)

and that the sum
∑

k:λk≤λ ck viewed as a function of λ can change its value by at most∑
k |ck|/(m+ 1) in each of the intervals [0, λ∗1), [λ

∗
1, λ
∗
2), . . . , [λ

∗
m′ ,∞).

Having specified our approximating mean fitness trajectory f ∗(t), we can now bound its

error relative to f(t). Note that for any x, t > 0, we can write

e−xt = t
∫∞
x
e−λt dλ = t

∫∞
0
χ(λ− x) e−λt dλ, where χ(y) = 1 for y ≥ 0 and 0 otherwise.

Thus we have, for t > 0:

|f ∗(t)− f(t)| =

∣∣∣∣∣
(

m′∑
i=1

c∗i e
−λ∗i t

)
−

(
m∑
k=1

cke
−λkt

)∣∣∣∣∣ (S14)

=

∣∣∣∣∣
(

m′∑
i=1

c∗i t

∫ ∞
0

χ(λ− λ∗i ) e−λt dλ

)
−

(
m∑
k=1

ck t

∫ ∞
0

χ(λ− λk) e−λt dλ

)∣∣∣∣∣
(S15)

=

∣∣∣∣∣t
∫ ∞
0

((
m′∑
i=1

c∗i χ(λ− λ∗i )

)
−

(
m∑
k=1

ck χ(λ− λk)

))
e−λt dλ

∣∣∣∣∣ (S16)

=

∣∣∣∣∣∣t
∫ ∞
0

 ∑
i:λ∗i≤λ

c∗i

−( ∑
k:λk≤λ

ck

) e−λt dλ

∣∣∣∣∣∣ (S17)

≤ t

∫ ∞
0

∣∣∣∣∣∣
 ∑
i:λ∗i≤λ

c∗i

−( ∑
k:λk≤λ

ck

)∣∣∣∣∣∣ e−λt dλ (S18)

≤

sup
λ

∣∣∣∣∣∣
 ∑
i:λ∗i≤λ

c∗i

−( ∑
k:λk≤λ

ck

)∣∣∣∣∣∣
 t

∫ ∞
0

e−λt dλ (S19)
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= sup
λ

∣∣∣∣∣∣
 ∑
i:λ∗i≤λ

c∗i

−( ∑
k:λk≤λ

ck

)∣∣∣∣∣∣ (S20)

≤ 1

m+ 1

∑
k

|ck| . (S21)

This establishes the required inequality for t > 0; the inequality must then also hold at t = 0

by the continuity of f(t) and f ∗(t).

It remains to derive an upper bound on
∑

k |ck| =
∑n

k=2

∣∣rk(i) lkTF∣∣. By Hölder’s

inequality we have

n∑
k=2

∣∣rk(i) lkTF∣∣ ≤
√√√√ n∑

k=2

(rk(i))
2

√√√√ n∑
k=2

(
lk
TF
)2
. (S22)

Now,
∑n

k=2 (rk(i))
2 ≤

∑n
k=1 (rk(i))

2 and the latter sum is the squared Euclidean norm of the

i-th row of the matrix D
−1/2
π U, where U is the matrix with uk as its k-th column. Since U is

an orthogonal matrix, its rows are orthonormal and hence have a squared Euclidean norm

equal to 1. Because the i-th row of U is multiplied by 1/
√

π(i) in the matrix product D−1/2π U,

we have
∑n

k=1 (rk(i))
2 = 1/π(i). Indeed, since r1(i) = 1 for all i, we have

n∑
k=2

(rk(i))
2 =

1− π(i)

π(i)
≤ 1

π(i)
. (S23)

As for the other sum, since l1 = π, we have

n∑
k=2

(
lk
TF
)2

=

(
n∑
k=1

(
lk
TF
)2)− (πTF

)2
(S24)

=

(
n∑
k=1

((
D1/2

π uk
)T
F
)2)

−
(
πTF

)2
(S25)

=

(
n∑
k=1

(
uk

T
(
D1/2

π F
))2)− (πTF

)2
(S26)

=

(
n∑
k=1

(√
π(k)F(k)

)2)
−
(
πTF

)2
(S27)
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= πTF2 −
(
πTF

)2
(S28)

= Varπ F, (S29)

where F2(i) = F(i)2 and we have used the fact that U is orthonormal and hence preserves the

squared Euclidean norm of a vector. This completes the derivation of the bound.

Dynamics at equilibrium

To study evolution at equilibrium, we again consider an ensemble of populations, but

instead of assuming that all populations in the ensemble begin at some specified genotype, we

let the initial genotype of each population be drawn from π, the equilibrium distribution of the

Markov chain defined by Q. Using the definition of covariance, the covariance between the

fitness of a population at time t′ ≥ 0 whose genotype is drawn from π at time 0 and its fitness

at time t′ + t is given by

a(t) =
n∑
i=1

n∑
j=1

π(i)Pt(i, j)
(
F(i)− πTF

) (
F(j)− πTF

)
. (S30)

Defining the centered fitness vector F′ = F− (πTF)1, we can rewrite this in matrix notation

as

a(t) = (F′)
T
DπPtF

′. (S31)

Using Equation S4, we can then expand Pt in terms of its eigenvalues and eigenvectors and

simplify to get

a(t) =
n∑
k=1

e−λkt
(
(F′)

T
Dπrk

) (
lk
TF′
)

(S32)

=
n∑
k=1

e−λkt
(
lk
TF′
)2

(S33)

=
n∑
k=2

e−λkt
(
lk
TF
)2

(S34)
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where the last line follows because by construction l1
TF′ = πTF′ = 0 and, for k ≥ 2,

lk
T1 = lk

Tr1 = 0, so that for k ≥ 2

lk
TF′ = lk

TF−
(
πTF

) (
lk
T1
)

(S35)

= lk
TF. (S36)

Equation 15 in the main text then follows from Equation S34 by noting that
(
lk
TF
)2

is

non-negative.
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