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Common pipeline for reanalysis of previously published data sets 
Data processing 

To investigate patterns of coverage and genome-wide DNA methylation in published 
bisulfite sequencing data sets (Table 1), we downloaded publicly available files from the NCBI 
Short Read Archive or contacted the authors to obtain files (details provided in Supplementary 
Table 1). In some cases, only FASTQ files were available, while in other cases text files 
providing the number of mapped methylated and unmethylated reads for each sample and 
measured CpG site were available. In all cases, we worked with the most processed file we 
could obtain. 

For data sets where we obtained FASTQ files (Supplementary Table 1), we trimmed 
reads for adaptor contamination and base quality using the program ‘Trim Galore!’ 
(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Specifically, we trimmed 
bases with Phred scores below 20 and discarded any reads that were shorter than 20 base 
pairs long after trimming. We mapped the resulting trimmed and quality filtered reads to the 
following assemblies: (i) the Cerapachys biroi genome (Cbir 1.0) for data from1; and (ii) the 
domestic dog genome (CanFam 3.1) for data from2. We performed all read mapping using the 
bisulfite sequence aligner BSMAP3. For each aligned file, we extracted the number of 
methylated and unmethylated reads that mapped uniquely to a given CpG site using a Python 
script packaged with BSMAP. This step resulted in counts of mapped methylated and 
unmethylated reads for all samples in all data sets (obtained either through the above 
processing steps, by downloading text files directly from NCBI, or by contacting the authors). 
Finally, in each data set, we filtered for sites that were covered in >50% of all samples 
(Supplementary Table 1) and created data matrices describing (i) the number of methylated 
reads observed for each sample at each CpG site (‘methylated counts matrix’) and (ii) the total 
number of reads observed for each sample at each CpG site (‘total counts matrix’). 
 
Estimating common properties of bisulfite sequencing data sets 
 For each data set, we used the processed total counts matrix to estimate the coverage 
properties presented in Supplementary Figure 1. Specifically, we first filtered for sites that had a 
median read depth (across samples) of >10x. For each data set, we then calculated the 
coefficient of variance of read depth, across all samples for each measured CpG site. This value 
provides information on variability in read depth across samples for each CpG site with at least 
10x coverage.  
 We also focused on sites that had a median read depth (across samples) of >10x to 
estimate the mean and variance of DNA methylation levels in each data set. For each data set, 
we divided the filtered methylated counts matrix by the filtered total counts matrix to obtain 
estimates of DNA methylation levels that varied from 0 to 1. In each data set, we then calculated 
the mean and variance of DNA methylation levels on a site-by-site basis. We present the 
distributions of these values in Figure 3 and Supplementary Figure 5.  
 
Estimating effect sizes  
 To estimate effect sizes for the predictor variables listed in Table 1, we performed further 
filtering on each data set. Specifically, for our effect size analyses we excluded sites that were 
hypermethylated or hypomethylated (mean methylation level >90% or <10%), invariant (sites 
that fell in the bottom 5% of the data set in terms of variance), or sequenced at low coverage 
(sites that fell in the bottom 25% of the data set in terms of mean coverage). We used the same 
filtering critera for each dataset with 1 exception: we relaxed the hypomethylation filter for the 
clonal raider ant data dataset (to exclude sites only with mean methylation levels = 0%) 
because the vast majority of the clonal raider ant genome is hypomethylated (Figure 3). 
Supplementary Table 1 reports the number of sites that passed these filtering criteria for each 
data set. 
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Next, we used the binomial mixed effects model implemented in MACAU4 to test for an 
association between each predictor variable of interest and DNA methylation levels on a site-by-
site basis. This analysis approach controls for familial relatedness or population structure 
among individuals in the data set by incorporating a random genetic effect determined by a 
user-defined pairwise relatedness matrix, K. For the clonal raider ant data set1, the human 
cancer data set5, and the human famine data set6, we created K matrices based on the study 
design, which included samples from clones, repeated samples from the same individual, or full 
sibling pairs, respectively. A K matrix estimated from microsatellite data was already available 
for the yellow baboon data set7. For the Arabidopsis data set8, we created a K matrix using SNP 
calls from publicly available whole genome sequencing data for the accessions included in our 
data set. Specifically, we filtered for sites called in at least 25% of samples, with a minor allele 
frequency ≥5%, and with a variant quality score ≥30. We then estimated a covariance matrix 
from this set of SNPs using the program GEMMA9. For the canid data set2, where no genetic 
information was available, we called SNPs directly from the WGBS data using the program 
BisSNP10 and used these genetic marker data to estimate the K matrix (see Calling genetic 
variants from bisulfite sequencing data for details). For the ape dataset, we used the percent 
sequence similarity estimates between species, as provided in11 . 

For each dataset, we ran MACAU for every CpG site that passed our filtering criteria 
using a model that included an intercept, the variable of interest as a fixed effect (Table 1), and 
a random effect that captured familial relatedness/population structure. We then extracted the 
beta estimate, 𝛽 associated with the predictor variable of interest, 𝑥, for every analyzed site. 
Using these values, we calculated the proportion of variance explained by the predictor variable 
of interest, for each site, using the following equation: 
 

𝛽# ∗ 𝑣𝑎𝑟(𝑥)
	𝛽+# ∗ 𝑣𝑎𝑟 𝑥+ + 	𝜎#

 

 
Here, the denominator includes the beta estimate, 𝛽+, for every fixed effect 𝑗, as well as the total 
sample variance, 𝜎#, which is estimated by MACAU. In all cases except the baboon data set, no 
additional fixed effects were included because information on relevant covariates was not 
available. In the baboon data set, we controlled for the age of the blood sample, the age of the 
individual at the time the sample was collected, and the bisulfite conversion rate as fixed 
effects7. Additionally, as an alternate measure of effect size, we calculated the mean difference 
in methylation levels between groups for data sets that included a binary predictor variable 
(Table 1). The distribution of estimates for both the mean difference between groups (for data 
sets with binary predictors) and the percent variance explained (the proportion from above 
multiplied by 100, which we abbreviate as PVE) are presented in Figure 3 and Supplementary 
Figure 2, respectively. 

Reanalysis of previously published data sets 
Estimating bisulfite conversion rates  

We compared methods of estimating bisulfite conversion rate using an RRBS dataset 
from baboons7. First, using principal component analysis, we found that bisulfite conversion 
efficiency (estimated from a lambda phage spike-in) is associated with the first axis of variation 
in this data set. Second, we compared different approaches to estimating bisulfite conversion 
rate: spike-in, RRBS read ends (using cytosines introduced during the end repair step: Figure 
1), and non-CpG methylation. We estimated bisulfite conversion rates from spike-in and non-
CpG sites using the python script packaged with BSMAP. To estimate bisulfite conversion from 
the RRBS ends, we used Trim Galore! without the ‘-rrbs’ option to retain the two bases on the 3’ 
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ends of reads that ended with a CpG site. These two bases are added during the end repair 
step of the RRBS protocol and are therefore unmethylated. We mapped these reads to the 
baboon genome (using BSMAP) and calculated the proportion of times the 3’ cytosine at an 
Msp1 digest site was converted.  

We simulated data to show the relationship between read depth and bisulfite conversion 
rate estimates using a binomial model. We varied the read depth between 1 and 250 reads and 
used simulated conversion efficiencies between 95 and 99.5%. Using the resulting data, we 
estimated the proportion of simulated samples (n=1000) for which the conversion efficiency was 
over/under-estimated and the mean absolute error in bisulfite conversion estimates from the 
data, relative to the original simulated conversion efficiency.  
 
Calling genetic variants from bisulfite sequencing data (dog/wolf and Arabidopsis data sets) 

For the dog/wolf data set2, we called genotypes from BSMAP-mapped reads using 
BisSNP (Liu et al., 2012). Within BisSNP, genotype calls were filtered to retain only: (i) biallelic 
variants called in at least 25% of samples; (ii) variants with a minor allele frequency ≥5%; and 
(iii) variants with a variant quality score ≥30. For sample-specific genotype calls at these filtered 
variants, we considered only calls with a genotype quality score ≥20 based on at least two 
mapped reads. The resulting set of genotype calls were then used to generate a pairwise 
genetic covariance matrix using the program GEMMA9. 

To evaluate the use of BisSNP genotype calls for analyzing genetic effects (meQTL) and 
controlling for relatedness, we compared genotype calls made using BisSNP on 29 Arabidopsis 
accessions8 to publicly available calls from whole genome resequencing data (from the 1001 
Genomes Project: http://1001genomes.org/data/GMI-MPI/releases/v3.1/) and Arabidopsis array 
data available for 25 of the 29 individuals12. To estimate covariance matrices for these additional 
data sets, calls were filtered for biallelic sites with a minor allele frequency ≥5% and 
resequencing genotype calls were additionally thinned using vcftools13 to include 1 variant per 
kb. Covariance matrices were compared with those derived from bisulfite converted DNA using 
a Mantel test.  
 
meQTL analyses in the Arabidopsis data set 

In the main text, we report effect sizes for analyses of local genetic variation on DNA 
methylation levels in Arabidopsis (i.e., cis-meQTL). To perform these analyses, we used publicly 
available SNP calls from the 1001 Genomes Project (http://1001genomes.org/data/GMI-
MPI/releases/v3.1/) and DNA methylation data from8. Specifically, we took the set of filtered 
CpG sites from the DNA methylation data set (see Estimating effect sizes) and, for each CpG 
site, identified SNPs within 50 kb with ≥5% minor allele frequency, variant quality scores ≥30, 
and no missing genotype calls. Because this intersection and filtering criteria resulted in over 20 
million possible tests, we randomly selected 1 million SNP-CpG pairs from chromosome 1 for 
our analyses. These results are reported in Figure 3 and Supplementary Figure 2. 
 
Caste/phase effects and sample-specific methylation (clonal raider ant data set) 

In the main text, we use a clonal raider ant data set1 to illustrate a case in which the data 
are too low powered to detect an effect of interest (differences between reproductive and brood 
care phase ants) in site-by-site analyses, but show a globally apparent pattern. To assess 
power for site-by-site analyses, we simulated bisulfite sequencing data with the same read 
depth properties as the original data set, using the approach described in Simulations. In total, 
we created 615 simulated data sets containing 5000 sites each. Across data sets, we varied the 
proportion of true positive sites (i.e., the number of sites where 𝛽 was not set to 0, which affects 
false discovery rate calculations) and the magnitude of the phase effect, 𝛽. We then converted 
the simulated count data to continuous methylation levels (𝑚0+/𝑡0+) and performed a paired t-test 
for each site, following the statistical approach in the original publication. Finally, we corrected 
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the distribution of 5000 p-values originating from each dataset for multiple hypothesis testing14 
and calculated the proportion of simulated true positives classified as significant at a 5% FDR 
cutoff.  

For the global analysis on this data set, we used the prcomp function in R to perform 
principal components analysis on DNA methylation levels at all CpG sites that passed our initial 
filtering criteria. Specifically, for each of the sites passing filter, we converted DNA methylation 
levels to a normal distribution using the scale function in R, and then used linear models to 
control for line, sequencing batch, and read depth at each CpG site. We took the residuals from 
these models and used them to create a covariance matrix which served as the input for the 
PCA. After performing principal components analysis on the covariance matrix, we used a t-test 
to ask whether any of the top 5 PCs were significantly associated with caste. Finally, we 
permuted the caste labels of the samples 70 times (all possible combinations of 4 and 4), 
calculated whether any of the top 5 PCs in the permuted PCA were significantly associated with 
caste and, by counting the number of permutations that either a.) were significantly associated 
with a higher PC than the observed data, or b.) had a higher significant correlation value on the 
same PC as the observed data, calculated the significance for the observed data. 

Finally, we used the same data set to investigate the practice of binarizing continuous 
data on DNA methylation, as in1,15,16. We suspected that this approach might generate “sample-
specific methylation” even when the observed (continuous) methylation levels do not vary 
across samples. We extracted data for 100,000 random CpG sites that were sequenced to ≥10x 
across samples. For each sample and CpG site, we performed a binomial test and extracted the 
corresponding p-value. For each sample, we estimated the bisulfite conversion rate as the 
fraction of cytosines in a non-CpG context (CHH or CHG) that were converted to thymine (mean 
estimate ± s.d. = 0.992 ± 6.28 x10-4). Finally, we corrected each sample-specific distribution of 
100,000 p-values for multiple hypothesis testing14. Following the approach in Libbrecht et al., 
sites that passed a 5% FDR cutoff were considered methylated and all other sites were 
considered unmethylated.  

Simulations 
In silico estimates of the properties of RRBS and WGBS data 
 In Figure 1C, we report estimates of the proportion of cytosines in the human genome 
covered by an RRBS versus WGBS approach, as well as the distribution of these cytosines 
across different functional compartments of the genome. To obtain these estimates for an 
RRBS data set, we performed an in silico digest of the human genome (hg38) with Msp1 (i.e., 
we ‘cut’ wherever the sequence CCGG was observed). We filtered the resulting fragments for 
sizes commonly retained during library preparation (100-500 bp), and then sampled 10 million 
fragments from this pool. Next, we mapped the first 100 bp and the last 100 bp of each fragment 
separately (using the default single-end mapping settings in the program BSMAP3) and retained 
all uniquely mapping reads. We then used bedtools intersect17 to overlap the CpG sites 
contained within these reads with the locations of: (i) CpG islands (defined by the UCSC 
Genome Browser), (ii) CpG island shores (defined as the 2 kb regions flanking CpG islands), 
(iii) gene bodies (defined by RefSeq annotations), (iv) promoters (defined as the 2 kb region 
upstream of the TSS), and (v) regions far from genes (defined as regions >100kb from any 
annotated TES or TSS).  

We performed a parallel analysis for WGBS, but instead of an in silico digest we 
performed in silico shearing of the human genome. To do so, we randomly chose 10 million 
locations in the human genome using bedtools random17. For each location, we extracted the 
sequence corresponding to a fragment of size n, with n drawn from a normal distribution with a 
mean of 300 bp and a standard deviation of 100 bp (thresholded to a range >100 bp and <500 
bp). As described above, we mapped the first 100 bp and the last 100 bp of each of these 
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fragments, filtered for uniquely mapped reads, and tallied the number of CpG sites in our 
alignment file that fell in different functionally annotated genomic elements. 
 
Impact of sample size and effect size on power to detect differential methylation 
 In the main text, we present results from several power simulations. To conduct these 
analyses, we first simulated a binary predictor variable of interest, 𝑥. The length of the 𝑥 vector 
was equal to the simulated sample size, and in all cases this binary predictor variable was 
evenly distributed across classes. We next simulated DNA methylation levels, 𝜋, for each site 𝑗 
and each sample 𝑖, as a (logit-transformed) linear function of 𝑥 and the effect size, 𝛽. In 
addition, we included an effect of random environmental variation (𝑒), passed through a logit 
link. 𝑒0+ is drawn from a normal distribution with a mean of zero and variance of 1 (representing 
a moderate effect of random environmental noise).  

 

𝑙𝑜𝑔
𝜋0+

1 − 𝜋0+
= 𝑥0𝛽+ + 𝑒0+ 

   
To translate methylation levels into count data (the observable data in bisulfite 

sequencing experiments), we simulated total read counts (𝑡0+) for each site 𝑗 and each sample 𝑖 
from a negative binomial distribution. 

 
𝑡0+ ~	𝑁𝐵(𝑟+, 𝑝+) 

 
Here, 𝑟+ and 𝑝+ are negative binomial parameters estimated from real RRBS data6. 

Specifically, we generated sets of 𝑟 and 𝑝 parameters by fitting a negative binomial distribution 
to the total read count data from 100,000 randomly selected CpG sites in a real RRBS data6. To 
do so, we used the function ‘fitdistr’ in the R package MASS18. To simulate counts for a given 
CpG site, we randomly selected one of these parameter sets to produce the total number of 
reads. Finally, to simulate the number of methylated reads (𝑚0+) for each sample and each site, 
we drew from a binomial distribution parameterized by the resulting site- and individual-specific 
read depth (𝑡0+) and the DNA methylation level (𝜋0+): 
 

𝑚0+ ~	𝐵𝑖𝑛(𝑡0+, 𝜋0+) 
  

Using this simulation approach, we created datasets containing 5000 sites each. For all 
analyses presented in the main text, we set the proportion of true positive sites (i.e., the number 
of sites where 𝛽 ≠	0) at 10%. In Supplementary Figure 3, we present results from identical 
simulations in which we varied the proportion of true positive sites. To assess power to detect 
the effect of interest in each simulated dataset, we ran a beta-binomial model on a site-by-site 
basis. Finally, we corrected the distribution of 5000 p-values originating from each dataset for 
multiple hypothesis testing14 using the R function qvalue19, and estimated the proportion of 
simulated true positives classified as significant at a 5% FDR cutoff.    
 
Impact of variance in methylation levels on power to detect differential methylation 
 To simulate data sets with different variances in DNA methylation levels, we modified the 
procedures described above in the following ways. First, we projected the simulated DNA 
methylation level values (𝜋0+) for each site onto a normal distribution with a mean of 0.5 and a 
standard deviation value that we systematically varied. We did so using a quantile normalization 
approach, which allowed us to keep mean methylation levels constant, while exploring the 
effects of increasing variance. All other components of these simulations were performed as 
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described above. In total, we simulated data sets with four different levels of observed variance 
in DNA methylation levels (specifically, var(𝑚+ / 𝑡+) = 0.035, 0.045, 0.055, and 0.095; Figure 3C). 
We chose these values because they span common values observed in real RRBS and WGBS 
data sets (Supplementary Figure 5). 
 
Binarizing sites as methylated or unmethylated  

In the main text, we discuss the use of binomial tests1,15,20 to classify individual sites as 
‘methylated’ or ‘unmethylated’. The typical use of this approach asks whether the number of 
methylated reads (𝑚0+) observed at site 𝑗 in sample i can be explained by the rate of failure of 
the bisulfite conversion (i.e., 1 – the bisulfite conversion rate for sample i, 𝑏0). If so, the site is 
classified as unmethylated, and if not, the site is considered ‘methylated’. This binomial test is 
equivalent to evaluating the probability that 𝑚0+ originated from a binomial distribution defined by 
two parameters: the total read depth (𝑡0+) and the proportion of unmethylated cytosines in the 
sample that failed to convert to thymine (1 – 𝑏0): 

 
𝑚0+ ~	𝐵𝑖𝑛(𝑡0+, 1 − 𝑏0) 

 
This approach is influenced not only by the observed DNA methylation level at site 𝑗 in 

sample i (𝑚0+/𝑡0+), but also by two technical factors: the total read depth at the site of interest 
(𝑡0+) and the bisulfite conversion rate (𝑏0). In addition, because the p-values from the binomial 
test are corrected using a false discovery rate approach14, the genome-wide distribution of p-
values (influenced by the parameters described above) will impact whether a given site is 
classified as ‘methylated’ or ‘unmethylated’.  

To understand how technical factors influence the categorization of sites as ‘methylated’ 
or ‘unmethylated’, we simulated bisulfite sequencing data spanning a range of observed DNA 
methylation levels and read depths. Specifically, we varied the read depth, 𝑡0+, from 1 to 100, in 
intervals of 1 read. We also varied the observed DNA methylation level (𝑚0+  / 𝑡0+) from 0 to 0.3. 
We chose this range of DNA methylation levels because at levels > 0.3 all sites are considered 
methylated, regardless of coverage, at a nominal p-value cutoff of ≤ 0.05. Note that because 𝑚0+ 
must be an integer, the observed DNA methylation levels we were able to simulate for a given 
𝑡0+  value vary. For example, for a total read count of 10 we could perform a binomial test for 𝑚+ = 
0, 1, 2, or 3, equivalent to observed methylation levels of 0, 0.1, 0.2, or 0.3, respectively. 
However, for a total read count of 100, we could allow 𝑚0+ to take any integer value between 0 
and 30, thus capturing a more granular set of possible observed methylation levels. 

For each simulated combination of 𝑚0+ and 𝑡0+ values, we implemented the binomial test 
described above using the binom.test function in R21 and set b equal to 0.992 (the average 
bisulfite conversion rate from1 based on CHH and CHG conversion rates). Sites were classified 
as methylated if the observed number of methylated reads, 𝑚0+, was unlikely to be observed by 
chance (i.e., if p < the chosen significance cutoff). Otherwise, the position was considered 
unmethylated. 

The results of this analysis show that binarizing methylation levels using a binomial test 
leads to scenarios in which sites with exactly the same observed DNA methylation levels can be 
classified as either “methylated” or “unmethylated,” depending on the total read depth and the 
significance alpha level (Supplementary Figure 6). For example, at a p-value cutoff of 0.01, a 
site with a DNA methylation level of 20% is called “unmethylated” if the total read depth is below 
15x, but methylated if the read depth exceeds this coverage threshold. Furthermore, if the p-
value cutoff is changed to 1x10-4, the same site is only considered methylated at read depths 
≥20.  
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Comparison of approaches for detecting differentially methylated regions (DMRs)  
In the main text, we report that the default run parameters for BSmooth, which focus on 

contiguous windows of 70 CpG sites (minimum), may not be directly translatable to RRBS data. 
In particular, we report that a very wide window (on average 34.474 kb) is needed to capture 70 
CpG sites in human RRBS data, whereas much smaller windows containing 70 CpG sites are 
common in human WGBS data (average length = 2.938 kb in WGBS data). To obtain estimates 
of the window size needed to capture 70 CpGs, we focused on sites on chromosome 1 covered 
in >50% of samples in each of the two human data sets we reanalyzed (one RRBS6 and one 
WGBS5). For each measured CpG site in each data set, we used a grid search approach to 
determine the start and end position of all possible windows around the focal CpG site that 
contained 69 additional CpG sites. For each CpG site, we retained the window with the 
minimum length. The numbers reported in the main text are summary statistics of the minimum 
window lengths across all CpG sites in the RRBS or WGBS data set, respectively.  

To compare “site-first” versus “DMR-first” methods for identifying differentially 
methylated regions, we simulated bisulfite sequencing count data with correlational properties 
that mimicked a real RRBS data set. Specifically, we took all beta estimates for a binary 
predictor variable of interest from Lea et al.7, focusing on analyzed CpG sites from chromosome 
17 (n=12,562 CpG sites). Using these effect size estimates, we simulated methylated and total 
counts for each CpG site using the procedures described in Impact of sample size and effect 
size on power to detect differential methylation (where 𝛽+ was replaced with the beta estimates 
from real data for each site 𝑗). We simulated count data for a binary predictor variable across 
n=50 individuals, and we used coverage properties estimated from the same data set7 as 
described above.  

To test a “DMR-first” approach, we applied the program BSmooth22 to the simulated 
RRBS data. Because RRBS data are less contiguous than WGBS data, we modified the default 
parameters and set the parameter ‘ns’, which corresponds to the minimum number of 
methylation loci in a smoothing window, equal to 8 instead of the default value of 70 because of 
the low density of CpG sites in RRBS data compared to WGBS data. BSmooth’s DMR detection 
algorithm searches for clusters of at least 3 differentially methylated sites (identified as sites with 
t-test statistic values that fall in the 5% most extreme set of test statistics observed in the data 
set) that fall within a 1 kb window; if two DMRs are <300 bp away from each other, they are 
combined.  

To test a “site-first” approach on the same data set, we identified differentially 
methylated regions by first identifying differentially methylated sites using a beta binomial 
model, correcting the p-values for each site for multiple hypothesis testing23, and then identifying 
the 2,141 sites in the simulated data set that passed a 5% FDR. For each of these 2,141 sites, 
we counted the number of nearby sites (within a 1 kb window centered on the focal CpG site) 
that also exhibited evidence for differential methylation (i.e., also passed a 5% FDR). We 
considered a region to be a DMR if at least 3 significant sites were found within a 1 kb cluster, 
and we combined any DMRs that overlapped by at least 1 bp. 

With BSmooth, we identified 69 differentially methylated regions, compared to 55 
identified with the beta-binomial approach. We note that as DMR size (i.e., the number of 
significantly differentially methylated sites) increases, there is increasingly greater overlap 
between the two sets of DMR calls (Supplementary Figure 9A). These results suggest that the 
most extreme DMRs are likely enriched for true positives, even though the total number and 
distribution of DMR sizes differs between data sets (Supplementary Figure 9B). 
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Supplementary Table 1. Data sets reanalyzed as part of this study.  
 

Data set Downloaded file 
type1 

NCBI 
accession 
information 

Sample 
size 

Number of CpG 
sites used to 

estimate coverage 
properties2 

Number of CpG 
sites used to 

estimate effect 
size3 

Clonal raider ant FASTQ SRP066896 8 12,775,050 8,181,299 
Yellow baboon Text files SRP058411 61 2,999,150 686,268 

Human (famine) Text files GSE54983 48 2,565,213 716,764 
Arabidopsis Text files SRP035593 30 33,150,775 2,630,875 

Great apes Text files (obtained 
from the authors) SRP059313 4 1,301,272 540,604 

Human (cancer) Text files (obtained 
from the authors) SRA036589 6 18,288,815 9,001,348 

Dog and wolf FASTQ SRP065666 884 10,511,958 363,326 
1For each data set, we either (i) downloaded raw FASTQ files from NCBI; (ii) downloaded text files denoting the 
counts of methylated and unmethylated reads, for each site and sample, from NCBI; or (iii) contacted the authors to 
obtain processed text files, when they were not available on NCBI.  
2Number of CpG sites covered in >50% of samples in a given data set at a median read depth >10x 
3Number of CpG sites covered in >50% of samples and further filtered for hypo and hypermethylation, variance in 
DNA methylation levels, and read depth (see Supplementary Materials). For large data sets (clonal raider ant, cancer, 
and Arabidopsis), we randomly sampled 1 million sites from the total set of filtered sites for effect size estimation.  
4We excluded four samples from our analysis of this data set (2 dog samples and 2 wolf samples) because genotype 
data generated for these samples (see Calling genetic variants from bisulfite sequencing data) suggested that their 
FASTQ files were mislabeled. In particular, all four of the samples we excluded were labeled as one species (dog or 
wolf), but appeared genetically to cluster with the opposite species. 
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Supplementary Table 2. DMR (differentially methylated region) analysis programs.  
 

Program Model Smoothing1 Significance test Accepts 
covariates? 

Continuous 
predictor 
variable? 

Bumphunter24 Linear regression Yes Permutation Yes No 

BSmooth25 Linear regression Yes Signal-to-noise 
statistic No No 

BiSeq26 Beta-binomial Yes Wald test No No 

HMM-DM27 HMM Yes None No No 

DSS28 Hierarchical beta-
binomial No Wald test No No 

RADmeth29 Beta-binomial No LRT, weighted Z test Yes No 

MOABS30 Beta-binomial No Credible methylation 
difference No No 

Metilene31 Circular binary 
segmentation No 2D KS test No No 

methylKit32 Logistic regression No Logistic regression Yes No2 

eDMR33 Takes methylKit 
object as input No Stouffer-Liptak test No No 

1’Smoothing’ refers to methods that use local averaging of methylation levels or likelihood estimates to improve the 
precision of regional measurements and to borrow information across spatially proximate regions. 
2Although none of the programs model continuous predictor variables, methylKit is able to accept multiple categorical 
predictor variables. All other programs test only for differences between two groups. 
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Supplementary Figure 1. Read depth variation in RRBS and WGBS data sets.  
(A) For each data set, we calculated the coefficient of variation of read depth across all 
samples, for each measured CpG site with a median read depth of at least 10x. These values 
provide information on variability in read depth across samples for each CpG site. RRBS data 
sets are colored in shades of red while WGBS data sets are colored in shades of blue. 
Coverage in RRBS data sets is consistently more variable across samples. (B) Mean coverage 
of CpG sites measured via RRBS is consistently higher in CpG-dense regions compared to 
other genomic compartments. For every CpG site measured in >50% of the individuals in the 
yellow baboon data set7, mean coverage for CpG sites that fell within the following three 
categories are plotted: (i) CpG islands, defined using UCSC Genome Browser annotations for 
the olive baboon genome, Panu2.034; (ii) gene bodies, defined using Ensembl TES and TSS 
annotations for the olive baboon genome35; and (iii) regions far from genes, defined as regions 
>100kb from any TES or TSS. Whiskers on boxplots represent the values for the third and first 
quartiles, plus or minus 1.5x the interquartile range, respectively. 
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Supplementary Figure 2. Bisulfite conversion rate batch effects and estimation strategy. 
(A) In a baboon data set7, variation in bisulfite conversion efficiency produces a batch effect in 
which conversion rate estimates are correlated with PC1 of the overall sample-by-site data set 
(Spearman correlation, p=4.91x10-4, rho=0.433). (B) Probability of over- or underestimating 
bisulfite conversion rates in site-by-site analyses depends on read depth (x-axis) and the true 
bisulfite conversion rate (simulated values shown in different colors). (C) Expected error in site-
by-site bisulfite conversion rate estimates, from simulated data (simulated values shown in 
different colors). (D) Comparisons between three strategies to estimate bisulfite conversion rate 
in the baboon samples7: based on a lambda phage DNA spike-in, end-repaired cytosines added 
in the RRBS protocol, and non-CpG (CHH or CHG) sites. All estimates are roughly correlated 
(Spearman correlation: spike-in vs. RRBS ends, p<10-15, rho=0.804; spike-in vs. CHH/CHG, 
p<10-15, rho=0.831; RRBS ends vs. CHH/CHG, p=3.20x10-6, rho=0.617).  
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Supplementary Figure 3. Effect size distributions for data sets reanalyzed here.  
PVE values (y-axis) are plotted for select percentiles of the overall effect size distribution. To 
emphasize the extremes of the distribution, the x-axis is plotted on a log2 scale (ranging from 
the 50th to 99.9th percentile). Note that these results are also affected by other sources of 
variance in the data set. For example, PVE values for caste effects are low, which is partially 
explained by the strong effect of colony (median PVE>50%) in this data set. Further, both the 
cancer and great ape species data set have moderate PVEs, which can be explained by the 
extremely high levels of variability in DNA methylation levels in these data sets to begin with 
(Supplementary Figure 5).  
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Supplementary Figure 4. Power to detect differential methylation.  
We simulated data sets where the predictor variable of interest influenced methylation at (A) 
1%, (B) 5%, or (C) 20% of all sites. Power to detect differentially methylated sites at a 5% FDR 
increases as a function of the simulated sample size, the magnitude of the effect of interest, and 
the proportion of simulated true positives. For example, to detect an effect that explains 15% of 
the variance with 50% power, a study would require a sample size of approximately 125, 90, or 
65 depending on whether the proportion of true positives expected in the data set was 1%, 5%, 
or 20%, respectively. 
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Supplementary Figure 5. Relationship between read depth, sample size, and power in simulated 
RRBS datasets.  
We simulated datasets with small (5% mean difference between sample groups, panel A), 
moderate (10% mean difference between sample groups, panel B), and large (15% mean 
difference between sample groups, panel B) effect sizes, across a range of sample sizes and 
mean read depths, and calculated the proportion of differentially methylated sites detected at a 
5% FDR. Note that sample size (y-axis) is plotted on a log scale. Across all effect sizes, 
increasing read depth beyond ~15-20x does not increase power (i.e., power does not increase 
as you move toward the extremes of the x-axis, for any given y-axis value); however, increasing 
sample size (i.e., moving up the y-axis) always increases power.
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Supplementary Figure 6. Power to detect differential methylation between reproductive and 
brood care clonal raider ants.  
Simulated data sets are based on the coverage properties of the WGBS clonal raider ant data 
set1. Across simulations, we varied the proportion of sites with a phase effect (i.e., the number 
of simulated true positives) as well as the effect size of the phase effect. (A) The shading shows 
the proportion of true positives detected at a 5% FDR, as a function of the mean difference in 
methylation levels between phases (x-axis) and the proportion of total sites in the data set that 
were simulated to have a phase effect (y-axis). These results show it is nearly impossible to 
detect differential methylation between phases unless phase is the primary source of variance in 
DNA methylation levels for many sites. (B) Comparison between two measures of effect size 
(mean difference in DNA methylation levels versus proportion of variance explained) for the 
simulated phase effect. Note that once the simulated difference between phases exceeds 
~10%, almost all of the variation in DNA methylation levels is explained by phase. 
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Supplementary Figure 7. Variance in CpG methylation levels across data sets.  
(A-B) For each data set, we calculated the variance of DNA methylation levels at each CpG site 
with a median coverage >10x across all samples in the study. The distribution of variance 
estimates is presented as a cumulative distribution plot, where the y-axis represents the 
proportion of sites in each dataset with an estimated variance less than the x-axis value. (C) 
Removing low variance sites from an RRBS data set biases the set of analyzed sites towards 
regions of the genome that are intrinsically more variable. We calculated the variance in DNA 
methylation levels for all sites in the baboon RRBS data set7, and then systematically filtered the 
data according to the variance cutoff shown on the x-axis. For each filtered data set (with 
variance greater than or equal to the x-axis cutoff), the proportion of CpG sites retained in the 
filtered data set relative to the original unfiltered data set is shown. CpG islands, which tend to 
be invariant and hypomethylated, are removed at a faster rate than more variable regions such 
as gene bodies and regions far from genes. Thus, removing sites with low variance (a filtering 
step that can increase overall power) will tend to alter the types of sites in a data set. Insets 
show the number of CpG sites in gene bodies, CpG islands, and regions far from genes in a 
data set with no variance filtering (left) versus a data set where sites with variance < 0.05 are 
removed (right). 
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Supplementary Figure 8. Binarization of DNA methylation levels.  
(A) Classification of simulated sites (with varying read depths and observed DNA methylation 
levels) as ‘unmethylated’ or ‘methylated’ based on a binomial test. Points are colored based on 
their classification at a given significance cutoff. For example, at α = 0.001, all sites with 
methylation level and read depth combinations represented by gray points or light blue points 
would be considered unmethylated, while all sites represented by medium or dark blue points 
would be considered methylated. (B) Technical properties of the data contribute to observations 
of ‘sample-specific’ methylation. For each combination of read depth and methylation level 
properties, we show the proportion of sites that were identified as exhibiting ‘sample-specific 
methylation’ (based on the definition used in1: ~0.6% of tested CpG sites). Results are shown 
for one representative focal sample versus the remaining seven samples, for read depth-
methylation level combinations that occur at a minimum of five sites. Sites with high rates of 
sample-specific methylation were sequenced to higher coverage in the ‘methylated’ focal 
sample, compared to the mean coverage in the remaining seven ‘unmethylated’ samples (y-
axis), producing an overall negative correlation. Additionally, the observed methylation level 
difference between the focal sample and the mean of the remaining seven samples is generally 
small on a continuous scale (x-axis). 
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Supplementary Figure 9. Agreement between "site-first" and "DMR-first" DMR identification 
approaches.  
We simulated bisulfite sequencing count data using the correlation structure from a real RRBS 
data set7 (across 1 chromosome), and called DMRs using BSmooth or an approach that 
aggregated across results from beta binomial models run on each site. (A) The proportion of 
called DMRs that overlapped with DMRs called using the alternative approach; results are 
thresholded based on the minimum number of CpG sites that occurred in the DMR in both data 
sets (x-axis). (B) The number of DMRs in each data set retained after thresholding by the 
minimum number of CpG sites. In this data set, the “site-first” method identifies a larger set of 
DMRs, and thus proportionally exhibits less overlap with the smaller set of BSmooth calls.	
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