Late-onset Alzheimer's disease is associated with inherent changes in bioenergetics profiles

Kai-C. Sonntag^{1,2,3}*, Woo-In Ryu^{1,2,3}, Kristopher M. Amirault^{1,2,3}, Ryan A. Healy^{1,2,3}, Arthur J. Siegel⁴, Donna L. McPhie^{1,3}, Brent Forester^{1,5}, Bruce M. Cohen^{1,3}

¹Department of Psychiatry, ²Basic Neuroscience Division, ³Program for Neuropsychiatric Research, ⁴Internal Medicine Department, ⁵Mood Disorders Division and Geriatric Psychiatry Research Program, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478

*Correspondence to: Kai-Christian Sonntag, M.D., Ph.D., Department of Psychiatry, Basic Neuroscience Division, McLean Hospital, Harvard Medical School, MRC 331, 115 Mill Street, Belmont, MA 02478, Phone: 617-855-3138, Fax: 617-855-3793, e.mail: ksonntag@mclean.harvard.edu

Supplementary Material

Sonntag, K.C.

Supplementary Methods

Oligonucleotide primers for qRT-PCR. Primer sequences for qRT-PCR were deducted from the literature as follows: MTND4 ¹; B2M ²; BACT ³; LDHA ³; PFKFB3 ⁴; NMNAT2 ⁵; NAMPT ⁶; PARP1 ⁷; SIRT1 ⁸; SIRT3 ⁸; MDH1 ⁹; MDH2 ⁹; OGDH ¹⁰; IDH3A: FW 5'-TGCTGCCAAAGCACCTATTCA-3', RV 5'-CCCGGTCTGCCACAAGT-3' (derived from PrimerBank: https://pga.mgh.harvard.edu/primerbank/).

Supplementary Tables and Figures

sample #	age	Sex	Diagnosis
367	21	М	Ctrl
294	23	М	Ctrl
460	25	М	Ctrl
458	26	М	Ctrl
359	31	М	Ctrl
298	33	М	Ctrl
366	35	М	Ctrl
152	40	М	Ctrl
190	42	М	Ctrl
226	45	М	Ctrl
135	49	М	Ctrl
365	52	М	Ctrl
316	54	М	Ctrl
ave young	36.6		
14	55	М	Ctrl
342	57	М	Ctrl
491	61	М	Ctrl
127	62	М	Ctrl
357	65	М	Ctrl
205	67	М	Ctrl
405	75	F	Ctrl
ave old	63.1		
330	56	М	AD
374	59	F	AD
231	65	М	AD
311	70	М	AD
369	76	М	AD
281	79	М	AD
402	70	F	AD
399	71	F	AD
404	81	М	AD
332	82	F	AD
ave AD	70.9		•

Supplementary Table 1 | Summary of fibroblasts samples used in this study.

Sonntag, K.C.

Figure 1																		
i igure i		all/old			all/AD		v	ouna/c	ld	v	ouna/A	D		old/AD)	al	l arour	s
Values	p-value		F	p-value		F	p-value F		p-value		F	p-value F		F	p-value		F	
Fig. 1b Spare Resp. Cap.	0.471589	1,24	0.53501	0.106101	1,27	2.79516	0.27863	1,17	1.25256	0.062741	1,20	3.88421	0.533765	1,15	0.40569	0.209233	3,44	1.57365
Fig. 1b Glycol. Cap.	0.306941	1,24	1.08969	0.096018	1,27	2.9745	0.128479	1,17	2.55337	0.349118	1,20	0.91926	0.019566	1,15	6.83033	0.119992	3,44	2.05491
Fig. 1b PPR	0.948499	1,24	0.00426	0.106976	1,27	2.81568	0.925229	1,17	0.00907	0.1335	1,20	2.44613	0.240079	1,15	1.49652	0.350623	3,44	1.12162
Fig. 1d baseline OCR	0.509416	1,24	0.44855	0.294311	1,27	1014384	0.357664	1,17	0.89392	0.56613	1,20	34038	0.197269	1,15	1.8205	0.523812	3,44	0.75783
Fig. 1d stressed OCR	0.850808	1,24	0.03615	0.184284	1,27	1.85653	0.788594	1,17	0.0742	0.293511	1,20	1.16384	0.281439	1,15	1.24838	0.480354	3,44	0.83797
Fig. 1d baseline ECAR	0.672606	1,24	0.18302	0.210291	1,27	1.64687	0.507377	1,17	0.45863	0.162704	1,20	2.10099	0.590647	1,15	0.30212	0.468226	3,44	0.86141
Fig. 1d stressed ECAR	0.758181	1,24	0.09697	0.166937	1,27	2.01754	0.640263	1,17	0.2264	0.264006	1,20	1.32081	0.22657	1,15	1.59012	0.449259	3,44	0.89914
Fig. 1d met. pot. OCR	0.470548	1,24	0.53756	0.871455	1,27	0.02669	0.266285	1,17	1.32124	0.468956	1,20	0.54497	0.564773	1,15	0.34666	0.695178	3,44	0.48391
Fig. 1d Met. Pot. ECAR	0.109992	1,24	2.75453	0.95892	1,27	0.0027	0.024352	1,17	6.10551	0.458452	1,20	0.57156	0.024352	1,15	6.10551	0.205508	3,44	1.58924
	AD/old	- AD/	vouna	AD/old	i - old	vouna	AD/you	na - ol	d/vouna	al	larou	ns						
Ratios	p-value		F	p-value		F	<i>p</i> -value		F	<i>p</i> -value	9.00	F						
Fig. 1c Basal Resp.	0.000138	1.18	23,20985	0.000548	1.15	19.10171	1.31773	1.15	0.268978	0.000074	2.24	14.51661						
Fig. 1c ATP Prod.	0.000194	1,18	21.72551	0.00078	1,15	17.6025	1.05738	1,15	0.320112	0.000121	2,24	13.43865						
Fig. 1c Proton Leak	0.008583	1,18	8.69725	0.008583	1,15	8.69725	1.58119	1,15	0.227815	0.002196	2,24	7.98551						
Fig. 1c Max. Resp.	0.103143	1,18	2.94797	6.01451	1,15	0.026912	0.308253	1,15	1011241	0.045822	2,24	3.51525						
Fig. 1c Spare Resp. Cap.	0.39868	1,18	0.74739	0.927303	1,15	0.00861	0.533765	1,15	0.40569	0.658546	2,24	0.42508						
Fig. 1c Non-Mito Resp.	0.603252	1,18	0.27987	0.183835	1,15	1.94127	0.339917	1,15	0.97159	0.411797	2,24	0.92085						
Fig. 1c Coupling Effect	< 0.00001	1,18	129.0867	< 0.00001	1,15	53.60973	0.305148	1,15	1.1273	< 0.00001	2,24	58.32071						
Fig. 1c Glycol. Cap.	0.001303	1,18	14.46224	0.000114	1,15	26.71374	0.019566	1,15	6.83033	0.000023	2,24	17.21279						
Fig. 1c PPR	0.144624	1,18	0.32579	0.026623	1,15	6.04141	0.240079	1,15	1.49652	0.051876	2,24	3.35562						
Fig. 1d Baseline OCR	0.380595	1,18	0.80795	0.05041	1,15	4.2467	0.197269	1,15	1.8205	0.132248	2,24	2.20362						
Fig. 1d Stressed OCR	0.811853	1,18	0.05835	0.20256	1,15	1.77577	0.281439	1,15	1.24838	0.422417	2,14	0.89346						
Fig. 1d Baseline ECAR	0.578039	1,18	0.32094	0.969486	1,15	0.00151	0.590647	1,15	0.30212	0.80357	2,14	0.2207						
Fig. 1d Stressed ECAR	0.609275	1,18	0.27059	0.113785	1,15	2.82024	0.22657	1,15	1.59012	0.238504	2,24	1.52249						
Fig. 1d Met. Pot. OCR	0.139264	1,18	2.39322	0.139264	1,15	2.39322	0.564773	1,15	0.34666	0.18285	2,24	1.82526						
Fig. 1d Met. Pot. ECAR	0.061997	1,18	3.96022	0.00418	1,15	11.38001	0.172928	1,15	2.04782	0.009414	2,24	5.7025						

Figure 2																			
Values		all/old			all/AD		ye	oung/c	ld	yo	oung//	AD.		old/AD)	all groups			
values	<i>p</i> -value		F	<i>p</i> -value		F	<i>p</i> -value		F	<i>p</i> -value		F	<i>p</i> -value <i>F</i>		F	<i>p</i> -value		F	
Fig. 2a ATP	0.547382	1,25	0.37207	0.006196	1,28	8.76305	0.427554	1,18	0.6589	0.037335	1,21	4.9413	0.013621	1,15	7.80689	0.013546	3,46	3.96313	
Fig. 2b Lactate	0.49256	1,25	0.48507	0.00054	1,28	15.26135	0.378525	1,18	0.81515	0.007985	1,21	8.59008	0.000894	1,15	17.04062	0.000933	3,46	6.4934	
Fig. 2c glu	0.159688	1,16	2.17486	0.211074	1,25	1.64747	0.159688	1,16	2.17486	0.078816	1,20	3.43064	0.893954	1,12	0.01854	0.255139	3,41	1.40466	
Fig. 2c IGF-1	0.047218	1,16	4.6213	0.056848	1,25	3.98708	0.047218	1,16	4.6213	0.011787	1,20	7.6787	0.775181	1,12	0.08534	0.033693	3,41	3.18506	
Maluaa		all/all		you	ing/yo	ung		old/old			AD/AD								
values	<i>p</i> -value		F	<i>p</i> -value		F	p-value F		F	<i>p</i> -value		F							
Fig. 2c glu/IGF-1	0.014082	1,34	6.70032	0.009156	1,24	8.03632	0.599975	1,8	0.29809	0.203184	1,16	1.76054							
	AD/old	i - AD/	young	AD/old	d - old/	young	AD/you	vouna - old/vouna		all groups		ps							
Ratios	p-value		F	<i>p</i> -value		F	<i>p</i> -value		F	<i>p</i> -value		F							
Fig. 2a ATP	0.406568	1,18	0.72225	0.005367	1,15	10.57201	0.022178	1,15	6.50481	0.014828	2,24	5.04478							
Fig. 2b Lactate	0.137797	1,18	2.4122	0.000157	1,15	25.03465	0.000894	1,15	17.04062	0.000177	2,24	12.65165							
Fig. 2c glu	0.013285	1,16	7.7501	0.054368	1,12	4.54512	0.893954	1,15	0.01854	0.02905	2,20	4.24575							
Fig. 2c IGF-1	0.000312	1,16	20.91642	0.00465	1,12	12.02547	0.775181	1,15	0.08534	0.000243	2,10	12.98618							

Figure 3																		
Malwas		all/old		i	all/AD		young/old			уо	D	c		all groups				
values	p-value		F	p-value		F	p-value		F	p-value		F	p-value		F	p-value		F
Fig. 3a NADt	0.658008	1,25	0.20071	0.069448	1,27	3.57456	0.524097	1,18	0.4221	0.123928	1,20	2.57953	0.036667	1,14	5.33489	0.223454	3,43	1.5179
Fig. 3b NADH	0.59242	1,25	0.29408	0.05232	1,27	4.15076	0.64844	1,18	0.431179	0.092316	1,20	3.12579	0.028723	1,14	5.9417	0.178992	3,43	1.71074
Fig. 3c NAD+	0.792168	1,25	0.07093	0.135894	1,27	2.36283	0.716928	1,18	0.13566	0.222359	1,20	1.58628	0.07485	1,14	3.70397	0.386044	3,43	1.03644
Fig. 3d ratios NAD+/NADH							0.923745	1,18	0.00942	0.328384	1,20	1.00131	0.412244	1,14	0.71135	0.429081	3,43	0.94127
	AD/old	- AD/	vouna	AD/old	- old/	vouna	AD/you	na - ol	d/voung	all	arour	is.						
Ratios	p-value		F	p-value		F	p-value		F	p-value	3	F						
Fig. 3a NADt	0.26741	1,18	1.30987	0.021197	1,15	6.62168	0.040956	1,15	5.00075	0.009933	2,24	5.62339						
Fig. 3b NADH	0.165247	1,18	2.09215	0.016968	1,15	7.20818	0.032312	1,15	5.56456	0.006346	2,24	6.29383						
Fig. 3c NAD+	0.62969	1,18	0.24061	0.046076	1,15	4.7287	0.081443	1,15	3.4889	0.045177	2,24	3.53359						

Figure 4																		
Values		all/old		all/AD			young/old			young/AD			old/AD			all groups		
Values	p-value		F	<i>p</i> -value		F	<i>p</i> -value		F	p-value		F	p-value	F		p-value		F
Fig. 4a mtMinArc	0.273096	1,22	1.26355	0.795938	1,25	0.06832	0.167003	1,16	2.09593	0.444566	1,19	0.60958	0.127131	1,13	2.65612	0.496459	3,41	0.80853
Fig. 4b citrate synthase	0.080535	1,24	3.32917	0.71023	1,26	0.14111	0.009759	1,17	8.4666	0.145599	1,19	2.30286	0.078564	1,14	3.60093	0.063194	3,42	2.61603
Fig. 4c MitoTracker	0.296862	1,20	1.4735	0.909028	1,22	0.01336	0.125382	1,14	2.65697	0.396134	1,16	0.76029	0.270792	1,12	1.33274	0.421599	3,36	0.96113
								L										
Deties	AD/old	i - AD/	young	AD/old	i - old	/young	AD/you	ng - ol	d/young	all groups								
Ratios	p-value		F	<i>p</i> -value		F	p-value		F	p-value		F						
Fig. 4a mtMinArc	0.022781	1,16	6.34586	0.021267	1,13	6.85391	0.127131	1,13	2.65612	0.006757	2,21	6.39966						
Fig. 4b citrate synthase	0.001903	1,16	13.76197	0.078564	1,14	3.60093	0.000104	1,14	28.51785	0.000054	2,22	15.85914						
Fig. 4c MitoTracker	0.016057	1,14	7.48982	0.008195	1,12	9.99647	0.270792	1,12	1.33274	0.007367	2,19	6.43008						

Figure 5																			
Values		all/old			all/AD		yo	oung/o	old	ye	oung/A	٨D		old/AD		al	all groups		
Values	<i>p</i> -value		F	p-value		F	p-value		F	p-value	F		p-value	F		p-value		F	
Fig. 5a mtMajArc	0.261658	1,22	1.32726	0.605477	1,25	0.27369	0.152764	1,16	2.25378	0.32371	1,19	1.03674	0.982132	1,13	0.00052	0.439456	3,41	0.92049	
Fig. 5c MTND4	0.97254	1,25	0.00121	0.052942	1,28	4.08416	0.959986	1,18	0.00259	0.049733	1,21	4.33587	0.12632	1,15	2.62051	0.249527	3,46	1.41828	
Fig. 5d ROS	0.454524	1,25	0.57718	0.901284	1,28	0.01567	0.296998	1,18	1.15354	0.75182	1,21	0.10267	0.39652	1,15	0.76181	0.745131	3,46	0.41203	
Fig. 5e MitoSox	0.193546	1,20	1.81016	0.701845	1,22	0.15044	0.059758	1,14	4.10581	0.331683	1,16	1.00219	0.496764	1,12	0.49119	0.343737	3,36	1.14595	
		young	1		old			AD		al	l grou	ps							
Values	p-value		F	p-value		F	<i>p</i> -value		F	p-value		F							
Fig. 5b ratios Min/MajArc	0.732633	1,16	0.12086	0.703651	1,19	0.14914	0.982132	1,13	0.00052	0.883234	2,24	0.12481							
D.//	AD/old	i - AD/	young	AD/olo	d - old	young	AD/you	ng - ol	d/young	al	l grou	ps							
Ratios	p-value		F	p-value		F	p-value		F	p-value		F							
Fig. 5a mtMajArc	0.056615	1,16	4.22183	0.044662	1,13	4.93685	0.313243	1,13	1.10062	0.027781	2,21	4.27079							
Fig. 5c MTND4	0.961343	1,18	0.00242	0.133851	1,15	2.51177	0.12632	1,15	2.62051	0.141882	2,24	2.12063							
Fig. 5d ROS	0.206554	1,18	1.71701	0.056325	1,15	4.2772	0.39652	1,15	0.76181	0.133176	2,24	2.19534							
Fig. 5e MitoSox	0.161721	1,14	2.18258	0.02801	1,12	6.2408	0.496764	1,12	0.49119	0.095828	1,19	2.66003							

Sonntag, K.C.

Figure 6																		
Values		all/old			all/AD		yo	oung/c	old	yo	oung/A	٨D		old/AE)	al	l grou	os
values	p-value		F	<i>p</i> -value		F	<i>p</i> -value		F	<i>p</i> -value		F	<i>p</i> -value		F	p-value		F
Fig. 6a PFKFB3	0.376775	1,23	0.81232	0.559347	1,26	0.34978	0.26475	1,17	1.33008	0.35001	1,20	0.91579	0.517872	1,13	0.4418	0.596567	3,43	0.63494
Fig. 6a LDH	0.301566	1,23	1.11688	0.676208	1,26	0.17842	0.19165	1,17	1.84911	0.37822	1,20	0.81141	0.162777	1,13	2.18949	0.511262	3,43	0.78066
Fig. 6b NMNAT2	0.480827	1,23	0.51354	0.632242	1,26	0.23453	0.350661	1,17	0.92101	0.958193	1,20	0.00282	0.157315	1,13	2.25222	0.722533	3,43	0.44434
Fig. 6b NAMPT	0.846593	1,23	0.03828	0.221133	1,26	1.56872	0.802091	1,17	0.06482	0.228427	1,20	1.53915	0.300545	1,13	1.15567	0.734866	3,43	0.4267
Fig. 6b PARP1	0.989364	1,22	0.00018	0.16267	1,25	2.06953	0.984552	1,16	0.00039	0.147933	1,19	2.2749	0.29834	1,13	1.17364	0.540827	3,41	0.72863
Fig. 6b SIRT1	0.471141	1,25	0.53542	0.386216	1,28	0.77484	0.348102	1,18	0.92818	0.259095	1,21	1.34544	0.99503	1,15	0.00004	0.593704	3,46	0.63913
Fig. 6b SIRT3	0.774264	1,25	0.08406	0.561469	1,27	0.34565	0.712509	1,18	0.14015	0.522698	1,20	0.4233	0.712245	1,14	0.1417	0.913815	3,45	0.17343
Fig. 6c IDH3A	0.163564	1,23	2.07131	0.5429	1,27	0.37969	0.074048	1,17	3.62327	0.949606	1,21	0.00409	0.083126	1,14	3.48207	0.309398	3,44	1.23214
Fig. 6c OGHD	0.112796	1,23	2.71832	0.643661	1,26	0.21905	0.020241	1,17	6.55939	0.553531	1,20	0.36316	0.016819	1,13	7.51396	0.089023	3,43	2.31692
Fig. 6c MDH1	0.672473	1,23	0.18337	0.615738	1,26	0.25806	0.569063	1,17	0.33721	0.802017	1,20	0.06456	0.442727	1,13	0.62683	0.946253	3,42	0.12262
Fig. 6c MDH2	0.670145	1,21	0.18662	0.663165	1,26	0.1941	0.618493	1,16	0.2579	0.57057	1,21	0.33207	0.648287	1,13	0.21801	0.898213	3,41	0.19645
	AD/ol	- AD/	vouna	AD/old	i - old	/vouna	AD/you	na - ol	d/vouna	al	l arou	ps						
Ratios	p-value		F	p-value		F	p-value		F	p-value	3.00	F						
Fig. 6a PFKFB3	0.051921	1,16	4.41085	0.041281	1,13	5.12826	0.517872	1,13	0.4418	0.035768	2,21	3.91953						
Fig. 6a LDH	0.002451	1,16	12.88749	0.001832	1,13	15.1959	0.162777	1,13	2.18949	0.00034	2,21	11.96584						
Fig. 6b NMNAT2	0.119243	1,16	2.70962	0.021282	1,13	6.85193	0.157581	1,13	2.2491	0.032876	2,21	4.03582						
Fig. 6b NAMPT	0.603268	1,18	0.27984	0.481704	1,14	52244	0.300545	1,14	1.15567	0.507036	2,23	0.69963						
Fig. 6b PARP1	0.976	1,16	0.00093	0.306346	1,13	1.13381	0.29834	1,13	1.17364	0.410849	2,21	0.92829						
Fig. 6b SIRT1	0.092617	1,18	3.15466	0.158986	1,15	2.19696	0.99503	1,15	0.00004	0.160051	2,24	1.97955						
Fig. 6b SIRT3	0.313629	1,18	1.0824	0.732078	1,14	0.122	0.712245	1,14	0.1417	0.702811	2,22	0.35838						
Fig. 6c IDH3A	0.037418	1,18	5.04914	0.012477	1,14	8.20792	0.083126	1,14	3.48208	0.017106	2,22	4.92265						
												10 00 00 1						
FIG. 6C UGHD	0.000505	1,16	18.8484	0.000214	1,13	25.7212	0.016819	1,13	7.51396	0.000055	2,21	16.23784						
Fig. 6c MDH1	0.000505 0.452315	1,16 1,16	18.8484 0.59345	0.000214 0.199147	1,13 1,13	25.7212 1.83036	0.016819 0.442727	1,13 1,13	7.51396 0.62683	0.373622	2,21 2,21	16.23784						

Supplementary Table 2 | Statistical data using one-way analysis of variance (ANOVA) tests for independent measures.

Supplementary Figure 1 | Schematic representation of Seahorse experiments-derived data.

Profiles for oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) with arrows indicating injections of specific pharmacologic stressors targeting the electron transport chain (ETC) and ATP production: Oligomycin, which inhibits complex IV (ATP synthase), decreasing OCR and ATP production; Carbonyl cyanite-4 (trifluoromethoxy) phenylhydrazone (FCCP), which disrupts the mitochondrial membrane potential and collapses the proton gradient at the ETC leading to maximal respiration (O₂ consumption by complex IV); and Rotenone/Antimycin A, which inhibit complex I and III resulting in the shut down of mitochondrial respiration. From the data generated, several additional measures can be calculated, including the spare respiratory capacity (maximal respiration minus basal respiration), the proton leak, non-mitochondrial respiration, and the coupling effect, which determines ATP production relative to basal respiration. The assay deducts the ECAR is an indicator of the cells' glycolytic capacity, and the proton production rate (PPR). Images are adapted from Seahorse Agilent Technologies.

Sonntag, K.C.

Supplementary Figure 2 | Gating strategy in the MitoPT JC-1 FCM assays. For positive and negative controls cells were treated with 50 μ M of the depolarizing agent Carbonyl cyanide m-chlorophenyl hydrazone (CCCP) in DMSO or DMSO alone, respectively.

Sonntag, K.C.

Supplementary Figure 3 | MitoSox and MitoTracker assay controls. Human foreskin cell line HFF1 and human fetal skin fibroblast cell line D551 were used as positive controls in combined
MitoSox/MitoTracker assays measuring red (MitoSox) and green (MitoTracker) fluorescence in a BioTek plate reader. (a) Relative values of ROS (MitoSox) and mitochondrial mass (MitoTracker) after protein normalization with a BioRad Protein assay. (b) Both cell lines show similar levels of ROS after normalizing the MitoSox data with MitoTracker values.

Supplementary References

- 1 Salehi, M. H. *et al.* Gene expression profiling of mitochondrial oxidative phosphorylation (OXPHOS) complex I in Friedreich ataxia (FRDA) patients. *PLoS One* **9**, e94069, doi:10.1371/journal.pone.0094069 (2014).
- 2 Lupberger, J. *et al.* Quantitative analysis of beta-actin, beta-2-microglobulin and porphobilinogen deaminase mRNA and their comparison as control transcripts for RT-PCR. *Mol Cell Probes* **16**, 25-30, doi:10.1006/mcpr.2001.0392 (2002).
- 3 Li, H. *et al.* MiR-34b-3 and miR-449a inhibit malignant progression of nasopharyngeal carcinoma by targeting lactate dehydrogenase A. *Oncotarget* **7**, 54838-54851, doi:10.18632/oncotarget.10761 (2016).
- 4 Yalcin, A. *et al.* 6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27. *Cell Death Dis* **5**, e1337, doi:10.1038/cddis.2014.292 (2014).
- 5 Di Stefano, M., Galassi, L. & Magni, G. Unique expression pattern of human nicotinamide mononucleotide adenylyltransferase isozymes in red blood cells. *Blood Cells Mol Dis* **45**, 33-39, doi:10.1016/j.bcmd.2010.04.003 (2010).
- 6 Soncini, D. *et al.* Nicotinamide phosphoribosyltransferase promotes epithelial-to-mesenchymal transition as a soluble factor independent of its enzymatic activity. *J Biol Chem* **289**, 34189-34204, doi:10.1074/jbc.M114.594721 (2014).
- 7 Dziaman, T. *et al.* PARP-1 expression is increased in colon adenoma and carcinoma and correlates with OGG1. *PLoS One* **9**, e115558, doi:10.1371/journal.pone.0115558 (2014).
- 8 Duncan, M. T. *et al.* SIRT1 is a critical regulator of K562 cell growth, survival, and differentiation. *Exp Cell Res* **344**, 40-52, doi:10.1016/j.yexcr.2016.04.010 (2016).
- 9 Lee, S. M. *et al.* Cytosolic malate dehydrogenase regulates senescence in human fibroblasts. *Biogerontology* **13**, 525-536, doi:10.1007/s10522-012-9397-0 (2012).
- 10 Snezhkina, A. V. *et al.* Differential expression of alternatively spliced transcripts related to energy metabolism in colorectal cancer. *BMC Genomics* **17**, 1011, doi:10.1186/s12864-016-3351-5 (2016).