Increasing Dietary Medium-Chain Fatty Acid Ratio Mitigates High-fat Diet-Induced Non-Alcoholic Steatohepatitis by Regulating Autophagy

Mu-En Wang^{1, 2}, Brijesh K. Singh², Meng-Chieh Hsu¹, Chien Huang¹, Paul M. Yen², Leang-Shin Wu¹, De-Shien Jong¹, and Chih-Hsien Chiu^{1, *}

¹Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan.

²Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore 16987, Singapore.

*Corresponding Author: Chih-Hsien Chiu Address: 50, Lane 155, Sec 3, Keelung Rd., 106 Taipei, Taiwan

Tel.: +886-2-3366-4171; Fax: +886-2-3366-4070 chiuchihhsien@ntu.edu.tw

Supplementary Tables

Antibody Name	Company	Product Number
Anti-LC3	Cell Signaling Technology	#2775
Anti-phospho-Akt Ser473	Cell Signaling Technology	#4060
Anti-Akt	Cell Signaling Technology	#4691
Anti-CHOP (for in vivo samples)	Cell Signaling Technology	#5554
Anti-CHOP	Cell Signaling Technology	#2895
Anti-cleaved caspase-3	Cell Signaling Technology	#9661
Anti-phospho-mTOR Ser2448	Cell Signaling Technology	#5536
Anti-mTOR	Cell Signaling Technology	#2983
Anti-phospho-p70S6K Thr389	Cell Signaling Technology	#9234
Anti-p70S6K	Cell Signaling Technology	#2708
Anti-phospho-ULK1 Ser757	Cell Signaling Technology	#14202
Anti-phospho-ULK1 Ser555	Cell Signaling Technology	#5869
Anti-ULK1	Cell Signaling Technology	#8054
Anti-phospho-AMPK Thr172	Cell Signaling Technology	#2535
Anti-AMPK	Cell Signaling Technology	#2532
Anti-Beclin-1	Cell Signaling Technology	#3495
Anti-ATG5	Cell Signaling Technology	#12994
Anti-Rubicon	Cell Signaling Technology	#8465
Anti-β-actin (for <i>in vivo</i> samples)	Cell Signaling Technology	#8457
Anti-Collagen I	abcam	ab34710
Anti-SQSTM1/p62	abcam	ab109012
Anti-phospho-GSK-3β Ser9	Cell Signaling Technology	#5558
Anti-GSK-3β	Cell Signaling Technology	#3915
Anti-β-actin	Santa Cruz Biotechnology	sc-47778
Goat anti-rabbit IgG-HRP	Santa Cruz Biotechnology	sc-2004
Goat anti-mouse IgG-HRP	Santa Cruz Biotechnology	sc-2005

 Table 1. Antibodies used in Western Blotting and Dot Blotting

Gene name	Forward (5' to 3')	Reverse (5' to 3')
Map1lc3b	GGAGCTTTGAACAAAGAGTGGAA	GGTCAGGCACCAGGAACTTG
Sqstm1/p62	CCTTGCCCTACAGCTGAGTC	CCTCAATGCCTAGAGGGCTG
Ulk1	AAACATCGTGGCGCTGTATG	CGCATAGTGTGCAGGTAGTCA
Becnl	AGGAACTCACAGCTCCATTACT	ACCATCCTGGCGAGTTTCAAT
Actb	CACTGTCGAGTCGCGTCCA	CATCCATGGCGAACTGGTGG
MAP1LC3B	CCGCACCTTCGAACAAAGAG	AAGCTGCTTCTCACCCTTGT
SQSTM1/p62	AGAATCAGCTTCTGGTCCATCG	TTCTTTTCCCTCCGTGCTCC
ULK1	AGAACCTCGCCAAGTCTCAG	ACCGTTGCAGTACTCCATAACC
BECN1	CCAGGAACTCACAGCTCCATT	TCTGCGAGAGACACCATCCT
RUBCN	TCTCATGCAAACTGATGAAC	AGTTTGTGAAAGACATTCGG
ACTB	GAGCACAGAGCCTCGCCTTT	TCATCATCCATGGTGAGCTGG

Table 2. Primers used in qPCR analyses

Supplementary Figure Legends

Figure S1. The full-length blot of p-Akt, Akt presented in Figure 1 of the main text.

Figure S2. The full-length blot of collagen I, p-Akt, Akt, SQSTM1/p62, LC3, CHOP, cleaved caspase 3, and β-actin presented in Figure 2 of the main text.

Figure S3. The full-length blot of p-Akt, Akt, SQSTM1/p62, LC3, CHOP, cleaved caspase 3, and β-actin presented in Figure 3 of the main text.

Figure S4. The full-length blot of p-Akt, Akt, SQSTM1/p62, LC3, CHOP, cleaved caspase 3, and β-actin presented in Figure 4 of the main text.

Figure S5. The full-length blot of p-AMPK, AMPK, p-mTOR, mTOR, p-p70S6K, p70S6K, p-ULK1, ULK1, Beclin-1, ATG5, Rubicon, and β -actin presented in Figure 5 of the main text.

Figure S6. The full-length blot of EGFP-Rubicon, Rubicon, p-AMPK, AMPK, p-mTOR, mTOR, p-p70S6K, p70S6K, p-ULK1, ULK1, Beclin-1, ATG5, SQSTM1/p62, LC3, and β -actin presented in Figure 6 of the main text.

Figure S7. The full-length blot of Rubicon, SQSTM1/p62, LC3, CHOP, cleaved caspase 3, EGFP-Rubicon, p-Akt, Akt, and β -actin presented in Figure 7 of the main text.

Figure S8. The free fatty acid levels in mice fed with either CTD, SDHFD, or MCFAD for 16 weeks. Values are mean \pm SEM. (n=6). * indicates statistical significance, *P* < 0.05. n.s.: no significant difference.

Figure S9. The Representative immunoblots and densitometric quantification of phospho-GSK-3 β (Ser9) in fat-loaded HepG2 cells treated with or without insulin (**A**), and the calculated insulin-stimulated GSK-3 β phosphorylation fold change results (**B**). Values are mean ± SEM (n=3). *, # (vs. BSA treated cells without insulin stimulation), and † (vs. SDF-treated cells without insulin stimulation) indicate statistical significance, *P* < 0.05. n.s.: no significant difference.

Α

Figure S3

Figure S4 (continued)

Figure S5 (Continued)

EGFP-Rubicon - + - + - +

Ε

Figure S6 (Continued)

Figure S7

Figure S7 (Continued)

Figure S7 (Continued)

Figure S8

Insulin-Stimulated GSK-3 β Phosphorylation (Ser9) 16 14 12 -

В

