Chem, Volume 3

Supplemental Information

A Water-Bridged Cysteine-Cysteine Redox
Regulation Mechanism in Bacterial

Protein Tyrosine Phosphatases

Jean B. Bertoldo, Tiago Rodrigues, Lavinia Dunsmore, Francesco A. Aprile, Marta C.
Marques, Leonardo A. Rosado, Omar Boutureira, Thomas B. Steinbrecher, Woody
Sherman, Francisco Corzana, Hernan Terenzi, and Gongalo J.L. Bernardes



Supplemental Information

A water-bridged cysteine—cysteine redox regulation mechanism

in bacterial protein tyrosine phosphatases

Jean B. Bertoldo, Tiago Rodrigues, Lavinia Dunsmore, Francesco A. Aprile, Marta
C. Marques, Leonardo Rosado, Omar Boutureira, Thomas B. Steinbrecher,
Woody Sherman, Francisco Corzana, Hernan Terenzi and Gongalo J. L.

Bernardes*

* To whom correspondence should be addressed:

Email (G.J.L.B.): gb453@cam.ac.uk; gbernardes@medicina.ulisboa.pt




Table of Contents

METHODS
. PtpA, single, and double-mutants construction
. Protein expression and purification
. Protein tyrosine phosphatase A from Staphylococcus aureus (SptpA)

. General method for Cys-Dha conversion

1
2
3
4
5. Phosphatase assays and kinetic parameters determination
6. S-nitrosylation assay

7. Structural assessments

8. Free thiol content using Ellman’s reagent

9. ESI-QTOF mass spectrometry

10. MALDI-TOF mass spectrometry

11. Fourier Transformed Infrared (FTIR)

12. Molecular dynamics simulations

13. WaterMap calculations

14. Covalent docking

15. Sequence analysis tools

PROTEIN SEQUENCES

SUPPLEMENTAL FIGURES

REFERENCES

0 N N O o o o o o0 A bW W W W

A A a
o0 -~ O



METHODS

1. PtpA, single, and double-mutants construction

Cloning, sequencing and construction were previously described’?. The plasmids
containing the mutants C11S and C16S were designed and produced by
GenScript, using the PtpA wild-type gene sequence, available for download on
Pubmed.

2. Protein expression and purification

The tyrosine phosphatase A (PtpA) from Mycobacterium tuberculosis and its Cys-
to-Ala and Cys-to-Ser mutants were expressed and purified as described. The
plasmid pET28a-Mt_PtpA was transformed into E. coli BL21(DES3). Bacterial cells
containing the recombinant plasmid were inoculated into 10 mL of LB broth
containing 50 pg/mL kanamycin. Overnight cultures were transferred to 250 mL of
fresh medium and were grown at 37 °C until an OD value of 0.8 at 600 nm was
reached. Isopropyl-p-D-thiogalactopyranoside (IPTG) was added to a final
concentration of 1 mM, cultures were further grown overnight at 15 °C. Cells were
harvested by centrifugation (5,000 g for 30 min at 4 °C) and re-suspended in cold
lysis buffer (20 mM Tris-HCI pH 8.0, 300 mM NaCl, 10 mM imidazole, 10%
glycerol) with 40 pg/mL of protease inhibitor (PMSF-phenylmethylsulfonyl fluoride,
Sigma Aldrich®). The cells were then disrupted by gentle sonication (7 cycles, 30
seconds) on ice and centrifuged (17,000 g for 30 min at 4 °C). The N-terminus
hexahistidine Mt_PtpA was purified under native conditions using HisTrap HP
columns (GE Healthcare Bio-Sciences) connected to an Akta System (Amersham
Biosciences), and eluted in a 100-500 mM imidazole gradient with DTT 10 mM.
The purity of the protein preparations was assessed by SDS-PAGE in 12%

acrylamide slab gels, under reducing conditions.

3. Protein tyrosine phosphatase A from Staphylococcus aureus (SptpA)

The recombinant low molecular weight protein tyrosine phosphatase A from S.
aureus was purchased from Mybiosource® (San Diego, CA, USA). The N-
terminal10xHistag and C-terminal Myc-tagged protein in buffer 20 mM Tris-HCI,
500 mM NaCl, 20% Glycerol, pH 8.0 was stored at -20 °C upon arrival and used

for all FTIR measurements after buffer exchange.



4. General method for Cys-Dha conversion

The general procedure for Cys-to-Dha conversion was performed as previously
published®, with minor changes. First, as protein aliquots were obtained from
purification with 10 mM DTT, the reducing agent was removed by the exchange of
the purification buffer for 50 mM sodium phosphate, pH 8.0, using centrifugal filter
units (Millipore®, 3 cycles, 15 min each, 4 °C, 14,000 g). A stock solution of a,a’-di-
bromo-adipyl(bis)amide, 1, was prepared by dissolving 35.5 mg in 418 uL DMF.
Several concentrations were prepared from the compound stock solution and
added as small aliquots to 100 uL protein solutions containing 3.5 mg/mL PtpA.
The reactions were vortexed and shaken at room temperature for 30 minutes.
Thereafter, solids were removed by centrifugation (1 minute, 14,000 g, room
temperature) and then further incubated at 37 °C under shaking for 60 minutes. In
certain conditions the reactions were additionally incubated at 37 °C for 2, 4 and
24 h. When described, 200 mM B-mercaptoethanol was added on the engineered
protein and incubated for 30 min at room temperature. Samples were centrifuged
and the buffer exchanged to 25 mM NH4HCO;. The supernatant was then

analysed by ESI-MS, or used for enzymatic activity assays.

5. Phosphatase assays and kinetic parameters determination

PtpA phosphatase activity and kinetics were measured using increasing
concentrations of p-nitrophenyl phosphate (0.5-10 mM p-NPP) as the substrate in
the following reaction: 50 nM enzyme in 50 mM imidazole buffer, pH 7.0. p-NP
amounts (p-nitrophenol) were detected during a 10 minute incubation period at
37 °C in a 96-well microplate reader TECAN Infinite M200® at 410 nm, using
4,938 M~ cm™ as the molar absorptivity experimentally determined for p-NP in
the same reaction conditions described. Control reactions without enzyme were
included to account for the spontaneous hydrolysis of p-NPP. In order to establish
the activity pH range of PtpA, protein aliquots were incubated for 5 minutes in the
buffers (50 mM acetate for pH 5.0, 50 mM imidazole for pH 6.0 and 7.0 and 50
mM Tris-HCI for pH 8.0). Then, 20 mM of p-NPP was added to the reaction. The
release of p-NP was accompanied at 410 nm during 10 minutes at 37 °C using the

Cary 100Bio UV-Vis spectrophotometer.



6. S-nitrosylation assay

Both wild-type PtpA and the chemical mutant Dha53 were incubated with 1 mM
GSNO in 20 mM Imidazole pH 7.0 for 45 minutes at room temperature in the dark.
Subsequently, protein samples were used in the structural assessments and in the

phosphatase assays.

7. Structural assessments

The structural analysis of PtpA and its chemical and site-directed mutants was
assessed by circular dichroism (CD). The CD measurements were performed in a
0.5 cm path length cuvette using the following parameters: 100 nm/min scan
speed, 2 seconds response time, 2 nm band width, 0.1 nm/s data pitch) with an
average of 3 scans for each spectrum in a wavelength range from 200 nm to 260
nm. For the melting temperature experiments, the temperature of the cuvette
containing protein samples, was increased from 20 °C to 70 °C. The decrease in
the ellipticity was accompanied at 222 nm at each 1 °C of temperature increment,

and deconvoluted according to the equation.
[6] = (B2221x100xM) / (CxIxn)

where 0 is the ellipticity in degrees, / is the optical path length. in cm, C is the
concentration of sample in mg/ml, M is the molecular mass and n is the number of

residues in the protein.

8. Free thiol content using Ellman’s reagent

The thiol content of protein samples was evaluated according to EImman’s assay
protocol provided by Thermo Scientific, using the reagent 5,5'-dithio-bis-(2-
nitrobenzoic acid). The samples were shaken in the presence of 5,5'-dithio-bis-(2-
nitrobenzoic acid) at room temperature for 15 minutes. After incubation,
absorbance of released 2-nitro-5-thiobenzoic acid was measured at 412 nm with a
spectrophotometer Ultrospec 2100 pro (Amersham Biosciences). The molar
absorption coefficient utilized for the quantitative analysis was 14150 M~ cm™, as

described in the company’s protocol.



9. ESI-QTOF mass spectrometry

The buffer used for intact mass spectrometry data acquisition (ESI-QTOF MS)
was ammonium bicarbonate 25 mM at pH 7.4. MS analyses were performed in a
Bruker® microQTOF Il mass spectrometer by direct sample infusion. The capillary
was set to -4500 V, end plate offset to -500 V, nebulizer to 0.4 bar, dry gas to 4.0
L/min and dry temperature to 180 °C. Multi-charged MS spectra for the protein
samples were deconvoluted using the maximum entropy algorithm provided in the

Bruker DataAnalysis software.

10. MALDI-TOF mass spectrometry

Protein samples were submitted to an in-solution trypsin digestion at 37 °C
overnight. The resulting solution containing the digested peptides was dried out
with a vacuum concentrator (Eppendorf® 5301). Dried peptides were resuspended
in 10 uL 1% trifluoroacetic acid (TFA), mixed with 1:10 matrix solution (5 mg a-
cyano-4-hydroxycinnamic acid in 50% acetonitrile 3% TFA) and spotted in
quadruplicate onto a polished steel MTP 384 MALDI plate. MALDI-TOF-MS
analysis was performed using a Bruker spectrometer (Autoflex Il Smartbeam®)
equipped with a 200 Hz pulsed nitrogen laser emitting at 337 nm. The extraction
voltage was 20 kV and all spectra were recorded under delayed extraction
conditions and in the reflectron mode, which improved mass accuracy and
resolution. Spectra were acquired with the automated and deflector mode (400
Da) and each spectrum represents an average of 4000 single laser shots. MS/MS
analyses were performed as well with the LIFT® method that permits a broad
detection of immoniun, b and y-ions. The search and identification of global
modifications were performed with aid of Biotools® software (Bruker Daltonics
GmbH).

11. Fourier-Transformed Infrared (FTIR)

FTIR measurements were performed in attenuated total reflection (ATR) mode
using a Vertex 70 spectrometer (Bruker Corporation, Billerica, MA, USA). Aliquots
of 20 uL volume of 3 mg/mL protein samples in buffer (20 mM Tris-HCI pH 8.0,
300 mM NaCl, 10% glycerol) were deposited on the ZnSe/silicium prism ATR plate
(Bruker corporation, Billerica, MA, USA). For each spectrum, 254 interferograms
were collected at 1 cm™ resolution, and the buffer background was independently

measured and subtracted from each protein spectrum. If specifically stated, the
6



samples were also prepared in buffer containing H,'®0. Spectra were all

normalized for protein quantity using the tyrosine peak at 1515 cm™".

12. Molecular dynamic simulations

Parameters for Dha were generated with the antechamber module of Amber16*,
using the general Amber force field (GAFF)°, with partial charges set to fit the
electrostatic potential generated with HF/6-31G(d) by RESP®. The charges are
calculated according to the Merz-Singh-Kollman scheme using Gaussian 09’
(http://lwww.gaussian.com/g_tech/g_ur/m_citation.htm). = Each  protein  was
immersed in a water box with a 10 A buffer of TIP3P® water molecules. The
system was neutralized by adding explicit counter ions (Na®). All subsequent
simulations were performed using the ff14SB force field, which is an evolution of
the Stony Brook modification of the Amber 99 force field force field (ffO9SB)°. A
two-stage geometry optimization approach was performed. The first stage
minimizes only the positions of solvent molecules and ions, and the second stage
is an unrestrained minimization of all the atoms in the simulation cell. The systems
were then gently heated by incrementing the temperature from 0 to 300 K under a
constant pressure of 1 atm and periodic boundary conditions. Harmonic restraints
of 30 kcal'mol™" were applied to the solute, and the Andersen temperature
coupling scheme'® was used to control and equalize the temperature. The time
step was kept at 1 fs during the heating stages, allowing potential inhomogeneities
to self-adjust. Water molecules are treated with the SHAKE algorithm such that the
angle between the hydrogen atoms is kept fixed. Long-range electrostatic effects
are modelled using the particle-mesh-Ewald method'". An 8 A cutoff was applied
to Lennard-Jones and electrostatic interactions. Each system was equilibrated for
2 ns with a 2 fs time step at a constant volume and temperature of 300 K.
Production trajectories were then run for additional 500 ns under the same

simulation conditions.

13. WaterMap calculations

All computational modeling was conducted using version 2016-1 of the
Schrodinger suite''. A structural model of PtpA was built using the Protein
Preparation Wizard'* based on the high resolution X-ray crystal structure with PDB
(entry code 1U2P"°). Protein protonation states were assigned using the PROPKA

tool'®, which predicted the neutral form for all three cysteine residues with
7



estimated pKa values above 9. Reagent 1 was sketched by hand and transformed
into an energy-minimized 3D-structure, adding hydrogens and assigning
protonation states using the standard chemical compound preparation protocol in
ligprep™. All three stereoisomers of 1 were generated. WaterMap calculations

were performed using version 2.6 of the WaterMap program'*'®

using the default
setup of a truncated and restrained protein, a 2 ns simulation length for data
collection and water position analysis within 10 A of the residue of interest.
Separate WaterMap calculations were run for either Cys53 or Cys11/Cys16, due

to the later residues close spatial proximity.

14. Covalent docking

Molecular dynamics calculations were conducted using version 4.5 of the
Desmond molecular dynamics engine”. The prepared protein structure was
embedded in an orthorhombic SPC'* water model explicit solvent box with a buffer
size of 10 A in each direction. Sodium ions were used to neutralize the system and
sodium chloride ions were added in random positions to achieve a 150 mM salt
concentration. OPLS3" force field parameters were assigned for the entire
system. The solvated system was heated to 300 K and density equilibrated using
the standard Desmond equilibration protocol before unrestrained production
simulations in the NPT ensemble were conducted. Covalent docking calculations
of the prepared protein and reagent structures were conducted using the

418 which combines Glide' flexible ligand

Schrodinger CovDock workflow
docking and Prime' protein structure refinement, defining in each run one
cysteine side chain as reactive residue and centering the coordinate box on it. The
predefined “Nucleophilic Substitution” reaction was used to form covalent bonds in
both the fast “Virtual Screening” and comprehensive “Pose Prediction” modes of
the workflow. Standard docking parameters without additional constraints were

used.

15. Sequence analysis tools
Sequence data were recovered from the National Center for Biotechnology

Information website (htips://www.ncbi.nim.nih.gov). Multiple alignments were

performed using ClustalOmega'’ and edited with Jalview'®. In the PDBeFold
structure alignment'®, we used chain A of the mPtpA (PDB 1U2P'°) and 25% of

lowest acceptable match sorted based on P score (which takes into account
8



RMSD, number of aligned residues, number of gaps, number of matched
Secondary Structure Elements and the SSE match score). Structural similarity

search was performed using FATCAT-rigid algorithm?%%!

, with a reduction of the
number of hits to a 40% sequence identity clustering, to screen the Protein Data

Bank (http://www.rcsb.org/pdb/home/home.do).



PROTEIN SEQUENCES

1. PtpA amino acid sequence

GSSHHHHHHS SGLVPRMGSH SDPLHVTFVC
RGLGDAVRVT SAGTGNWHVG SCADERAAGV
AADLLVALDR NHARLLRQLG VEAARVRMLR
HSDFEEVFAV IESALPGLHD WVDERLARNG

Calculated mass: 19924 Da

2. YopH amino acid sequence

PRERPHTSGH
NDPRYLQACG
LOSQLESHFR
VESKMTQQVG
EVTKALASLV
LIGAMCMNDN
RPLLNS

HGAGEARATA
GEKLNRFRDI
MLAENRTPVL
LGDGIMADMY
DQTAETKRNM
RNSQLSVEDM

Calculated mass: 33483 Da

PSTVSPYGPE
QCCRQTAVRA
AVLASSSEIA
TLTIREAGQK
YESKGSSAVA
VSQOMRVQORNG

3. SptpA amino acid sequence

TGNICRSPMA
LRAHGYPTDH
SFDPRSGTHA
PS

ARAELSSRLT
DLNANYIQVG
NORFGMPDYF
TISVPVVHVG
DDSKLRPVIH
IMVQKDEQLD

EKMFAQQLRH
RAAQVGTEHL
LDVEDPYYGD

TLRNTLTPAT
NTRTIACQYP
ROSGTYGSIT
NWPDQTAVSS
CRAGVGRTAQ
VLIKLAEGOQOG

GSSHHHHHHH HHHSSGLVPR MVDVAFVCLG NICRSPMAEA IMRQRLKDR
NIHDIKVHSR GTGSWNLGEP PHEGTQKILN KHNIPFDGMI SELFEATDD
FDYIVAMDQS NVDNIKSINP NLKGQLFKLL EFSNMEESDV PDPYYTNNF
EGVYDMVLSS CDNLIDYIVK DANLKEG

Calculated mass: 19790 Da

10
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Figure S1. Reaction of wild-type PtpA with increasing amounts of 1.
Deconvoluted ESI-MS spectra of wild-type PtpA after incubation with increasing

concentrations of a,a’-di-bromo-adipyl(bis)amide 1, from 0 to 30 mM, as described

in materials and methods.
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Figure S2. Identification of the noncatalytic Cys259 as the most reactive Cys
residue in Yersinia enterocolitica YopH phosphatase. (a) Conversion of
Cys259 to Dha in YopH by treatment with a,a’-di-bromo-adipyl(bis)amide 1. 3D
structure with cysteines highlighted in cyan. (b) Experimental ESI-MS spectra of
non-modified YopH. (¢) MALDI-TOF-MS/MS spectra of the Cys259-containing
peptide TIACQYPLQSQLESHFR. (d) Experimental ESI-MS spectra of YopH after
treatment with 15 mM a,a’-di-bromo-adipyl(bis)amide 1. (e) MALDI-TOF-MS/MS
spectra of the Dha259-containing peptide TIADhaQYPLQSQLESHFR after

treatment with 15 mM a,a’-di-bromo-adipyl(bis)amide 1.
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Figure S3. ESI-MS spectra of PtpA after reaction with 1. The protein was

treated with 15 mM of compound 1 under the same conditions described on the

supplementary information, with variable times of incubation. Top to Bottom, MS

spectra of 1,2,4 and 24 h of incubation.

13



"] Cyst1-Cys16-Cys53
1[5/00]_; y y y 19924 a
100—2
50
LIE
i Cys11-Cys16-Dha53 15mM
403 19889
30 3
203
103
© _g-#.\. TR P " A
1 Cys11-Cys16-Dha53 30mM 19820
153 Dha11-Dha16-Dha53 19887
10—2
53
[%Mﬁ.ml\. "~ A M
1 Cys11-Cys16-A53 b
150 198%4
100
50-;
(o83
] Cys11-Cys16-A53 30mM 19004
100_5 Dha11-Dha16-A53
% /%J\\\u
PR ;
| Cys11-Cys16-A53 60mM 19827
40 - Dha11-Dha16-A53 19893
20

0

19500 19550 19600 19650 19700 19750 19800 19850 19900 19950mz

Figure S4. Reaction of C53A mutant with 1. ESI-MS spectra of PtpA (a) and
site-directed single-mutant C53A (b) after incubation with increasing

concentrations of a,a’-di-bromo-adipyl(bis)amide 1.
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Figure S5. Reaction of C11/C16A mutant with 1. Deconvoluted ESI-MS spectra
of mutant C11/C16A after previous incubation with increasing concentrations of

a,a’-di-bromo-adipyl(bis)amide 1, from 0 to 30 mM.
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Figure S6. Reaction of C16/C53A mutant with 1. Deconvoluted ESI-MS spectra
of mutant C16/C53A after incubation with increasing concentrations of a,a’-di-

bromo-adipyl(bis)amide 1, from 0 to 30 mM.
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Figure S7. Reaction of C11/C53A mutant with 1. Deconvoluted ESI-MS spectra

of mutant C11/C53A after previous incubation with increasing concentrations of

a,a’-di-bromo-adipyl(bis)amide 1, from 0 to 30 mM.
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Figure S8. Reaction of C11A mutant with 1. ESI-MS spectra of PtpA and site-
directed single-mutant C11A after incubation with increasing concentrations of

a,a’-di-bromo-adipyl(bis)amide 1.
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Figure S9. MALDI-TOF-MS/MS analyses of tryptic digested PtpA species. (a)
Cys53-containing peptide 40-VTSAGTGNWHVGSCADER-57. (b) Dhab53-
containing peptide 40-VTSAGTGNWHVGSDhaADER-57 obtained upon treatment
of wild type PtpA with 15 mM of reagent 1. (¢) Dha53-containing peptide 40-
VTSAGTGNWHVGSDhaADER-57 with the B-mercaptoethanol adduct.
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Dhab3-containing peptide 40-VTSAGTGNWHVGSDhAADER-57 before (top

spectra) and after (bottom spectra) the treatment with B-mercaptoethanol.
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Figure S11. Peptide mass fingerprint (PMF) of wild-type PtpA. Inset indicates
the peptide 40-VTSAGTGNWHVGSCADER-57 (1846.716 m/z) that contains the
Cys53 residue (blue), the peptide 40-VTSAGTGNWHVGSDhaADER-57 (1812.819
m/z) that the residue Dha53 (green) the peptide 40-
VTSAGTGNWHVGSDhapADER-57 (1890.865 m/z) with a B-mercaptoethanol

addition on Dha53 (red). 83% of PtpA primary structure was covered in these

contains and

experiments. These spectra are representative of 4000 lasers shots for each

spectrum in 2 independent experiments.
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Figure S12. pH dependent activity of PtpA (red) and Dha53 chemical mutant
(green). Protein aliquots were incubated for 5 minutes in the buffers (50 mM
acetate for pH 5.0, 50 mM imidazole for pH 6.0 and 7.0 and 50 mM Tris-HCI for pH
8.0). The activity was determined spectrophotometrically as described in the
methods section. PtpA activity at 37 °C pH 7.0 is considered as 100%.
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Figure S13. Michaelis-Menten plots. Michaelis-Menten plot of PtpA and the

chemical-mutant Dha53 in the presence and in the absence of GSNO.
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Figure S14. Protein melting point curves. Melting point curves of PtpA, cmutant

Dha53 and the site-directed mutant C53A in the presence or absence of GSNO.
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Figure S15. Circular dichroism spectra of PtpA, Dha chemical mutants and
site-directed chemical mutants. Protein samples were concentrated to 10 uM in
25 mM NH4HCOs3, pH 7.4. The solid blue line represents the wild-type protein in
both spectra. (Right) Red-dashed line, site-directed mutant C53A, Green-dotted
line, site-directed C11/16/53A. (Left) Red-dashed line, Dha53 chemical mutant,
Green-doftted line, Dha11/16/53 chemical mutant.
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Figure S16. Ellman’s reagent assay. Detection of free thiols in the PtpA wild-

type and mutants after treatment with increasing concentrations of a,a’-di-bromo-

adipyl(bis)amide 1. The results represent the average of three independent
experiments.
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Table S1. Calculated Cso values. Csy values of free thiols detected in PtpA and

mutants after treatment with increasing concentrations o a,a’-di-bromo-
adipyl(bis)amide 1.

Variant Cso value (mM)
Wild-Type 3.05 £ 0.56
C11/C16A 1.70 £ 0.26
C16/C53A 6.96 + 2.19
C11/C53A > 100

*concentration of 1 at which half of the cysteine thiol side chains were converted to
dehydroalanine.
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Figure S17. Second derivative FTIR spect

Wavenumber (cm™)

ra of PtpA and its site-directed

mutants. Second derivative FTIR spectra of Mtb PtpA and its site-directed alanine

and serine mutants in the 3100-2700 cm™" reg

ion measured at pH 8.0. ‘PtpA WT’

is wild-type Mtb PtpA. Absorbance peaks of interest are highlighted. Second

derivative is plotted as the average of three replicate readings with error of + SEM.

(A) Second derivative FTIR spectrum of wild-type Mtb PtpA in buffer made up with

H.0 or H,'®0, as specified. (B) Second derivative FTIR spectrum of wild-type Mtb
PtpA and C53A mutant. (C) Second derivative FTIR spectrum of wild-type Mtb
PtpA and C16/53A mutant. (D) Second derivative FTIR spectrum of wild-type Mtb
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PtpA and C11/16A mutant. (E) Second derivative FTIR spectrum of wild-type Mtb
PtpA and C11/16/53A mutant. (F) Second derivative FTIR spectrum of wild-type
Mtb PtpA and C11S mutant. Samples (B) to (E) were measured in buffer hydrated
with H2O.
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Figure S18. Molecular dynamics (MD) simulation. 2D radial pair distribution
function (2D RDF) computed after a 500 ns MD simulation, suggests a H-bridged
Ser11-Cys16, Cys11-Ser16 and Ser11-Ser16 interaction. “Hotter” color suggests

predicted water molecule

positions in catalytic cleft was computed after 500 ns and imaged with PyMOL

(Schrodinger LLC). Cartoon models represent the atomic fluctuation (Ca) analysis



of PtpA mutants Ser11-Cys16, Cys11-Ser16 and Ser11-Ser16 obtained from 500

ns MD simulations. The data presented in this figure corresponds to the average

structure of both molecules throughout the simulations.
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Figure S$19. Clustal Omega multiple alignments of the low molecular weight
PTPase family. The alignment file shows the 6 most conserved phosphatases
within the family that share a catalytic pocket structural identity (H/V)CX5R(S/T).
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Figure S20. FTIR total absorbance spectra. FTIR total absorbance spectra of
PtpA from Mycobacterium tuberculosis (red) and SptpA from Staphylococcus
aureus (blue) in the region 3100—2700 cm™". The solid lines indicate the FTIR
spectra of both proteins upon hydration with H,O. Spectra represent mean £ SD of

4 replicates from three independent experiments.
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Figure S21. FTIR total absorbance spectra of Mtb PtpA and its site-directed
mutants. One measurement is shown from each protein sample for clarity. (A) Full
spectrum, 4000-1000 cm™. (B) Amide | and Il region, 1800-900 cm™. (C)
Structural waters region, 3000—2800 cm™".
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Figure S$22. ESI-MS multi-charged and deconvoluted spectra of PtpA.
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Figure S23. ESI-MS multi-charged and deconvoluted spectra of PtpA with a
C53Dha substitution achieved at 15 mM a,a’-di-bromo-adipyl(bis)amide 1.

35



Intens. +MS, 0.0-0.4min #(2-25)

[%] 5
100 A 795 829

865
765
80

904

60

737
947

40 4 872

912
994

955 1046

895
983

L e e T B e e e oo e e L e e e e e L e e e
650 700 750 800 850 900 950 1000 mz

[%] +MS, 0.0-0.4min, Deconvoluted (MaxEnt)

1 19860
150

125 4
100

75 1

50 +

254

15000 16000 17000 18000 19000 20000 21000 22000 23000 Mass [Da]

Figure S24. ESI-MS multi-charged and deconvoluted spectra of site-directed
mutant C11/C16A.

36



Intens. | +MS, 0.0-0.4min #(2-25)
%o
%] | 863

902

30

794 045

992
20+

764

1045

1102

1167

1139

T T T T T T T T T T T
1000 1100 mz

[%]] +MS, 0.0-0.4min, Deconvoluted (MaxEnt)
60
i 19826
50 -
40 -

30+

20

10 1

15000 16000 17000 18000 19000 20000 21000 22000 23000 24000 Mass [Da]

Figure S25. ESI-MS multi-charged and deconvoluted spectra of site-directed
mutant C11/C16A with a C53/Dha substitution achieved at 15 mM a,a’-di-bromo-
adipyl(bis)amide 1.
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Figure S26. ESI-MS multi-charged and deconvoluted spectra of site-directed
mutant C16/C53A.
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Figure S27. ESI-MS multi-charged and deconvoluted spectra of site-directed
mutant C16/C53A which fail to undergo a C11Dha substitution at 15 mM a,a’-di-
bromo-adipyl(bis)amide 1.
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Figure S28. ESI-MS multi-charged and deconvoluted spectra of site-directed
mutant C16/C53A with a C11DhA substitution achieved at 30 mM a,a’-di-bromo-
adipyl(bis)amide 1.
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Figure S29. ESI-MS multi-charged and deconvoluted spectra of site-directed
mutant C11/C53A.
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Figure S30. ESI-MS multi-charged and deconvoluted spectra of site-directed
mutant C11/C53A which fail to undergo a C16Dha substitution even at 60 mM

a,a’-di-bromo-adipyl(bis)amide 1.
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Figure S31. ESI-MS multi-charged and deconvoluted spectra of tyrosine

phosphatase YopH from Yersinia enterocolitica.
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Figure S32. ESI-MS multi-charged and deconvoluted spectra of tyrosine

phosphatase YopH from Yersinia enterocolitica C259Dha substitution achieved at

15 mM a,a’-di-bromo-adipyl(bis)amide 1.
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