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Supplemental Experimental Procedures

1 Experimental methods

1.1 Random and targeted clone isolation

We isolated ancestral and evolved individuals from representative selection experiments to charac-
terize their individual genome sequences and their fitness. Each sample underwent serial dilution
to attain a single-cell bottleneck. We isolated individuals from both ancestral populations (WAxNA
F12 1 YPD, WAxNA F12 2 YPD) and 6 evolved populations (WAxNA F12 1 HU 2, WAxNA F12
1 HU 3, WAxNA F12 2 HU 3, WAxNA F12 1 RM 3, WAxNA F12 1 RM 4, WAxNA F12 2 RM
2) to measure the initial and final fitness distribution. 96 colonies were randomly picked from each
population to span a range of fitness. We measured their growth rate using the high-resolution
scanning platform described in ‘Growth phenotyping’.

Furthermore, we isolated individuals at the fitter end of the fitness distribution, possibly har-
boring driver mutations. Since adaptation to one environment typically results in fitness gains or
losses in other environments, we profiled 96 individuals from each selection experiment with an
array of 6 different environments (YPD, HU at 10 mgmL−1, RM at 0.025 gmL−1, galactose at
2%, heat at 40 ◦C and sodium arsenite at 1.5 mM) to discriminate cells based on their phenotypic
response. After visual inspection of shared effects across environments, we tested genetic markers
by PCR, digestion and targeted resequencing of de novo mutations identified from the genome
analysis of whole populations. In the hydroxyurea experiment, a heterozygous mutation in RNR4

was genotyped by PCR followed by BanI digestion. In the rapamycin experiment, heterozygous
DEP1 and INP54 de novo mutations were genotyped using PCR, followed by AluI digestion and
confirmed by Sanger sequencing in a subset of samples. We chose a total of 44 clones (22 per
environment) for whole-genome sequencing (Table S1).

1.2 Engineered genetic constructs

We selected two genes in which we found putative driver mutations in hydroxyurea (RNR2, RNR4)
and five genes in rapamycin (CTF8, DEP1, FPR1, TOR1, YNR066C), and engineered gene dele-
tions to investigate their phenotypic effect. We also built hemizygous strains to determine the
adaptive value of background variation in putative driver genes, by engineering in or out ancestral
or evolved alleles in opposite backgrounds. For pre-existing variants, the test for reciprocal hem-
izygosity uses one-step PCR deletion with URA3 as a selectable marker. Starting from haploid ver-
sions of the WA and NA strains (either MATa, ho::HygMX, ura3::KanMX or MATα , ho::NatMX,
ura3::KanMX), we deleted the candidate genes and constructed all possible combinations of re-
ciprocal hemizygous strains (Figure S6). The deletion in the haploid strain was confirmed by PCR



and then crossed with the opposite mating type to generate the hemizygous hybrid strains. To test
driver de novo mutations, we engineered reciprocal hemizygous deletions for two clones carry-
ing the same background allele with heterozygous de novo mutations in RNR2 and TOR1. The
gene deletion was performed using the dominant selectable marker NatMX and we used Sanger
sequencing to identify the deleted allele (wild-type or mutated copy).

1.3 Genetic cross

We sought to measure the fitness contributions of pre-existing and de novo mutations using a library
of recombinant genomes. To do so, we designed a genetic cross where both ancestral and evolved
genetic backgrounds were re-shuffled in new combinations and tested for fitness with and without
drugs. The genetic cross included the parents, ancestral and evolved isolates. The WA and NA
haploid parents were used in MATa, ura3 and MATα , lys2 configurations. We derived haploid
lines by sporulation on KAc medium from the ancestral and evolved clones. Only tetrads with four
viable spores were chosen for continuation in the experiment. Spores were genotyped for mating
type (MATa, MATα) using tester strains and for auxotrophies (ura3, lys2) by plating on dropout
medium. We chose spores from tetrad configurations with the mating marker co-segregating as
MATa, ura3 or MATα , lys2, allowing a systematic cross between all strains of opposite mating
type. We then determined whether each spore inherited the wild-type or the mutated allele by
Sanger sequencing of the candidate gene.

Eight ancestral haploid segregants (4 MATα , lys2 and 4 MATa, ura3) were randomly isolated
from the ancestral population. For the hydroxyurea environment, we probed individually beneficial
de novo mutations in RNR2 (Y169H) and RNR4 (R34I), which reside on different chromosomes
of the S. cerevisiae genome. The RNR2 mutant was isolated from WAxNA F12 1 HU 3 (clone
C3) and the RNR4 mutant from WAxNA F12 2 HU 1 (clone C1) at t=32 days. For rapamycin,
three evolved clones isolated at t=32 days were used: one clone with no identifiable driver from
WAxNA F12 2 RM 2 (clone C1), a homozygous FPR1 mutant (W66*) from WAxNA F12 2 RM 1
(clone C3); and a heterozygous TOR1 mutant (W2038L) from WAxNA F12 1 RM 2 (clone C3).
For the hydroxyurea experiment, 21 tetrads were taken for crossing (12 for RNR2 and 9 for RNR4)
resulting in 84 spores. For the rapamycin environment, 25 tetrads were used (1 without driver,
4 for FPR1, 20 for TOR1), resulting in 100 spores.

A genetic cross of size 48×48 in hydroxyurea yielded 2,304 hybrids, and 56×56 in rapamycin,
giving 3,136 hybrids. We performed the genetic cross using the Singer RoToR HDA robot on
YPD plates (see ‘Media composition’). Subsequently, the hybrid populations were grown for two
rounds on minimal medium to ensure colonies of solely diploid cells and avoid haploid leakage.
A small number of crosses were not successful due to mating inefficiency or slow growth (56 in
hydroxyurea and 654 in rapamycin), leaving a total of 2,248 and 2,482 hybrids, respectively. This



was due to mistyping of the mating locus in one FPR1 spore and three TOR1 spores, which were
excluded together with their derived hybrids. Phenotypic measurements of the crosses were carried
out using the high-throughput method of yeast colony growth described in ‘Growth phenotyping’.

1.4 Luria-Delbrück fluctuation assay

We performed a fluctuation test to determine the rate of loss-of-heterozygosity (LOH) in different
backgrounds, by following the loss of a heterozygous URA3 marker that results in 5-FOA resistant
colonies (Lang and Murray, 2008; Luria and Delbrück, 1943). In all strains tested the URA3 gene
was deleted from its native location in chromosome V and inserted in the lys2 locus (lys2::URA3)
in chromosome II (∼470 kb). This genotype is the same used in the crossing phase and therefore
shared by all individuals in the population. Our system does not have dedicated markers to dis-
tinguish different mechanisms leading to LOH but instead gives an aggregate measurement of the
total LOH rate at the URA3 locus (Figure 5B). The strains were first patched in dropout medium
minus uracil and then streaked for single colonies in plates with YPD or YPD supplemented with
the drugs (HU at 10 mgmL−1 or RM at 0.025 gmL−1). Colonies were grown for 3 days at 30 ◦C.
Cells were resuspended in water and cell concentration was measured by flow cytometry to obtain
a correct dilution factor in the subsequent plating. Cells from each replicate were plated in YPD
to determine the total number of colony-forming units (CFUs), and in 5-FOA plates (1 gL−1) to
count the number of URA3-defective CFUs. For each genetic background, we confirmed the loss
of the URA3 marker in 96 colonies by diagnostic PCR. Four replicates per experiment were used
to determine the LOH rate.

To ensure the absence of meiotic spores we inspected ∼100 cells per sample. This control
was introduced for two reasons. First, the NA parent is a very fast and efficient sporulator (Gerke
et al., 2006). We observed the induction of meiosis even without the specific KAc environmental
signal required in the laboratory strain S288C (and its derivatives) to initiate sporulation. Second,
rapamycin has been shown to promote sporulation by modulating the nutrient sensing pathway
(Zheng and Schreiber, 1997). In contrast, hydroxyurea is a very potent meiotic inhibitor. We did
not observe fully formed meiotic spores throughout the experiment, though we cannot exclude
that meiotic events before the meiotic commitment point (e.g. double-strand breaks) may have
occurred that could affect the LOH rate. Therefore, whilst meiotic sporulation can play an adaptive
role to reveal recessive mutations (Figure 5), it is most likely neutral on its own in both stress
environments.

1.5 Growth phenotyping

To carry out phenotype measurements we used a high-resolution scanning platform, Scan-o-matic,
to monitor growth in a 1,536-colony design on solid agar medium (Zackrisson et al., 2016). Solid



media plates designed for use with the Singer RoToR HDA robot (Singer Ltd) were used through-
out the experiment. Casting was performed on a leveled surface, drying for ∼1 day. We designed
a randomized experimental layout by distributing genotypes of interest over 1,152 positions across
each plate, keeping every fourth position for 384 controls used for removal of spatial bias. Controls
were interleaved in the pre-culture step using a custom-made RoToR pinning program.

We recorded phenotypic measurements using high-quality desktop scanners (Epson Perfec-
tion V700 PHOTO scanners, Epson Corporation, UK) connected via USB to a standard desktop
computer. Scanner power supplies were separately controlled by power managers (GEMBIRD
EnerGenie PowerManager LAN, Gembird Ltd, Netherlands) that immediately shut down the scan-
ner lamp between scans. Images were acquired using SANE (Scanner Access Now Easy). We
performed transmissive scanning at 600 dpi using 8-bit grey scale, capturing four plates per im-
age. Plates were fixed by custom-made acrylic glass fixtures. Orientation markers ensured exact
software recognition of fixture position. Each fixture was calibrated by the scanner using a calibra-
tion model that provided positions for each feature of the fixture, relative to its orientation markers.
Pixel intensities were normalized and standardized across instruments using transmissive scale cal-
ibration targets (Kodak Professional Q-60 Color Input Target, Kodak Company, USA). Scanners
were maintained in a high-humidity environment at 30 ◦C (incubation room) and kept covered in
custom-made boxes during experiments to avoid light influx and minimize evaporation.

Experiments were run for 3 days and scans were continuously performed every 20 minutes.
Each image stack was processed in a two-pass analysis. The first-pass was performed during im-
age acquisition and was responsible for setting up the information needed for growth estimations.
Positions in each image were matched to the fixed calibration model using the fixture orientation
markers, allowing detection and annotation of plates and transmissive scale calibration strips. In the
second-pass analysis, images were segmented to identify the location of the plate and the transmis-
sive scale calibration strip. The calibration strips were trimmed and the pixel intensities compared
to the manufacturer’s supplied values, such that normalized pixel values remained independent of
fluctuations in scanner properties over time and space. The colonies were detected using a virtual
grid across each plate based on pinning format, and the grid was adjusted for the intersections to
match the center of the features detected. At every intersection, each colony and the surrounding
area were segmented to determine the local background and pixel intensities. Differences in pixel
intensity were converted to population size estimates by calibration to independent cell number
estimates (spectrometer and FACS). Based on these, we obtained growth curves in physical units.

Raw measurements of population size n(t) were smoothed in a two-step procedure. First, a
median filter identified and removed local spikes in each curve. Second, a Gaussian filter reduced
the influence of remaining local noise. Since we expect a population to double in size during the
average time taken to progress through the cell cycle, we use an exponential growth model defined



as n(t) = n(0)eλ t , where λ is the absolute growth rate. If the time that has passed is exactly the
doubling time τ , it is trivial to show that within this time span the growth rate can be rewritten as
λ = ln2

τ
. It then follows that the absolute growth rate λ can be obtained from the linear fit of any

two log-transformed measurements of n(t) in exponential phase, according to λ =
lnn(t f )/ lnn(ti)

t f−ti
.

Therefore, we define the absolute growth rate as the maximum rate during exponential phase,
which we estimate by the steepest slope using local regression over five consecutive measurements
of n(t). For quality control, the residuals of the model are then used to determine goodness-of-fit
and to flag growth curves suspected to be of poor quality, which are visually inspected for artefacts.
Rejection rates averaged approximately 0.3% across experiments.

To account for systematic errors, we used an isogenic control at every fourth position in each
plate. The fitter of the two parental strains (NA) was chosen as the isogenic control to ensure
sustained and reproducible growth across the plate that would enable us to subtract systematic
errors. We defined a two-dimensional reference matrix of the 384 controls (on each 1,536 plate)
to correct for structured spatial bias in growth rate estimates. Controls with extreme values were
removed and the remaining control positions were used to interpolate a normalization surface.
This surface was first smoothed with a kernel filter to exclude any remaining noisy measurements,
and then by Gaussian smoothing to soften the contours of the landscape. For a colony measured
at position (i, j), the absolute growth rate was rescaled by taking the log-transformed difference
between the observed estimate and the growth of the normalization surface, i.e. the relative growth
rate is then λi j→ log2

λi j
λ norm

i j
.

1.6 Media composition

During the crossing phase, the cells were expanded and maintained in YPD medium (1% yeast
extract, 2% bacto peptone, 2% D-glucose and 1.7% agar). WAxNA F1/F11 populations were sporu-
lated in solid KAc medium (2% potassium acetate and 2% agar). WAxNA F2/F12 populations were
then selected in minimal medium lacking uracil and lysine (0.67% of yeast nitrogen base (YNB),
2% glucose and 0.2% of dropout mix minus uracil and lysine). The selection phase of the experi-
ments was carried out in YPD medium supplemented with the drug. All selection experiments with
drugs (as well as follow-ups) used media supplemented with hydroxyurea (HU) at 10 mgmL−1 or
rapamycin (RM) at 0.025 gmL−1, supplied by Sigma-Aldrich.

As part of the follow-up assays, we used antibiotic resistance as a selectable marker to engi-
neer gene deletions and build hemizygous strains, plating in YPD supplemented with the corre-
sponding antibiotic (see ‘Engineered genetic constructs’). We supplemented YPD medium with
nourseothricin (Nat) at 100 gmL−1, hygromycin B (Hyg) at 200 gmL−1 and G418 at 400 gmL−1.
Transformations of reciprocal hemizygous strains also relied on URA3 as a selectable marker and
were plated in minimal medium lacking uracil (0.67% YNB, 2% glucose and 0.2% dropout mix mi-



nus uracil). The fluctuation assay was carried out in YPD, or YPD supplemented with the drug (see
‘Luria-Delbrück fluctuation assay’). Colonies defective in the URA3 allele were selected in 5-FOA
plates (YPD medium supplemented with 5-fluoroorotic acid at 1 gmL−1). In the genetic cross, the
clones used were sporulated in solid KAc medium described above (see ‘Genetic cross’). Hap-
loid strains were derived from dissected spores and genotyped for their mating type, URA3/LYS2

auxotrophies and known de novo mutations. Strains were crossed in YPD and selected in minimal
medium depleted of uracil and lysine.

Growth phenotyping was performed on solid medium using Singer PlusPlates (Singer Ltd).
Each plate was cast with 50 mL of synthetic complete (SC) medium, composed of 0.14% YNB,
0.5% ammonium sulphate, 0.077% Complete Supplement Mixture (CSM, ForMedium), 2% (w/v)
glucose and pH buffered to 5.8 with 1% (w/v) succinic acid. The medium was supplemented with
20 gL−1 of agar. Due to the need for quantitative measurements we chose SC over YPD medium
for phenotyping. Measurements in SC and YPD should be comparable since both environments
are nutrient rich, though we cannot exclude potential interactions of SC or YPD with the different
drugs. However, we deemed the potential error associated with this difference in medium to be
substantially less than the error due to systematic biases when using YPD for high-throughput
phenotyping (see ‘Growth phenotyping’).

2 Theory and data analysis

2.1 Sequence analysis

Short-read sequences were aligned to the S. cerevisiae S288C reference genome (Release R64-
1-1, downloaded from the Saccharomyces Genome Database on February 5, 2011). Sequence
alignment was carried out with Stampy v1.0.23 (Lunter and Goodson, 2011) and local realignment
using BWA v0.7.12 (Li and Durbin, 2009). After removing PCR duplicates, the median genome-
wide DNA coverage was 94× across whole-population samples, 23× across ancestral isolates and
30× across evolved isolates (ranging from 9× to 150×; first quartile 24× and third quartile 91×).

We detected single-nucleotide variants where the WA and NA parents differ, which comprises
the background variation segregating in the cross (52,466 sites). We obtained allele counts on these
loci using GATK UnifiedGenotyper v3.5-0-g36282e4 (DePristo et al., 2011). These counts were
polarized to report WA alleles at each locus, as neither of the parents is the reference genome. The
allele counts for segregating variants were first processed using the filterHD algorithm, which takes
into account persistence along the genome due to linkage and allows for jumps in allele frequency
if there are emerging subclones in the populations.

To detect de novo mutations we used three different algorithms: GATK UnifiedGenotyper v3.5-
0-g36282e4 (DePristo et al., 2011), Platypus v0.7.9.1 (Rimmer et al., 2014) and SAMtools v1.2-10



(Li, 2011). We focused on single-nucleotide variants (SNVs) and small insertions and deletions
(indels). We first performed calling of both SNVs and indels for all ancestral isolates, evolved
isolates and the parents. Using BCFtools (Li, 2011), we subtracted parental variation from all
derived samples (ancestral and evolved), and excluded variation found in ancestral isolates from
all evolved samples to account for segregating variation that was missed. We then required to see
a given variant in more than six reads, be covered by more than ten reads and pass the default flags
for the algorithms. For clonal isolate sequences, we further required that only a single alternative
allele is observed. We then used GATK UnifiedGenotyper to genotype variants identified by at
least two of the algorithms. For whole-population sequences, we allowed calls reporting more
than one allele and we changed Platypus filtering to allow also ‘allele bias’ calls. To detect allele
frequency changes over time, we only considered loci where the minimum variant allele count
across time points was less than two and the maximum more than six reads. To avoid an increase
of false positives in whole-population samples, we used more stringent filters on mapping and
base quality biases and goodness of fit than for isolate samples. This is particularly important in
complex regions where subclonal heterogeneity (e.g. due to variation in copy number) could cause
difficulties in calling mutations. Finally, to increase our sensitivity of detection of putative de novo

variants in recurrent target genes, we kept mutations in CTF8, RNR2, RNR4, FPR1 or TOR1 that
were only called by a single algorithm.

2.2 Genome-wide scan of pre-existing variants under selection

We observed patterns of selective sweeps when a driver allele with a significant fitness advantage
starts to gain in frequency due to the selective pressure applied (Figures 2 and S2). This movement
also causes allele frequency changes at nearby loci containing passenger alleles that are genetically
linked with the driver, in a process called genetic hitchhiking.

To discern drivers and passengers, we consider a model of a population evolving in a regime of
strong selection, where there is a favored allele (driver) at locus i, and a set of linked passengers.
We have previously developed a computational approach to analyze selection acting on pre-existing
genetic variation that results from a cross (Illingworth et al., 2012). Genetic drift plays a negligible
role for allele frequency changes in the selection phase as the population size (∼107 cells) is much
larger than its duration (∼54 generations). Therefore, we can assume that the allele frequencies
change deterministically and the remaining noise is due to sampling caused by finite sequencing
depth.

A selective sweep is then well approximated by a model of the frequency xWA
i of the WA allele

at locus i which satisfies the logistic equation,

dxWA
i

dt
=

σi

2
xWA

i (1− xWA
i ). (S1)



The frequency of the NA allele at locus i is xNA
i = 1− xWA

i . Here, the selection coefficient σi is
the fitness difference f WA

i − f NA
i between the alleles, and the pre-factor reflects a diploid popula-

tion with additive selection. This growth model is a deterministic approximation to the stochastic
evolution of xi(t), which is commonly described by the Wright-Fisher model with directional se-
lection.

To account for the effects of linkage between mutations, we consider a model with two alleles
possible at each locus, in which the driver mutation is at locus i and passengers at loci j. We refer
to the two alleles at the i locus as a∈{WA, NA}, and the alleles at the j loci as b∈{WA, NA}.

According to our model, the dynamics of passenger alleles are fully specified by the motion
of the local driver. The effect of the selected allele on existing variation at a passenger locus j is
given by

xb
j(t) = ∑

a∈{0,1}
xa

i (t)
xab

i j (t0)

xa
i (t0)

, with j 6= i (S2)

where the two-locus haplotype frequency is xab
i j (t0) = xa

i (t0)x
b
j(t0)+ (−1)a+bDi j, and Di j denotes

linkage disequilibrium.
We note that due to short-read sequencing of a mixed population we cannot directly measure

the two-locus haplotype frequency xab
i j or linkage disequilibrium Di j, but we can parameterize Di j

in terms of the recombination which took place during the crossing phase. After Nc generations
of sexual recombination, linkage disequilibrium is given by Di j(t) = (1−ρtot)

NcDi j(t0), where the
total recombination rate depends on the distance between the loci ∆i j in base pairs (bp) and the
local recombination rate ρ in units of bp−1 gen−1.

Therefore for a given driver locus and a set of passengers the model is fully specified by the
strength of selection, the pairwise linkage structure (or recombination landscape), and allele fre-
quencies at both driver and passenger loci at t=0 days.

We learn these parameters via a maximum likelihood approach with a binomial noise model
accounting for sequencing noise. We would like to carry out a systematic driver scan, rather than
using a search heuristic for proposing candidate driver locations. To achieve this, we first param-
eterized the linkage structure with a recombination landscape inferred for this cross in a separate
study (Illingworth et al., 2013), avoiding the need to estimate a local recombination rate from allele
frequency changes. Secondly, we use the posterior mean of the allele frequency at t=0 days, as
obtained with the filterHD algorithm, to fix the initial condition. Setting the initial frequency fac-
tors out any frequency deviations of either allele that took place during the crossing phase, which
are due to selection on differential mating efficiency. As a result, for each driver-passenger model
we only need to learn the strength of selection and we can therefore systematically scan through
each of the 52,466 segregating sites, testing the alleles at each locus to be under selection. The



resulting log-likelihood score is compared to a null model where selection on the driver locus is
set to zero. This null model corresponds to no frequency changes during the experiment and does
not have any parameters to be learned.

We performed a systematic driver scan including passengers within variable window sizes
± 2 kb, 5 kb, 10 kb, 30 kb, 50 kb. Emerging subclones result in global allele frequency changes
that supersede the local signal, which is the hallmark of selection acting on pre-existing variation.
In consequence, we only considered time points when populations had not yet become clonal, up
to t=4 days. For each scan we selected the top 200 loci (out of 52,466) and then required that
a given window was identified to be among the top scoring ones in at least two populations. The
remaining windows were merged if their passenger loci overlapped. Finally, we required that the
region was not identified among those scoring highly in the control environment.

The scan identified a region of interest for rapamycin resistance, found in chromosome VIII
(460–490 kb) as discussed in the main text. The signal is visible in all rapamycin populations but
not in the control. However, we were not able to localize it fully due to a low recombination rate in
this region and possibly also caused by the presence of multiple drivers. The top hits with different
passenger window sizes show substructure in terms of peak location. Smaller windows contain
multiple peaks, which then get merged to single peaks in larger windows. We note that theoretically
the passenger window size should not matter provided the linkage model is adequate and there are
no multiple drivers affecting the passenger dynamics. In summary, the region as a whole has strong
support across populations to contain pre-existing variation where NA allele(s) are beneficial in
rapamycin, albeit we cannot statistically map the signal more finely. We followed up two candidate
genes in the region (CTF8 and KOG1), and we validated CTF8 to have a resistance phenotype (see
‘Validation of putative driver genes’). KOG1, which is part of the target-of-rapamycin (TOR)
pathway, harbors pre-existing missense variants in the population and is thus a plausible target of
selection. We did not find regions that replicated across all populations in hydroxyurea.

2.3 Reconstruction of subclonal composition

In the late stages of the selection experiment we identified global allele frequencies changes of
pre-existing, segregating variants caused by one or multiple de novo mutations (or a particularly
favorable combination of the background variation itself) in subclones that are under positive selec-
tion. During the selection phase, which is asexual, mutations in the genome of a cell are physically
linked. Thus after a cell acquires a beneficial de novo mutation this can outweigh all its back-
ground variants, which become passengers (they may of course contribute to the fitness of that
cell as well). At the genomic level, such an expanding subclone leaves a large imprint on the data
at polymorphic sites, with long-range correlations reflecting the genotype of the cell hit by the
beneficial de novo mutation. This signal with global, long-range correlations and sudden jumps



corresponding to the expanding genotype is qualitatively different from the signal resulting from
the localized sweep picture discussed in the previous section.

In this section, we describe how we extend and use the cloneHD algorithm (Fischer et al., 2014)
to reconstruct the emerging subclone dynamics in a cell population. The cloneHD algorithm was
developed to explain data from short-read DNA sequencing experiments of mixed cell populations
(read depth and variant counts) under the following assumptions: (i) The cells evolve asexually
(without recombination). This ensures that there are long-range correlations along the genome,
which can, in principle, be reconstructed from short-read data. (ii) The population consists of a
mixture of subclones, i.e. groups of genetically identical cells. The total number of subclones
and their relative fractions in the population are unknown. The number of subclones, which can
be reconstructed from real data, is small and depends on how different they are and what their
population fractions are. (iii) Each subclone carries a unique copy number profile and genotype.
Both of which are unknown. (iv) There is a distinct bulk component of the population which differs
from the subclones, e.g. by having a different set of genotypes. Its fraction is also unknown.
(v) When several samples are jointly analyzed, the same subclonal populations are assumed to be
present in all samples. However, their frequencies in some of the samples can be zero.

Previously, cloneHD was used to explain subclonal heterogeneity found in human cancers.
With a few extensions, this methodology can also be used for the yeast evolution experiment stud-
ied here. After the crossing phase, the populations evolve asexually under selective pressure. The
rounds of crossing of the two original strains have produced a diverse pool of recombinants, where
the genotype of each cell is – for all practical purposes – unique. This ancestral population of
diploid cells is modeled here as the bulk component. Its allele frequency profile can be seen in
Figures 2 and S2.

At the later stages of the evolution, a small number of individual yeast cells start to outgrow the
rest of the population, maybe due to a beneficial combination of pre-existing variation or due to
de novo mutations. These cells grow clonally to measurable fractions of the population and leave
their fingerprint in the allele frequency profile genome wide. In the extreme case, a single cell
grows clonally to take over the entire population and its individual genotype that can be directly
observed in the sequencing data. In the general case, there will be a mixture of subclones and bulk
population as described above. As an added complication, subclone copy number profiles need not
be pure diploid.

This scenario is already covered in principle in the model underlying cloneHD (see Section 4
in the Supplemental Information of Fischer et al. (2014)). In the current study, the population is
sequenced at several time points such that there are multiple related samples available for inference

http://www.sanger.ac.uk/science/tools/clonehd


with cloneHD. For the read depth Nt
i at locus i and time point t, the emission probability is

Nt
i ∼ Pois

(
Nt

i |Mt 〈c〉ti
)
, (S3)

with 〈c〉ti ≡ c0 (1−F t)+
n

∑
j=1

ci j f t
j (S4)

where Mt is the mean sequencing depth per haploid DNA, ct
i j is the total copy number of subclone j

at locus i, c0 is the total copy number of the reference compartment (2 for diploid) and f t
j is the

frequency of subclone j (with F t ≡ ∑
n
j=1 f t

j).
The number of WA reads nt

i determines the observed allele frequency xt
i and is assumed to be

binomially distributed

xt
i ≈

nt
i

Nt
i
, with nt

i ∼ Bin
(
nt

i|Nt
i , xt

i
)

(S5)

where xt
i ≡
〈g〉ti
〈c〉ti

, with 〈g〉si ≡ xt0
i
(
1−F t)+ n

∑
j=1

gi j f s
j (S6)

where gi j is the genotype of subclone j at locus i and xt0
i is the initial allele frequency spectrum.

The only substantial difference to the situation in the cancer setup is that here the genotype of a
particular subclone j is persistent across large regions of the yeast genome, reflecting the haplotype
structure resulting from the cross. In cancer, these correlations along the genome are missing since
the aforementioned model is only applied to somatic point mutations which occur randomly along
the genome. Altogether, the subclonal structure of the yeast cell populations can be reconstructed
with cloneHD in cna+snv mode, where both the CNA and SNV data are modeled with persistence
along the genome. The rest of the cloneHD workflow fully applies. First, the read depth and the
allele frequency data are analyzed with filterHD, thus finding a segmentation of both data tracks
for all samples jointly (in later stages subclones are larger and the transition points become more
prominent). This information and the initial allele frequency profile xt0

i are provided to cloneHD
together with the read depth and pre-existing variant allele data in cna+snv mode. The maximum
likelihood set of subclonal genomes (including their copy number profiles and genotypes) and their
cell fractions is then found by cloneHD at each time point. Figure S1 shows the general setup and
the cloneHD reconstruction for simulated data in one population.

We assessed the ability of our algorithm to recover several features of interest from simulated
jump-diffusion processes over a range of plausible parameters. For each parameter set, we simu-
late a 1 Mb region with L=10,000 observations and 60 reads per locus on average, then compute
maximum likelihood estimates using different numbers of subclones. Our choice of jump proba-
bility for simulated data is set to 4× 10-5 per base. This reflects the size of linkage blocks with
plausible recombination scenarios during crossing. The clones are added in a chosen background



assuming the bulk has reached a steady profile. We would like to reconstruct three features: (i) the
total number of subclones, (ii) their subclonal frequency, and (iii) obtain posterior estimates of
subclonal genotypes.

The maximum-likelihood estimates of the subclonal fractions are approximately equal to the
true values. The reconstruction is shown in Figure S1B as a black solid line, which is the cloneHD
solution for the mean posterior SNV emission rate. We can recapitulate the correct number of
breakpoints and their location. The fidelity of our reconstruction to the true subclonal genotype
is corroborated by the close correlation between our estimates from whole-population sequencing
and the true genotypes derived from clonal isolates.

2.4 Subclonal dynamics resolved by whole-population genome sequencing

To reconstruct the subclonal composition of each WAxNA replicate from whole-population se-
quencing, we used cloneHD providing the jumps found by filterHD and the posterior mean allele
frequencies of the ancestral population to act as a bulk component for the inference (see ‘Recon-
struction of subclonal composition’). We used cloneHD in snv mode, as visual inspection did not
reveal copy-number aberrations from whole-population sequencing. For each population, we sys-
tematically tested 0–4 subclones and determined the total data likelihoods under each model. The
number of subclones per population are summarized in Table S1, together with the time evolution
of subclone frequencies in Figure S3. We required a log-likelihood gain greater than 20,000 units
for the inclusion of an additional subclone. This conservative cut-off only allows genome-wide
signals to be associated with a subclone. This is necessary as the bulk component of the pop-
ulation can also change throughout the experiment. This prevents that, with a less conservative
cut-off, other solutions would be favored that would introduce artifactual subclones with suitable
genotypes to improve fits in regions where selection acts on the bulk (see ‘Genome-wide scan of
pre-existing variants under selection’).

To ascertain the expansion of subclones throughout the experiment, we determined the al-
lele frequency of de novo mutations in WA, NA and WAxNA populations during the selection
phase from whole-population sequencing. We found that these mutations typically did not reach
detectable frequency (i.e. between 1–5%) until more than 8 days had passed, with steady in-
creases thereafter (Figures S3 and S4). Across populations, we found 66 point mutations by whole-
population sequencing spanning 41 unique loci, out of which 50 fall onto coding sequence. These
loci contain 32 functional driver mutations: 4 in RNR2, 10 in RNR4, 11 in FPR1, and 7 in TOR1.
This includes two tri-allelic loci: one corresponding to FPR1 driver mutations W66* and W66S,
and another to a SNV and an insertion in FPR1.



2.5 Adaptive de novo mutations and genomic instability in clonal isolates

Overall, we identified 91 SNVs and indels in 173 ancestral haploid isolates, and 140 SNVs and
indels in 44 evolved diploid isolates. We detected 82 SNVs and 1 insertion across 22 evolved
isolates in hydroxyurea (range 1–8 per isolate), containing 10 adaptive mutations in RNR2 and 12
in RNR4 (Figure 4A). There were 56 SNVs and 1 deletion across 22 evolved isolates in rapamycin
(range 0–6 per isolate), which contained 8 adaptive mutations in FPR1 and 5 in TOR1 (Figure 4B).
33 out of 36 mutations detected by whole-population sequencing across WAxNA populations could
be found in clonal isolates. All de novo driver mutations found by clone sequencing were confirmed
by targeted Sanger sequencing. Assuming the ancestral genomes to have passed through ∼150
generations during the crossing phase, we estimated a point mutation rate µ = 2.89× 10−10 per
base per generation; and similarly for evolved genomes going through ∼54 generations in the
selection phase (µ = 5.32×10−9 bp−1 gen−1). We detected two instances of cross-contamination
between populations, so the derived events in clones isolated from these populations are valid to
estimate the mutation rate but should not be counted to have arisen independently.

Sequence analysis revealed that 3 out of 4 unique variants in RNR2 (N151H, E154G and
Y169H) and 2 out of 3 unique variants in RNR4 (R34G/I) mapped to a conserved domain of the
ribonucleotide-diphosphate reductase small chain. FPR1 mutations occurred at W66, either intro-
ducing a premature stop codon or changing to serine. Previous studies indicate that the majority
of non-synonymous changes in FPR1 affect protein stability (Koser et al., 1993). Furthermore, the
premature stop at W66 truncated the residue required for rapamycin binding (Y89). We observed
clones carrying the W66* mutation selected multiple times from the same founder population in-
dicating a pre-existent individual carrying a heterozygous mutation and independent LOH events
that render the loss-of-function mutation homozygous (Figure 4B). All five driver SNVs in TOR1

(S1972I/R, W2038L/C and F2045L) mapped to the FKBP12-rapamycin-binding (FRB) domain,
which is∼100 aa long, providing a mechanistic explanation of the drug resistance (Figure 4B). Pre-
vious studies have found dominant mutations in S1972 and equivalent mutations in the mammalian
TOR (mTOR) have a similar effect on drug binding. Substitutions at W2038 with a similar dom-
inant effect are equivalent by homology to those previously described in TOR2 (W2042) (Lorenz
and Heitman, 1995).

To identify copy-number aberrations from clone sequencing, we segmented the coverage depth
as a function of genomic position with cloneHD. We found one copy number gain (n>2n) of chro-
mosome IX in ancestral haploid isolates. Evolved diploid isolates accrued copy number gains
(2n>3n) in chromosomes VIII, IX and X in hydroxyurea and chromosome IX in rapamycin, as
well as whole-genome copy loss (2n>n) in rapamycin.

Using background variants as markers, we could detect mis-segregation of chromosomes lead-
ing to loss-of-heterozygosity. The presence or absence of the WA or the NA allele provides a



robust signal of heterozygosity or LOH that is not affected by sampling noise in coverage. We
used cloneHD to genotype the sequenced isolate samples at segregating sites. We then grouped
isolate sequences by subclone lineage, requiring at least 80% genotype similarity to belong to the
same lineage. In hydroxyurea, this resulted in 22 isolates stemming from 8 subclone lineages, with
more than a single isolate each. In rapamycin, 22 isolates were assigned to 4 subclone lineages,
with more than a single isolate each. For each subclone lineage, we inferred its ancestral genotype.
In case of a locus with a unique genotype across all isolates we assigned this to be the ancestral
state. In all other cases we inferred the ancestral state to be heterozygous, as lost alleles cannot be
regained. We then annotated all the isolates from each clone for LOH events. Figure 4 shows the
inferred ancestral genotypes and the derived SNVs, indels, LOH events and copy number variants,
grouped by population and subclone lineage. Whilst we did not find evidence of copy-number aber-
rations to be adaptive, we characterized fitness increases associated with LOH caused by changes
in the allelic state of pre-existing and de novo variants (Figure 3B). To determine the rate of LOH
events, we counted the number of independent events within a chromosome that have led to the
gain or loss of the ancestral allele in the evolved isolate sequences. This estimate is challenging
given that the ancestral states contain both homozygous and heterozygous loci, so that the precise
end points of individual LOH events are uncertain. To obtain a lower bound, we counted whether
any isolate had undergone LOH affecting ≥10 consecutive background variants, for each chromo-
some in each clone. We found 48 events in hydroxyurea and 24 events in rapamycin (6 per genome
per clone). We excluded two haploid individuals from this counting as well as from the length
distribution of homozygosity tracts in Figure 5A.

We compared our genome-wide estimates of the point mutation and LOH rates based on the
mutation counts in clone genome sequences with locus-specific measurements of the LOH rate
using a fluctuation test (see ‘Luria-Delbrück fluctuation assay’). We fitted the fluctuation data to
a model of the Luria-Delbrück distribution. We determined the average number of LOH events
per culture m, such that LOH rate can be estimated by µ = m

N , where N is the average number
of cells per culture. To determine the mean number of LOH events m, we used the probability
generating function of the Luria-Delbrück distribution defined by Hamon and Ycart (2012). In the
control environment, we observed a rate of µ = 2.59×10−5 per generation in the NA background,
consistent with previous reports (Barbera and Petes, 2006). We observed an intermediate rate in
the WA background (µ = 8.01× 10−6 gen−1) and the WAxNA F1 hybrid had an approximately
ten-fold lower rate (µ = 4.01×10−6 gen−1). These data indicate that LOH rates can vary between
genetic backgrounds. There was a sharp increase of LOH rates when colonies were grown in
hydroxyurea, irrespective of the background tested. This finding is consistent with previous studies
in the laboratory strain S288C reporting that replication stress promotes recombinogenic DNA
lesions (Barbera and Petes, 2006). We also observed a background-dependent increase in LOH rate



in the presence of rapamycin, especially in the NA founder. Our estimates of the point mutation
rate based on the mutation counts in ancestral and evolved clones (∼10−10 bp−1 gen−1) and of
the LOH rate based on the fluctuation assay (∼10−5 gen−1), suggest that any recessive genes will
be likely to lose the wild-type allele by LOH. Given that the LOH rate is much higher than the
point mutation rate and it typically affects large regions (100-1,000 kb, see Figure 5A), recessive
mutations can feasibly be ‘rescued’ by LOH.

2.6 Validation of putative driver genes

To test candidate driver mutations, we measured the growth rate of engineered gene deletions
to confirm whether their knockouts are beneficial. We also measured the growth of hemizygous
strains to test allelic differences in driver genes with pre-existing and newly acquired mutations.
The engineered genetic constructs are listed in Supplemental Tables. We performed nr=64 repli-
cate measurements of each construct in two independent runs, which were initiated from a single
pre-culture plate, evenly distributed over 16 experimental plates and simultaneously run in 4 scan-
ners. The growth rate of each of these strains is shown in Figures S7 and S8, labeled by genetic
background b and genotype g.

We deleted one copy of RNR2 in WA and NA diploids and sporulation of these strains re-
sulted in tetrads with two viable spores and two unviable rnr2∆ mutants, indicating that this gene
is essential in both backgrounds. RNR2 is also essential in the laboratory S288C background.
Furthermore, the heterozygous deletions of RNR2 diploids show strong haploinsufficiency for hy-
droxyurea resistance (Figure S7). In contrast to its interaction partner, RNR4 is not essential in
the laboratory background. However, deletion of this gene in diploid WA and NA backgrounds
proved it to be essential in the WA background. The NA strain is viable after deletion, though with
severe growth defects. Diploid hemizygous strains for RNR4 deletions in both backgrounds show
increased sensitivity due to dosage effects (Figure S7).

FPR1 and TOR1 are not essential genes and we performed deletions in both haploids and
diploids. FPR1 directly binds rapamycin inhibiting the TOR pathway and its deletion is highly
resistant (Figure S8). Deletion of one copy of FPR1 does not increase the growth rate in rapamycin,
indicating that both copies of the gene need to be inactivated to drive resistance. Consistently with
this observation, all mutations observed in FPR1 are homozygous. Large colonies in the FPR1

plating assay all acquired double-hit events (de novo SNV or indel plus LOH) that inactivated both
functional copies of the gene (inset in Figure S8). Estimates of the number of colonies for parent
and hybrid backgrounds follow a similar trend to the estimates obtained with the fluctuation test.
In contrast, TOR1 deletion results in high sensitivity to rapamycin and a single deleted copy does
not alter the drug response (Figure S8).

Reciprocal hemizygosity tests in ancestral hybrids confirmed background-dependent effects in



CTF8, with strong positive selection acting on the NA allele as predicted by our model of driver-
passenger dynamics (Figure S8). KOG1, which is a component of the TOR signaling pathway, did
not show any allelic differences but deleting either copy caused haploinsufficiency in rapamycin.
We also deleted either the wild-type or the mutated allele of evolved mutant clones, generating
pairs of clones identical throughout the genome except for the candidate driver mutation. The four
genes harboring de novo driver mutations do not appear to show allelic differences between the
two parental backgrounds as shown by the reciprocal hemizygosity test (Figure S8). No allelic
differences were observed for DEP1, INP54 and YNR066C, which are confirmed as passengers.

2.7 Fitness distribution and population averaging

To characterize the fitness of cells in a heterogeneous population with multiple subclones, i.e.
where several haplotypes may be present, we measured the growth properties of an ensemble of
cells. With an ensemble method, we will typically measure the population average. However, since
we found subclones co-existing, these may be found in states that are far from the population mean.
Hence, we determined the intra-population growth rate of the populations at the start and the end
of the selection phase (Figures 3 and S9). For each population, we estimated the probability distri-
bution P(λ t) of the growth rate λ at time t by sampling nk isogenic individuals. With an ensemble
of nk=96 individuals per time point we took nr=32 replicate measurements per individual. The
replicates were measured in two independent runs, evenly distributed over 16 experimental plates
which were initiated from a single pre-culture plate and run in 4 scanners, all in parallel.

We modeled the probability distribution of the data, {λ t
n}

nk
n=1, as a mixture model of normal

distributions,

P(λ t) =
K

∑
k=1

πkN
(
λ

t |µk,σ
2
k
)
, (S7)

where K is the number of components. We can interpret the mixing coefficients, π , as the bulk
and multiple clonal components. We determined the fraction of cells in the fitter, faster clonal
state(s) and the slower, bulk component by fitting p(λ ) to a mixture of normal distributions with
K ∈ {1,2,3} components. There are 2K+1 fitting parameters, which are learned by maximizing
the likelihood function P(λ t): the component means {µk} and variances {σ2

k }, and the relative
weights between them. In multimodal populations, the weights are in good agreement with the
average of two consecutive inflection points surrounding the trough between the bulk and the clonal
subpopulations (Figure S9).

2.8 Decomposition of background-averaged fitness effects of mutations

We carried out a genetic cross to reconstruct a fraction of the genotypes that a population can
explore and examined the average mutational effect of beneficial variants in multiple genetic back-



grounds. We isolated isogenic individuals from parents, ancestral and evolved populations. As
described in the ‘Genetic cross’ section, we sporulated these diploid cells and selected haploid
segregants of each mating type (48 in hydroxyurea and 56 in rapamycin), parameterized by an
index a or α . We crossed the MATa and MATα versions to create hybrids. The cross forms a
two-dimensional lattice that is conveniently parameterized by the set of lattice positions (a,α).

We obtained a set of measurements for the growth rate λ of individuals, each of which has a
unique combination of background genotype b, de novo genotype d, sampling time t and auxotro-
phy x. Every haploid genome being crossed is an independent background indexed by b{a,α} =

1,2, . . . ,nb (nb=48 in HU and nb=56 in RM, either a or α), such that reshuffled diploid hybrids
are parameterized by baα . Genetic backgrounds are sampled before the cross (parents), before se-
lection starts at t=0 (ancestral) or after t=32 days (evolved), such that t{a,α} = 1,2, . . . ,nt (nt =2
for the parents; nt =4 at t=0; nt =42 in HU and nt =46 in RM at t=32). We denote de novo geno-
types by d{a,α} = 1,2, . . . ,nd (nd =12 for RNR2; nd =9 for RNR4; nd =1 without driver; nd =4 for
FPR1, nd =20 for TOR1). Haploid spores are auxotroph and segregate with the mating locus, such
that x{a,α} ∈{ura3-, lys2-}, whereas diploid hybrids do not have amino acid deficiencies. To esti-
mate the measurement error, we carried out replicate measurements of each unique spore (nr=12
in HU and nr=6 in RM) and of each hybrid genotype combination (nr=3). Replicates were initi-
ated from the same pre-culture plate, evenly distributed over 32 plates that and run in 4 scanners,
all in parallel.

The data matrix shows the fitness effect of every de novo genotype d at each background b

sampled at time t, averaged over measurement replicates and measured relative to the ancestral
population (Figure S10). Based on these measurements, we observed that de novo mutations are
beneficial, yet their associations to genetic backgrounds have idiosyncratic effects. The effects
of de novo mutations are mediated by background fitness as evidenced by the large phenotypic
variance. We note that genetic crosses between different backgrounds need not give rise to a ‘sym-
metric’ phenotype data matrix, as we only enforce 2:2 segregation for the mating locus MATa/α .
Whilst background variants will co-segregate with the mating locus, de novo mutations need not.

To examine the average fitness effects of functional genotypes in hydroxyurea (RNR2, RNR4) or
rapamycin (FPR1, TOR1), we calculated an ensemble average of the growth rate λ . The ensemble
average 〈λ 〉 is either taken over single spore backgrounds b{a,α} or pairs of hybrid backgrounds baα

with different degrees of relatedness,

〈λ 〉td{a,α} =
1
nb

nb

∑
b=1

λ
btd
{a,α} and 〈λ 〉tdaα

=
1
nb

nb

∑
b=1

λ
btd
aα , (S8)

where 〈· · ·〉 denotes the mean over genetic backgrounds. We found that, on average, RNR2, RNR4

and TOR1 mutations are dominant and highly penetrant (Figures 6D and 6F). In contrast, FPR1 is
recessive, only increases fitness when the mutation is homozygous and carries a fitness cost in the



absence of rapamycin (Figures 6F and S11D, respectively).
We partitioned the variation in fitness contributed by background and de novo driver mutations

using linear mixed models. To model genetic backgrounds containing beneficial mutations we
need to describe how likely a phenotype is in the presence or absence of any mutation. We re-
stricted our model to pairs of individuals that are not closely related to avoid spurious correlations
by population structure, so we retained ancestral and evolved individuals and excluded the parents.
We are interested in the aggregate effect across all mutations within a spore or hybrid rather than
the effects of individual variants. As the data represents a finite sample from the distribution of all
possible genetic backgrounds, the background contribution to the phenotype is naturally modeled
as a random-effect term (i.e. individual genetic backgrounds are drawn at random from a popula-
tion, and the variance of the underlying distribution is to be inferred). In addition, other systematic
effects that potentially contribute to fitness are modeled as fixed-effect terms: (i) time t when the
individual was sampled, i.e. at t=0 (ancestral) or t=32 (evolved); (ii) de novo driver mutation
status d of the individual, e.g. FPR1 driver mutation in homozygous state; and (iii) auxotrophy,
denoted by x, e.g. ura3- or lys2-. We implemented four nested linear mixed models outlined below.

Model 1 We first considered a model where we only included the background without other
effects. This means that the observed growth rate λb for a background b conditioned on the random
effect taking a value βb is distributed as

λb|B=βb
∼N

(
β0 +βbxb,σ

2
ε

)
, (S9)

where β0 is a shared constant baseline per background that must be inferred, σ2
ε represents mea-

surement noise, xb is an element from the model design matrix (here 1 for each b as they all are
assigned a value). Finally, the background growth rate is distributed as B ∼N

(
0,Σ2) and its vari-

ance Σ2 is a model parameter to be inferred. We note that for each background b we have multiple
measurement replicates of λb. Altogether, Model 1 has three modeling parameters, β0, Σ2 and σ2

ε .

Models 2, 3 and 4 Model 2 includes the same factors as Model 1, but the time of sampling t is
nested as a fixed effect. Model 3 also accounts for de novo driver mutation status denoted by d. In
addition, Model 4 includes a fixed effect accounting for amino acid deficiencies (or auxotrophy),
denoted by x. Altogether the growth rate λbtdx, conditioned on the random effect taking a value βb,
is distributed as:

λbtdx|B=βb
∼N

β0 + βbxb︸︷︷︸
random

+βtxt +βdxd +βxxx︸ ︷︷ ︸
fixed

,σ2
ε

 , (S10)

where βt ,βd,βx are fixed-effect terms to be inferred and xt ,xd,xx are elements of the model design
matrix. Compared to Model 1, Models 2, 3 and 4 have extra parameters βt , βd , and βx. The number



of free parameters depends on how many unique levels each factor contains, e.g. how many driver
mutations are sampled in the experiment.

The likelihood for a data vector λ given the full model (Model 4) can then be written as

P(λ | model) = P
(
λ
∣∣ β0,βt ,βd,βx,Σ

2,σ2
ε

)
= ∏
〈a,α〉

nr

∏
r=1

∫
P
(
λbtdx

∣∣ βb,β0,βt ,βd,βx,Σ
2,σ2

ε

)
×P

(
βb
∣∣ Σ

2 )dβb

where the integrand is the product of the probability density given by Equation S10 and the poste-
rior distribution over the random effects.

Next, we applied all four models to the phenotypes of the genetic cross: a genetic cross based
on hydroxyurea selection, measured in hydroxyurea and a control environment; and a genetic
cross based on rapamycin selection, measured in rapamycin and a control environment, both for
spores and hybrids. We fitted each model using restricted maximum likelihood with the R-package
lme4 (Bates et al., 2015), summarized in Table S2. Using Akaike’s Information Criterion (AIC)
for model selection all conditions had a score supporting Model 4 apart for those selected and
measured in hydroxyurea, where both spores and hybrids supported Model 3. We compared the
fitted and observed values and in all cases the fits were good, as shown in Figure S12 for Model 4.

We can assess the overall goodness-of-fit of the models by the proportion of variance explained.
In particular, we would like to know the contribution of various model components to the overall
fit, and to do so we obtain separate measures for the partial contributions of fixed and random
effects (Gelman and Hill, 2006)

r2 =
σ2

F +σ2
R

σ2
F +σ2

R +σ2
ε

, (S11)

where σ2
R is the variance contribution by random effects, any incremental fixed effect contributes

additively to the fixed-effect variance, s.t. σ2
F = Var(βtxt + βdxd + βxxx), and r2 represents the

proportion of variance explained by the fixed and random effects combined. Dropping the σ2
R term

from the numerator, we can evaluate r2 and the fixed-effects variance r2
F for linear mixed models,

and estimate the background contribution to the variance by r2−r2
F . Then to further assign the

fixed-effect variances to individual variance components shown in Figure 6B, we used the simpler
models and their estimated r2

F . We note that modeling the background component using fixed
effects instead leads to a variance decomposition that is nearly identical to the decomposition with
linear mixed models described here. However, modeling the background as a fixed effect requires
fitting a large number of parameters (one extra parameter per background) and thus describing the
background by random effects is a better model for the data.



Supplemental Figures

Figure S1: Subclonal reconstruction of a simulated example. Related to Figures 2, 3A and 3C. Subclonal reconstruc-
tion for a simulated example of two macroscopic subclones using cloneHD. The physical locations of the segregating sites
are represented along the x axis and the y axis shows the allele frequency at every locus. (A) The true allele frequency of
the bulk (grey) and the true genotypes gi j of two subclones (blue and red) at locus j for the simulated example. (B) Sim-
ulated jumps (subclones) and diffusion (bulk), in the presence of two subclones of size f j =(0.1,0.0) at t0, f j =(0.2,0.1)
at t1 and f j =(0.6,0.2) at t2. The path along the genome is described by a mixture of the two, with jump probabil-
ity p=4×10−5 bp−1, diffusion constant σ =5×10−4, and binomial draws as emissions. The simulated observations are
probabilistically color-coded according to the bulk fraction or each of the subclone fractions. The mean posterior estimate
of the SNV emission in black solid line shows the accuracy of the reconstruction. The pie charts indicate the inferred bulk
and subclone frequency estimates, f̂ j.
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Figure S2: Genome-wide allele frequency changes of pre-existing genetic variation. Related to Figures 2, 3A and 3C.
Time series of genome-wide frequencies of pre-existing, parental variants after t= (0, 2, 4, 8, 16, 32) days, measured by
whole-population sequencing. From top to bottom, replicate populations were evolved in (A) hydroxyurea, (B) rapamycin
and (C) a control environment. Left panels: Chromosomes are ordered along the x axis; the frequency of the WA allele at
locus i, xWA

i , is shown for 52,466 pre-existing variants on the y axis, colored by time point. The reciprocal frequency of the
NA allele is equivalent since xNA

i =1−xWA
i . Allele frequencies are estimated from the mean posterior probability given by

the filterHD algorithm. Pre-existing and de novo driver mutations are highlighted by dashed lines. Right panels: Changes
in the allele frequency spectrum across time.
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Figure S2: (continued)
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Figure S3: Subclonal dynamics in WAxNA populations. Related to Figures 3A and 3C. Subclonal dynamics in time
for WAxNA founders evolved in (A) hydroxyurea and (B) rapamycin, measured by whole-population sequencing. Time is
on the x axis, starting after crossing when the population has no competing subclones. Cumulative haplotype frequency of
subclones (bars) and allele frequency of de novo mutants (lines) are on the y axis. The subclone frequencies are inferred
from the frequency of pre-existing variants using cloneHD (see Figure S2). Driver mutations are solid lines and passenger
mutations are dashed lines, colored by subclone assignment; circles and squares denote non-synonymous and synonymous
mutations, respectively. For driver mutations, the mutated gene and codon are indicated above each line. No macroscopic
subclones or de novo mutations were detected in any of the control replicates in YPD.



Figure S4: Subclonal dynamics in WA and NA populations. Related to Figures 3A and 3C. Subclonal dynamics in
time for WA and NA founders evolved in (A) hydroxyurea and (B) rapamycin, measured by whole-population sequencing.
WA founders evolved in hydroxyurea did not survive after t=4 days. Driver mutations are solid lines and passenger
mutations are dashed lines; circles and squares denote non-synonymous and synonymous mutations, respectively. For
driver mutations, the mutated gene and codon are indicated above each line. No de novo mutations were detected in any
of the control replicates in YPD.



mut.

Figure S5: Genetic heterogeneity in sequences of ancestral clonal isolates. Related to Figures 4 and 5A. Whole-
genome sequences of ancestral haploid clones sampled from the WAxNA F12 founder populations, which were obtained
by bulk crossing between the WA and NA parents. Pre-existing and de novo SNVs and indels were detected by whole-
genome sequencing in single-cell clones derived from ancestral populations at t=0 days. Chromosomes are shown on
the x axis; clonal isolates are listed on the left. WA (in blue) and NA (in red) represent haploid genotypes of pre-existing
variants. Individual cells with unique background genotypes carry private de novo SNVs and indels (circles). A copy-
number gain of chromosome IX (n>2n) was also found in clone C50 of WAxNA F12 2 YPD T0 (not shown).
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Figure S6: Strategy for strain construction. Gene deletions were mediated by homologous recombination between the
terminals of the PCR product and the corresponding genomic sequence where the gene to be deleted (‘target’) is encoded.
Blue and red lines indicate WA and NA chromosomes, respectively. Flanking regions in green indicate two different
homologous sequences targeted for recombination, which are 30-40 bp long in S. cerevisiae. (A) Genes of interest were
individually deleted in both WA and NA haploids, resulting in rnr4∆, fpr1∆ and tor1∆ strains in both parental backgrounds.
(B) A similar strategy was used to delete genes in WA and NA homozygous diploids. RNR2 and RNR4 were only deleted
in one allele while there is the wild-type gene remaining in the other allele. (C) Evolved segregants with de novo mutations
were isolated from the WAxNA F12 populations. Using the same strategy, RNR2 or TOR1 mutants could be rid of either
the wild-type allele or the mutated allele. The primer sequences used are listed in Supplemental Tables. (D) We crossed
the strain constructed in (A) with the parental strain with wild-type gene, to obtain strains with deleted genes in WA,
NA homozygous diploid and WA/NA hybrid.



Figure S7: Validation tests for driver mutations in hydroxyurea. Validation tests for driver mutations in hydroxyurea,
measured in SC+HU (left panel) and SC (right panel). The relative growth rate, λbg, of each construct is shown for nr =64
measurement replicates. Genetic constructs are grouped by candidate gene and by background of the construct, where
the background b can be WA, NA (haploid); WA/WA, NA/NA (diploid); WA/NA (hybrid), and the genotype g can be
wild-type for the gene, deleted or hemizygous. Relative growth rates are normalized with respect to the mean population
growth rate 〈λk〉t=0 at t=0 days (see Figures 3B and S9A). Medians and 25%/75% percentiles are shown for each genetic
construct, with medians as horizontal lines and outliers highlighted. The color of each of the boxes reflects the background
(WA and WA/WA, blue; NA and NA/NA, red; WA/NA, purple). Lighter shades indicate a wild-type (WT) control for a
specific background and darker shades are the candidate strains. For a given background, we compared deletion strains
against their respective WT control (e.g. rnr4∆ vs WT in WA background) and hemizygous strains against the equivalent
hemizygous strain where the opposite copy has been deleted (e.g. rnr4∆ WA/RNR4 NA vs RNR4 WA/rnr4∆ NA in WA/NA
background). To test statistical significance we used a non-parametric Wilcoxon rank-sum test. Significance tests between
two strains with p < 10−4 are highlighted with an asterisk.
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Figure S8: Validation tests for driver mutations in rapamycin. Related to Figure 2. Validation tests for driver
and passenger mutations in rapamycin, measured in SC+RM (left panel) and SC (right panel). The relative growth rate,
λbg, of each construct is shown for nr =64 measurement replicates. Genetic constructs are grouped by candidate gene
and by background of the construct, where the background b can be WA, NA (haploid); WA/WA, NA/NA (diploid);
WA/NA (hybrid), and the genotype g can be wild-type for the gene, deleted or hemizygous. Relative growth rates are
normalized with respect to the mean population growth rate 〈λk〉t=0 at t=0 days (see Figures 3D and S9B). Medians and
25%/75% percentiles are shown for each genetic construct, with medians as horizontal lines and outliers highlighted. The
color of each of the boxes reflects the background (WA and WA/WA, blue; NA and NA/NA, red; WA/NA, purple). Lighter
shades indicate a wild-type (WT) control for a specific background and darker shades are the candidate strains. For a given
background, we compared deletion strains against their respective WT control (e.g. fpr1∆ vs WT in WA background)
and hemizygous strains against the equivalent hemizygous strain where the opposite copy has been deleted (e.g. fpr1∆

WA/FPR1 NA vs FPR1 WA/fpr1∆ NA in WA/NA background). To test statistical significance we used a non-parametric
Wilcoxon rank-sum test. Significance tests between two strains with p < 10−4 are highlighted with an asterisk. Visual
inspection of FPR1 heterozygous deletions using a spot assay (inset) manifests the immediate loss of the wild-type allele
by LOH – validated by colony Sanger sequencing –.
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Figure S9: Variability in intra-population growth rate and fitness correlations. Related to Figures 3B and 3D.
Fitness correlations of ancestral and evolved populations with and without stress, estimated by random sampling of indi-
viduals at initial (t=0 days, green) and final time points (t=32 days, purple), before and after selection in (A) hydroxyurea
and (B) rapamycin. The relative growth rate λk(t) per individual k is shown, calculated by averaging over nr =32 technical
replicates per individual. The relative growth rates λk(t) in the stress environment (x axis) are compared to the control
environment (y axis). Relative growth rates are normalized with respect to the mean population growth rate 〈λk〉t=0 at t=0
days (see Figures 3B and 3D). Using a Gaussian mixture model, we found the posterior probability of the mixture modes of
the the best-fit mixture (solid lines). The posterior means of the distribution modes are indicated as dashed lines. The fitter
individuals carry driver mutations, as determined by targeted sampling and sequencing. Spearman’s rank correlation, ρ , is
shown on the top right of each panel, to assess the association between the relative growth rate of isolates in the stress and
control environments at t=0 and t=32 days.
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Figure S10: Fitness contribution of genetic background and de novo mutations. Related to Figure 6. Given an
ensemble of nb haploid spores with unique genetic backgrounds (nb=48 in hydroxyurea and nb=56 in rapamycin), every
haploid spore is crossed against itself and all other haploid spores, and the two must be of opposite mating type (MATa or
MATα) to construct a matrix of diploid hybrids of size nb× nb. In each panel, spores are represented along the vertical
and horizontal axes of the matrix and hybrids are shown as matrix elements. Symbols follow the Figure 6A legend and
indicate combinations of the type of genetic background (WA parent: , NA parent: , WAxNA segregant: ) and the
genotype of de novo mutations (no de novo mutation: , wild-type: +, mutated: ). Relative growth rates of spores λ btd

{a,α}
and hybrids λ btd

aα are shown, normalized with respect to the ancestral WAxNA cross. Each matrix element is labeled
by background genotype b, de novo genotype d, and time of sampling during selection t. Measurements were taken in
(A) SC+HU and (B) SC for populations selected in hydroxyurea; and (C) SC+RM and (D) SC for populations selected in
rapamycin. The color scale for all matrices is shown to the right of each panel and indicates the growth rate difference with
respect to the ancestral WAxNA cross. White boxes indicate missing data due to mating inefficiency and slow growth.
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Figure S11: Ensemble average of fitness effects over genetic backgrounds. Related to Figure 6. To quantify the
fitness effects of background variation and de novo mutations in the absence of stress, we measured the large recombinant
library built with the genetic cross in a control environment (SC). Symbols follow the Figure 6A legend and indicate
combinations of the type of genetic background (WA parent: , NA parent: , WAxNA segregant: ) and the genotype of
de novo mutations (no de novo mutation: , wild-type: +, mutated: ). (A and C) Relative growth rate of spores, λ btd

{a,α},
and hybrids, λ btd

aα , measured for multiple combinations of background and de novo genotypes with respect to the ancestral
population, and averaged over measurement replicates. Measurements were taken in a control environment (SC) for
cells selected in (A) hydroxyurea and (C) rapamycin. Medians and 25%/75% percentiles across groups are shown, with
medians as horizontal lines and colored by de novo genotype (wild-type, blue; heterozygote, cyan; homozygote, green).
Outliers (circles) and isolated, selected clones with matching genotypes (diamonds) are highlighted. (B and D) Ensemble
average of the relative growth rate of spores, 〈λ 〉td{a,α}, and hybrids, 〈λ 〉tdaα

. Each matrix element is labeled by de novo
genotype d, and time of sampling during selection t, and averaged over genetic backgrounds b. Measurements were taken
in (B) hydroxyurea and (D) rapamycin. The color scale for all matrices is shown to the right of each panel and indicates
the difference in the ensemble average with respect to the ancestral WAxNA cross.
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Figure S12: Hierarchical analysis of variance in the genetic cross using a linear mixed model. Related to Figure 6.
We model the growth rate of spores, λ btd

{a,α}, and hybrids, λ btd
aα , as a function of background genotype b, de novo genotype d,

time of sampling during selection t, and auxotrophy x. Relative growth rates are accurately fitted by this model (Model 4).
Model fits are summarized in Table S2. Measurements are taken in SC+HU and SC only for populations selected in
hydroxyurea (A and B); and in SC+RM and SC only for populations selected in rapamycin (C and D). The scatter shows a
set of measurements λ (x axis) against the fitted rates λ̂ (y axis). The total variance explained, r2, is separately computed
for spores and hybrids by environment.



Supplemental Tables

Table S1: Populations and clonal isolates analyzed by whole-genome sequencing. Related to Table 1. Summary of
populations and clonal isolates analyzed by whole-genome sequencing in this study. The best-fit number of subclones Nc
as estimated by cloneHD are shown together with the total clonal fraction, F t =∑

n
j=1 f t

j , after 32 days of selection. Per
population, the union set of driver mutations found by whole-population and clone genome sequencing is shown. The
genotypes of driver mutations found in clonal isolates were validated by Sanger sequencing (labeled by §). WA/WA pop-
ulations in hydroxyurea did not survive beyond 4 days of selection (labeled by †).

Time Background Cross Selection Clonality Drivers
Gen. Rep. Environment Rep. Isolates Nc F t

0 days WA/WA – – YPD – – – –
NA/NA – – YPD – – – –
WAxNA F12 1 YPD – C1–C96 – –

2 YPD – C1–C96 – –
2–32 days WA/WA – – YPD+HU 1† – – –

2† – – –
YPD+RM 1 – – – TOR1 W2038L§

2 – – – TOR1 F2045L§

NA/NA – – YPD+HU 1 – – – RNR4 R34I§, K114M§

2 – – – RNR4 R34I§, K114M§

YPD+RM 1 – – – FPR1 K11fs§; TOR1 S1972R, W2038L§

2 – – – FPR1 M1I§; TOR1 S1972I§

WAxNA F2 1 YPD+RM 1 – 2 0.74 TOR1 W2038L
2 – 1 0.10

YPD 1 – 0 –
F12 1 YPD+HU 1 C1–C2 2 0.58 RNR4 R34G§, R34I§

2 C1–C2 1 0.20 RNR4 R34I§

3 C1–C6 2 0.65 RNR2 Y169H§; chr. II LOH
YPD+RM 1 C1–C3 3 0.85 CTF8NA; FPR1 W66*§, W66S

2 C1–C6 2 0.20 CTF8NA; FPR1 W66S; TOR1 W2038L§

3 C1–C3 2 0.72 CTF8NA; FPR1 W66*§; TOR1 S1972I
4 – 2 0.81 CTF8NA; FPR1 W66*§

YPD 1 – 0 –
2 – 0 –

2 YPD+HU 1 C1–C2 2 0.63 RNR4 R34G§, R34I§

2 C1–C4 2 0.32 RNR2 N151H, T206I§; RNR4 R34I§

3 C1–C6 2 0.34 RNR2 E154G§; RNR4 R34I§

YPD+RM 1 C1–C3 4 0.93 CTF8NA; FPR1 W66S, W66*§

2 C1–C6 1 0.10 CTF8NA; TOR1 W2038C§

3 C1 1 0.10 CTF8NA; FPR1 S102R
4 – 1 0.11 CTF8NA; FPR1 S102R

YPD 1 – 0 –
2 – 0 –



Table S2: Statistical support for variance components in the genetic cross estimated using linear mixed models. Re-
lated to Figure 6B. Summary statistics for linear mixed models of the genetic cross, fitted using restricted maximum like-
lihood. Models were separately fitted for spores and hybrids in each environment. The number of unique backgrounds nb
is much greater than the number of degrees of freedom (d.o.f.) for the parameters being fitted. Each background b was
measured in several technical replicates. We selected the best model by maximum AIC (labeled by §). The breakdown of
variance components in Model 4 is shown in Figure 6B and the models fits to the data are shown in Figure S12.

Selection Measurement Type Model d.o.f. Variance Log-likelihood AIC
r2

F r2

Hydroxyurea Hydroxyurea Spores 1 3 0.0000 0.9500 1813.367 –3627.063
(YPD+HU) (SC+HU) nb =92 2 4 0.1071 0.9504 1816.932 –3636.219

3§ 7 0.5338 0.9507 1841.920 –3697.223
4 8 0.5338 0.9509 1839.372 –3695.832

Hybrids 1 3 0.0000 0.8045 6535.699 –13075.484
nb =2013 2 5 0.0652 0.8044 6608.318 –13230.265

3§ 17 0.2989 0.8067 6969.860 –14021.351
4 18 0.2990 0.8068 6966.279 –14019.752

Hydroxyurea Control Spores 1 3 0.0000 0.8914 1918.357 –3837.994
(YPD+HU) (SC) nb =92 2 4 0.0381 0.8924 1917.974 –3840.051

3 7 0.0605 0.8954 1911.224 –3836.707
4§ 8 0.1559 0.8957 1913.807 –3846.480

Hybrids 1 3 0.0000 0.8335 9435.532 –18875.965
nb =2013 2 5 0.0009 0.8337 9429.119 –18874.079

3 17 0.0451 0.8435 9454.950 –18998.377
4§ 18 0.0483 0.8428 9456.054 –19006.845

Rapamycin Rapamycin Spores 1 3 0.0000 0.9815 438.848 –875.752
(YPD+RM) (SC+RM) nb =104 2 4 0.0924 0.9817 443.237 –884.134

3 7 0.8146 0.9815 524.504 –1054.421
4§ 8 0.8699 0.9815 542.282 –1094.737

Hybrids 1 3 0.0000 0.9583 2368.301 –4738.294
nb =2271 2 5 0.0355 0.9584 2407.246 –4819.913

3 17 0.7422 0.9675 4465.029 –8981.497
4§ 18 0.7430 0.9675 4466.273 –8987.264

Rapamycin Control Spores 1 3 0.0000 0.9217 1038.794 –2078.815
(YPD+RM) (SC) nb =104 2 4 0.0011 0.9224 1036.569 –2076.940

3 7 0.1711 0.9239 1039.674 –2092.692
4§ 8 0.3953 0.9235 1054.494 –2128.413

Hybrids 1 3 0.0000 0.9065 11394.150 –22793.196
nb =2270 2 5 0.0173 0.9066 11408.580 –22832.161

3 17 0.0593 0.9072 11418.030 –22915.694
4§ 18 0.0697 0.9071 11428.480 –22941.867



Glossary of wild strains used in this study, including derivative strains. ∗Isolated in West Africa (pre-1914) by A. Guil-
liermond from bili wine from Osbeckia grandiflora (Liti et al., 2009). †Isolated in Pennsylvania (1999) by P. Sniegowski
from soil beneath Quercus alba (Sniegowski et al., 2002).

Background ID Derived from Genotype

WA DBVPG6044 Wild isolate∗

CC402 DBVPG6044 MATa, ura3::KanMX, ho::HygMX

CC406 DBVPG6044 MATα , ura3::KanMX, lys2::URA3, ho::HygMX

FS174 DBVPG6044 MATα , ura3::KanMX, ho::NatMX

YGL1001 DBVPG6044 MATa/α , ura3∆0; ura3∆0; leu2∆0; leu2∆0; lys2∆0; met15∆0

WA/WA CC426 CC402 × CC406 MATa/α , ura3::KanMX/ura3::KanMX, ho::HygMX/ho::HygMX, LYS2/lys2::URA3

NA YPS128 Wild isolate†

CC403 YPS128 MATa, ura3::KanMX, ho::HygMX

CC407 YPS128 MATα , ura3::KanMX, lys2::URA3, ho::HygMX

FS173 YPS128 MATα , ura3::KanMX, ho::NatMX

YGL1011 YPS128 MATa/α , ura3∆0; ura3∆0; leu2∆0; leu2∆0; lys2∆0; met15∆0

NA/NA CC440 CC403 × CC407 MATa/α , ura3::KanMX/ura3::KanMX, ho::HygMX/ho::HygMX, LYS2/lys2::URA3

WA/NA CC427 CC402 × CC407 MATa/α , ura3::KanMX/ura3::KanMX, ho::HygMX/ho::HygMX, LYS2/lys2::URA3

CC435 CC403 × CC406 MATa/α , ura3::KanMX/ura3::KanMX, ho::HygMX/ho::HygMX, LYS2/lys2::URA3



Glossary of strains with genetic constructs used in this study. The genetic constructs are grouped by the ‘target’ gene
of interest and are engineered in multiple genetic backgrounds. They include gene deletions, hemizygous constructs of
ancestral alleles (WA and NA) and hemizygous constructs of evolved alleles.

Gene ID Derived from Genotype

CTF8 YGL1269 DBVPG6044 MATa, ho::HygMX, ura3::KanMX, ctf8::URA3

YGL1270 YPS128 MATa, ho::HygMX, ura3::KanMX, ctf8::URA3

YGL1271 DBVPG6044 × YPS128 MATa/α , ho::HygMX, ho::NatMX, ura3::KanMX, CTF8(NA)/ctf8(wa)::URA3

YGL1272 DBVPG6044 × YPS128 MATa/α , ho::HygMX, ho::NatMX, ura3::KanMX, CTF8(WA)/ctf8(na)::URA3

DEP1 YGL1562 DBVPG6044 MATa, ho::HygMX, ura3::KanMX, dep1::URA3

YGL1563 YPS128 MATa, ho::HygMX, ura3::KanMX, dep1::URA3

YGL1570 DBVPG6044 × YPS128 MATa/α , ho::HygMX, ho::NatMX, ura3::KanMX, DEP1(NA)/dep1(wa)::URA3

YGL1571 DBVPG6044 × YPS128 MATa/α , ho::HygMX, ho::NatMX, ura3::KanMX, DEP1(WA)/dep1(na)::URA3

FPR1 YGL2166 CC402 MATa, ura3::KanMX, ho::HygMX, fpr1::URA3

YGL2167 CC403 MATa, ura3::KanMX, ho::HygMX, fpr1::URA3

YGL2181 FS174 × YGL2166 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, fpr1::URA3/FPR1

YGL2182 FS173 × YGL2167 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, fpr1::URA3/FPR1

YGL2184 FS173 × YGL2166 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, fpr1(wa)::URA3/FPR1(NA)

YGL2183 FS174 × YGL2167 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, fpr1(na)::URA3/FPR1(WA)

YGL2175 YGL2166 MATa, ura3::KanMX, ho::HygMX, fpr1::FPR1*

YGL2193 YGL2167 MATa, ura3::KANMX, ho::HYGMX, fpr1::FPR1*

INP54 YGL1564 DBVPG6044 MATa, ho::HygMX, ura3::KanMX, inp54::URA3

YGL1565 YPS128 MATa, ho::HygMX, ura3::KanMX, inp54::URA3

YGL1572 DBVPG6044 × YPS128 MATa/α , ho::HygMX, ho::NatMX, ura3::KanMX, INP54(NA)/inp54(wa)::URA3

YGL1573 DBVPG6044 × YPS128 MATa/α , ho::HygMX, ho::NatMX, ura3::KanMX, INP54(WA)/inp54(na)::URA3

KOG1 YGL1264 DBVPG6044 × YPS128 MATa/α , ho::HygMX, ho::NatMX, ura3::KanMX, KOG1(NA)/kog1(wa)::URA3

YGL1263 DBVPG6044 × YPS128 MATa/α , ho::HygMX, ho::NatMX, ura3::KanMX, KOG1(WA)/kog1(na)::URA3

RNR2 YGL2164 DBVPG6044 MATa/α , ura3∆0, ura3∆0, leu2∆0, leu2∆0, lys2∆0, met15∆0, RNR2/rnr2::URA3

YGL2165 YPS128 MATa/α , ura3∆0, ura3∆0, leu2∆0, leu2∆0, lys2∆0, met15∆0, RNR2/rnr2::URA3

YGL2391 CC427 MATa/α , ura3::KanMX/ura3::KanMX, ho::HygMX/ho::HygMX, LYS2/lys2::URA3, RNR2(NA)/rnr2(wa)::NATMX

YGL2392 CC427 MATa/α , ura3::KanMX/ura3::KanMX, ho::HygMX/ho::HygMX, LYS2/lys2::URA3, RNR2(WA)/rnr2(na)::NATMX

YGL2198 WAxNA F12 2 HU 2 T32 C2 MATa/α , ura3::KanMX/ura3::KanMX, LYS2/lys2::URA3, rnr2*::NATMX/RNR2

YGL2189 WAxNA F12 2 HU 2 T32 C2 MATa/α , ura3::KanMX/ura3::KanMX, LYS2/lys2::URA3, rnr2*/RNR2::NATMX

RNR4 YGL2174 CC402 MATa, ura3::KanMX, ho::HygMX, rnr4::URA3, aneuploidy in chr. VII (w/ RNR4)

YGL2170 CC403 MATa, ura3::KanMX, ho::HygMX, rnr4::URA3

YGL2177 FS174 × YGL2174 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, rnr4::URA3/RNR4

YGL2178 FS173 × YGL2170 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, rnr4::URA3/RNR4

YGL2180 FS173 × YGL2174 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, rnr4::URA3/RNR4

YGL2179 FS174 × YGL2170 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, rnr4::URA3/RNR4

YGL2194 YGL1001 MATa/α , ura3∆0; ura3∆0; leu2∆0; leu2∆0; lys2∆0; met15∆0; RNR4(WA)/rnr4(wa)::URA3

YGL2196 YGL1011 MATa/α , ura3∆0; ura3∆0; leu2∆0; leu2∆0; lys2∆0; met15∆0; RNR4(NA)/rnr4(na)::URA3

YGL2176 YGL2170 MATa, ura3::KanMX, ho::HygMX, rnr4::RNR4*

TOR1 YGL2168 CC402 MATa, ura3::KanMX, ho::HygMX, tor1::URA3

YGL2169 CC403 MATa, ura3::KanMX, ho::HygMX, tor1::URA3

YGL2185 FS174 × YGL2168 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, tor1::URA3/TOR1

YGL2186 FS173 × YGL2169 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, tor1::URA3/TOR1

YGL2188 FS173 × YGL2168 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, tor1(wa)::URA3/TOR1(NA)

YGL2187 FS174 × YGL2169 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, tor1(na)::URA3/TOR1(WA)

YGL2201 WAxNA F12 2 RM 2 T32 C6 MATa/α , ura3::KanMX/ura3::KanMX, LYS2/lys2::URA3, tor1*::NATMX/TOR1

YGL2191 WAxNA F12 2 RM 2 T32 C6 MATa/α , ura3::KanMX/ura3::KanMX, LYS2/lys2::URA3, tor1*/TOR1::NATMX

YNR066C YGL1566 DBVPG6044 MATa, ho::HygMX, ura3::KanMX, ynr066c::URA3

YGL1567 YPS128 MATa, ho::HygMX, ura3::KanMX, ynr066c::URA3

YGL1574 DBVPG6044 × YPS128 MATa/α , ho::HygMX, ho::NatMX, ura3::KanMX, YNR066C/ynr066c::URA3

YGL1575 DBVPG6044 × YPS128 MATa/α , ho::HygMX, ho::NatMX, ura3::KanMX, YNR066C/ynr066c::URA3



Primers for amplification of putative drivers. Sequence of primers used to amplify the genes containing putative driver
mutations.

Gene Orientation Chr Target Sequence (TARGET)
Start End

DEP1 fwd I 128977 128996 CAGAGAGCTGGTCCAGTTCA

rev I 129573 129554 TGGCCTCATCTATCGCCTCT

FPR1 fwd XIV 371600 371619 CCCTCCTGCCACAAGAGTTT

rev XIV 372170 372151 TGCCACCTTCCCAAAGACAG

INP54 fwd XV 205005 205024 GCGAAAGTTGGCACTGCATA

rev XV 205624 205605 GCTACACAAGGGGATGAGCA

RNR2 fwd X 392707 392726 CGTGCCGAAGCTTCTTTCTG

rev X 393245 393226 CATGCAAAGTCGGTGTGCAA

RNR4 fwd VII 855968 855987 CAGGGTTTTGCAATTGGGCA

rev VII 856843 856824 TACGACCACCCAACACCAAG

TOR1 fwd X 565069 565088 AGCCAGATCCTACGGTGAGT

rev X 565652 565633 CCCAGGAACAGCCAATTCGA

YNR066C fwd XIV 753660 753679 TCGAATTCACTACCGTCGCC

rev XIV 754369 754348 GCCGCATATACACAATTAGCCT



Primers used to engineer genetic constructs. Sequence of primers used to engineer gene deletions (see ‘Engineered
genetic constructs’).

Gene Marker Orientation Chr Target Sequence (TARGET, ura3 /natMX )

Start End

CTF8 URA3 fwd VIII 486155 486230 TATATACACTTTACACAGAGCGTGAAGTCTGCGCCAAATAACATAAACAAACAACTC

CGAACAATAACTAAGTACTcggcatcagagcagattgtactg

URA3 rev VIII 486709 486631 CTAACCACTAATATAGCCAAAGGAGTGATAGAAAAAAGAATTATCACTATCATTCAG

CCCAATAAACAGCTGAAAAGAAacaccgcagggtaataactg

DEP1 URA3 fwd I 129210 129269 AACGGCAAAGTACAAGGGAAGGAAGCACAGAAGCAAGAGGAGGCGCATCGATCGTGG

CAGcggcatcagagcagattgtactg

URA3 rev I 130547 130488 ATAGCGTTACAACATATTTAAGAATAACAAAAAGAAGTGGTATGGGGTCCAGTGTGG

CGGacaccgcagggtaataactg

FPR1 URA3 fwd XIV 371821 371881 GATACTTACCATAAACATAAATAAAAAGCAGAAAGGCGGCTCAATTGATAGTACTTT

GCTTacaccgcagggtaataactg

URA3 rev XIV 372287 372227 TAAAGTAAGGCCTTTCACCTAAACTCGAGTATAAGCAAAAAATCAATCAAAACAAGT

AATAcggcatcagagcagattgtactg

INP54 URA3 fwd XV 204671 204730 ACTGACGTTATCTGTTTCAGACATAAATGAAAAACTTCTAGCCTGACAGCCCAGATC

ACTcggcatcagagcagattgtactg

URA3 rev XV 205945 205886 TAAGAGTAGGCTAACAAAGAAGAAAAGTGAGACAAGAAAATACAGCAGGATTCTGAC

CGAacaccgcagggtaataactg

KOG1 URA3 fwd VIII 475924 475999 TAATAGATTATATATATATATATATATATATCTCTTTTGCAGCTAAATGAAAGAAAA

AAAAAGAAATGGCACATATcggcatcagagcagattgtactg

URA3 rev VIII 480750 480672 GAATGCATTTGGTTTGTAGATTCCTTTGATTACATTTAGCGAATCCTATTGCATGCA

GAGAAGGGTAAAAGATACATAAacaccgcagggtaataactg

RNR2 URA3 fwd X 392343 392403 CTCGATTGGCTATCTACCAAAGAATCCAAACTTAATACACGTATTTATTTGTCCAAT

TACCcggcatcagagcagattgtactg

URA3 rev X 393664 393604 CGAAAGCCCACATAAAGAGATTGAAGAGACTGCGTAAAAAGAAATATATAGAGAGAT

ACTCacaccgcagggtaataactg

NatMX fwd X 392343 392403 CTCGATTGGCTATCTACCAAAGAATCCAAACTTAATACACGTATTTATTTGTCCAAT

TACCcgtacgctgcaggtcgac

NatMX rev X 393604 393664 CGAAAGCCCACATAAAGAGATTGAAGAGACTGCGTAAAAAGAAATATATAGAGAGAT

ACTCatcgatgaattcgagctcg

RNR4 URA3 fwd VII 855203 855263 TATATATAAATATATATAAATAAAAGTGGCCAAGAATAAAAGAACGCACCCCGTCGT

TGACacaccgcagggtaataactg

URA3 rev VII 856362 856302 TACAAAAACAGATCTTTTTGAGCCACACAACCCCGCGCAACGCACACAATTAGTTAT

TACAcggcatcagagcagattgtactg

TOR1 URA3 fwd X 559355 559415 TCACGAGAGAGTCATTGGTAAAGTGAAACATACATCAACCGGCTAGCAGGTTTGCAT

TGATcggcatcagagcagattgtactg

URA3 rev X 566889 566829 AATGCGTAATACAAAAAAAATAAATAGTAAACAAAGCACGAAATGAAAAATGACACC

GCAGacaccgcagggtaataactg

NatMX fwd X 559355 559415 TCACGAGAGAGTCATTGGTAAAGTGAAACATACATCAACCGGCTAGCAGGTTTGCAT

TGATcgtacgctgcaggtcgac

NatMX rev X 566829 566889 AATGCGTAATACAAAAAAAATAAATAGTAAACAAAGCACGAAATGAAAAATGACACC

GCAGatcgatgaattcgagctcg

YNR066C URA3 fwd XIV 753665 753724 TTCACTACCGTCGCCAACGGAACCTGTCATTAACATAATTCCGGCAGTAGGATTTGA

GATcggcatcagagcagattgtactg

URA3 rev XIV 755095 755036 ATAAAGTTCCGAGCTTTGAAAAAAAGCTTTGAACTAAGAAAAGGTAAGAGATCCTCA

ATTacaccgcagggtaataactg
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