Expression and regulation of long noncoding RNAs during the osteogenic differentiation of periodontal ligament stem cells in the inflammatory microenvironment

Qingbin Zhang^{1#}, Li Chen^{2,3#}, Shiman Cui^{1#}, Yan Li^{2,3#}, Qi Zhao², Wei Cao¹, Shixiang Lai¹, Sanjun Yin⁴, Zhixiang Zuo^{2*}, Jian Ren^{2,3*}

¹Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China

²Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China

³State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China

⁴Total Genomics Solution (TGS) Institute, Shenzhen 518000, China

Contributed equally

*Correspondence to: Tel/Fax: +86 20 39943788; Email: <u>renjian.sysu@gmail.com</u> (Jian Ren), <u>zuozhx@sysucc.org.cn</u> (Zhixiang Zuo)

cells primarily culture in 7 days

cells subculture in 1 day

cells subculture in 3 days

Supplementary Fig. 1: Clone-like appearance of PDLSCs. (A) From left to right:
cells primarily cultured for 7 days, cells subcultured for 1 day and cells subcultured
for 3 days. (B) Alizarin red staining of dPDLSCs (left) and TNF-α-PDLSCs (right).
(C) Quantitative analysis of Alizarin red staining.

Supplementary Fig. 2: The expression change of four protein-coding genes validated by RT-PCR.

Supplementary Fig. 3: Significantly enriched pathways for neighboring protein-coding genes for DE lncRNAs between uPDLSCs and dPDLSCs.

В

Supplementary Fig. 4: (A) (B)The top two significantly enriched pathways for DE lncRNAs between uPDLSCs and dPDLSCs via LncRNAs2Pathways. (C) (D) The top two significantly enriched pathways for DE lncRNAs between dPDLSCs and TNF- α -dPDLSCs via LncRNAs2Pathways.

Supplementary Fig. 5: The significantly enriched pathways for mRNAs involved in ceRNA networks via IPA.

Supplementary Table 1: The final lncRNA reference consisted of 31,822 previously identified lncRNAs and 63 novel lncRNAs not annotated in lncRNA databases.

Supplementary Table 2: Differentially expressed lncRNAs identified by DESeq2 and EdgeR in dPDLSCs compared to uPDLSCs.

Supplementary Table 3: Differentially expressed lncRNAs identified by DESeq2 and EdgeR in TNF-α-dPDLSCs compared to dPDLSCs.

Supplementary Table 4: Differentially expressed protein-coding genes identified by DESeq2 and EdgeR in dPDLSCs compared to uPDLSCs.

Supplementary Table 5: Differentially expressed protein-coding genes identified by DESeq2 and EdgeR in TNF-α-dPDLSCs compared to dPDLSCs.

Supplementary Table 6: A. Significantly enriched pathways for DE lncRNAs between uPDLSCs and dPDLSCs via LncRNAs2Pathways analysis. B. Significantly enriched pathways for DE lncRNAs between dPDLSCs and TNF- α -dPDLSCs via LncRNAs2Pathways analysis.

Supplementary Table 7: A. the lncRNAs, mRNAs and shared miRNAs of lncRNA-mRNA ceRNA interactions in the DE lncRNAs between dPDLSCs and uPDLSCs. B. the lncRNAs, mRNAs and shared miRNAs of lncRNA-mRNA ceRNA interactions in the DE lncRNAs between TNF- α -dPDLSCs and dPDLSCs.