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SUMMARY

The joint contribution of pre-existing and de novo
genetic variation to clonal adaptation is poorly un-
derstood but essential to designing successful anti-
microbial or cancer therapies. To address this, we
evolve genetically diverse populations of budding
yeast, S. cerevisiae, consisting of diploid cells with
unique haplotype combinations. We study the
asexual evolution of these populations under selec-
tive inhibition with chemotherapeutic drugs by
time-resolved whole-genome sequencing and phe-
notyping. All populations undergo clonal expansions
driven by de novo mutations but remain genetically
and phenotypically diverse. The clones exhibit wide-
spread genomic instability, rendering recessive de
novo mutations homozygous and refining pre-exist-
ing variation. Finally, we decompose the fitness con-
tributions of pre-existing and de novo mutations by
creating a large recombinant library of adaptive mu-
tations in an ensemble of genetic backgrounds. Both
pre-existing and de novo mutations substantially
contribute to fitness, and the relative fitness of pre-
existing variants sets a selective threshold for new
adaptive mutations.
INTRODUCTION

The adaptive response of a cell population can thwart therapeu-

tic control of a wide spectrum of diseases, from bacterial and

viral infections to cancer. A prototypical scenario arises when in-

dividuals in a population acquire heritable genetic or non-genetic

changes to adapt and thrive in a new environment (Balaban et al.,
732 Cell Reports 21, 732–744, October 17, 2017 ª 2017 The Author(s
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2004; Marusyk et al., 2014; Toprak et al., 2011). Since the sem-

inal findings by Luria and Delbr€uck (1943) that phage-resistant

bacteria can acquire adaptive mutations prior to selection,

measuring the fitness effects and dynamics of mutations has

been key to map the principles of evolutionary adaptation (Bar-

rick and Lenski, 2013). The focus has typically been on charac-

terizing few mutations at a time under the implicit assumption

that beneficial mutations are rare, treating pre-existing and ac-

quiredmutations separately. However, manymutations are often

simultaneously present in a population, which result in fitness

differences between individuals upon which selection can act

(Lang et al., 2013; Levy et al., 2015; Parts et al., 2011; Venka-

taram et al., 2016).

Given that mutations in asexual populations are physically

linked in the genome, the fates of pre-existing and de novo mu-

tations are mutually dependent, and selection can only act on

these sets of variants in their entirety. Genome evolution exper-

iments on isogenic populations have revealed both adaptive

sweeps and pervasive clonal competition in large populations

where the mutation supply is high. This phenomenon, known

as clonal interference, takes place as mutations in different indi-

viduals cannot recombine via sexual reproduction and is now

relatively well understood both experimentally and theoretically

(Gerrish and Lenski, 1998; Lang et al., 2013; Neher, 2013). Ex-

periments on populations with extensive genetic variation have

demonstrated that beneficial mutations expand in a repeatable

way (Parts et al., 2011). Theory predicts that the rate of adapta-

tion is proportional to the fitness variance present in a popula-

tion, generating a traveling fitness wave (Desai and Fisher,

2007; Rouzine and Coffin, 2005). However, the role of de novo

mutations has been negligible in these experiments, either

because of their short duration or related to the selective con-

straints used. A study that was able to anticipate new mutations

found that one or few genetic variants were sufficient to affect the

fate of subsequent beneficial mutations, hinting that the joint

dynamics of new mutations have to be considered in the light
).
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Figure 1. Study Overview

Schematic of the divergence, crossing, and selection phases of the experiment. Two divergedS. cerevisiae lineages (WA andNA)were crossed for twelve rounds,

generating a large ancestral population of unique haplotypes. These diploid cells were asexually evolved for 32 days in stress and control environments, and their

adaptation was studied bywhole-population and isolate sequencing and phenotyping. Populations evolved resistant macroscopic subclones driven by individual

cells with beneficial genetic backgrounds (i.e., parental allele configurations) and by beneficial de novo mutations that provided a resistance phenotype.
of pre-existing variation (Lang et al., 2011). The ensuing interac-

tion between existing and subsequent mutations has been

theoretically considered under different population genetic

scenarios (Good et al., 2012; Hermisson and Pennings, 2005;

Orr and Betancourt, 2001; Peter et al., 2012; Schiffels et al.,

2011). A key theoretical prediction is that a new beneficial muta-

tion will only establish when it has a selective advantage greater

than a characteristic value that depends on the underlying

fitness distribution (Good et al., 2012; Schiffels et al., 2011).

However, this important hypothesis remains to be tested;

namely, whether genetic diversity can change the evolutionary

fate of new adaptive mutations by limiting the number of back-

grounds where they can still outcompete the fittest extant

individuals. Understanding the effect of genetic heterogeneity

on adaptive dynamics is particularly urgent because recent

findings indicate that it can play a major role in the development

of resistant bacterial infections (Lieberman et al., 2014) and in

cancer recurrence (Gerlinger et al., 2012; Landau et al., 2013).

We have delineated two lines of enquiry into our hypothesis.

To what extent can the adaptive response be attributed to ge-

netic variation already present in a population, and how much

to acquired? How do the aggregate effects of pre-existing vari-

ation influence the fate of new mutations? To address these

questions, we investigated the interaction between pre-existing

(or background) genetic variation and new mutations in a popu-

lation of diploid cells with unique combinations of alleles. The

cells originate from two diverged S. cerevisiae strains (Figure 1).

We carried out 12 rounds of random mating and sporulation

(meiosis) between DBVPG6044, a West African (WA) palm

wine strain, and YPS128, a North American (NA) oak tree bark

strain (Parts et al., 2011). The cross population (WAxNA) con-

sisted of 107–108 unique haplotypes, with a pre-existing single-

nucleotide variant segregating every 230 bp on average. We

further identified 91 de novo single-nucleotide variants (SNVs)

and small insertions or deletions (indels) acquired during the

crossing phase from genome sequences of 173 founder individ-

uals. This is consistent with a mutation rate of approximately

2:89310�10 mutations per base per generation, close to empir-

ical estimates in other yeast strains (Zhu et al., 2014). We also
observed aneuploidy in chromosome IX, indicating the presence

of variation other than point mutations. This design results in the

frequency spectrum of background mutations to be normally

distributed so that pre-existing variants are already established

and do not need to overcome genetic drift. We refer to the

parental genotype of each individual in the cross as its genetic

background, which, on average, differs by �31,000 SNVs be-

tween individuals. Because naturally occurring deleterious

mutations have been selected against over long evolutionary

timescales, the recombinant parental genotypes are enriched

for functional diversity that is not readily accessible using other

techniques, such as random or site-directed mutagenesis. The

cross-based approach also reduces genetic linkage of nearby

loci, which enables us to localize background alleles responding

to selection.

Starting from WA, NA, and WAxNA founders, we asexually

evolved populations of �107 cells in serial batch culture under

drug inhibition with hydroxyurea (HU) and rapamycin (RM) at

concentrations impeding, but not ending, cell proliferation.

These drugs were chosen for having known targets and to cover

two of the most common modes of action of antimicrobial

and chemotherapy drugs: inhibition of nucleic acid synthesis

(hydroxyurea) and inhibition of protein synthesis and cell growth

(rapamycin). We derived replicate lines of WA, NA (2 each in

hydroxyurea and rapamycin), and WAxNA (6 in hydroxyurea, 8

in rapamycin, and 4 in a control environment), propagating

them for 32 days in 48-hr cycles (�54 generations; Experimental

Procedures). We monitored evolutionary changes by whole-

genome sequencing of populations after 2, 4, 8, 16, and

32 days as well as clonal isolates at 0 and 32 days (Table S1).

Finally, we measured the rate of growth at the initial and final

time points for a subset of populations and quantified the relative

fitness contributions of background and de novo variation using

a genetic cross.

RESULTS

Two regimes of selection became readily apparent in both

sequence and phenotype. Initially, there were local changes in
Cell Reports 21, 732–744, October 17, 2017 733



Figure 2. Genome-wide Allele Frequency Changes

Genome-wide allele frequency of pre-existing parental variants after t = ð0; 2; 4; 8; 16; 32Þ days,measured bywhole-population sequencing for a representative

population in rapamycin. Pre-existing and de novo driver mutations are highlighted by dashed lines. Top: chromosomes are shown on the x axis; the frequency of

theWA allele at locus i, xWA
i , is shown on the y axis. The reciprocal frequency of the NA allele is equivalent because xNAi = 1� xWA

i . Bottom left: enlarged inset of the

shaded region showing allele frequency changes in chromosome VIII during selection in rapamycin. Early time points 2, 4, and 8 show localized allele frequency

changes at 460–490 kb because of a beneficial NA allele sweeping with hitchhiking passengers. Late time points 16 and 32 show abrupt jumps between

successive loci that reflect the parental haplotype of emerging subclone(s). These long-range correlations can alter the frequency of parental alleles indepen-

dently of their fitness value. In case of a fully clonal population, allele frequencies at 0, 0.5, and 1.0 would correspond to the background genotypes NA/NA,

WA/NA, andWA/WA of a diploid clone that reached fixation. Bottom right: we tested a model in which each allele is proposed to be a driver under selection, with

linked passenger alleles also changing in frequency by genetic hitchhiking. Top log likelihood scores are shown for all populations in this region of interest

(Supplemental Experimental Procedures). We validated the CTF8NA allele to be strongly beneficial for rapamycin resistance (Figure S8).

See also Figures S1 and S2.
the frequency of parental alleles under selection (Figure 2). Over

time, subclonal populations arose and expanded, depleting the

pool of genetic diversity. Here and throughout this article, we

employ the term ‘‘subclone’’ to refer to a group of cells that carry

the same set of mutations. These successful ‘‘macroscopic’’

subclones could be detected by whole-population sequencing

and phenotyping, persisting in time, as manifested by broad

jumps in the allele frequency visible across the genome and by

multiple modes in the fitness distribution (Figures 2 and 3; Fig-

ure S2). But what drives these clonal expansions? Is it the

founder haplotypes themselves, de novo mutations relegating

the parental variation to the role of passengers, or their com-

bined action?

Selective Effects on Pre-existing Genetic Variation
To determine the adaptive value of background variation, we

identified regions where local allele frequencies changed over

the time course of the selection experiments. Frequency

changes over time indicate that selection is acting on beneficial

background alleles. These drivers cause linked passenger muta-

tions to also change in frequency by genetic hitchhiking (Illing-

worth et al., 2012). We performed a systematic scan for

background variants under selection using data up to 4 days,

when no population yet had detectable subclones that would

distort this signal (Supplemental Experimental Procedures). A

region of interest was found in chromosome VIII (coordinates
734 Cell Reports 21, 732–744, October 17, 2017
460–490 kb) in all WAxNA populations under rapamycin (Fig-

ure 2B). We evaluated two candidate genes in this region by

reciprocal hemizygosity, validating the CTF8NA allele to increase

rapamycin resistance. CTF8 harbors two background missense

variants and has previously been implicated in sensitivity to rapa-

mycin, although the mechanism remains unknown (Parsons

et al., 2004). Carrying the CTF8NA allele confers a 36% growth

rate advantage over the CTF8WA allele (Figure S8). KOG1, which

falls within the same region and is a subunit of the TORC1 com-

plex, differs by seven missense mutations between the parents.

However, reciprocal hemizygous deletions only revealed a

modest fitness difference between WA and NA sequences of

KOG1. We did not find events that replicated across all popula-

tions in hydroxyurea.

Pervasive Selection of Macroscopic Subclones Driven
by De Novo Genetic Variation
To reconstruct clonal expansions in the WAxNA populations, we

used background genetic variants as markers. Using the clo-

neHD algorithm (Fischer et al., 2014), we inferred the subclonal

genotypes and their frequency in the populations, both of which

are unknown a priori (Figure S1; Supplemental Experimental

Procedures). We found at least one subclone in all WAxNA

populations under selection but none in the control environment

(Figure 3; Figure S3). Clonal competition was prevalent with two

or more expanding subclones in 12 of 16 WAxNA populations.
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No population became fully clonal during the experiment, with

subclone frequencies stabilizing after 16 days in several rapamy-

cin populations. Similarly, WA and NA populations under selec-

tion underwent adaptation, as evidenced by de novo mutation

frequencies, except for WA, which became extinct in hydroxy-

urea (Figure S4).

To genetically characterize the subclones, we isolated and

sequenced 44 clones drawn from WAxNA populations after the

selection phase (Figure 4; Experimental Procedures). From pop-

ulation and isolate sequence data, we observed 19 recurrent de

novo mutations in the ribonucleotide reductase subunits RNR2

and RNR4 during hydroxyurea selection and in the rapamycin

targets FPR1 and TOR1 during rapamycin selection (Table 1).

Each of these driver mutations had a drug-resistant growth

rate phenotype (Figures S6, S7, and S8) and carried a unique

background of �31,000 passenger mutations on average

compared with other sequenced isolates. All FPR1 mutations

were homozygous and likely to inactivate the gene or inhibit its

expression. In contrast, TOR1 mutations were heterozygous,

whereas we found RNR2 and RNR4 mutations in both the het-

erozygous and homozygous state. All driver mutations occurred

in highly conserved functional domains. The variant allele frac-

tions of these mutations mirrored the inferred subclonal dy-

namics (Figures 3A and 3C; Figures S3 and S4). Other mutated

genes with similar dynamics were confirmed as passengers

(e.g., DEP1, INP54, and YNR066C; Figure S8). From the genome

sequence of the 44 individual clones, we also detected six tri-

somies as large-scale copy-number aberrations, without

conclusive evidence that they are adaptive comparedwith recur-

rent point mutations (Figure 4).

Clonal expansions were also evident from changes in the

fitness distribution of cells. We established this by phenotyping

96 randomly isolated individuals from 3 populations per environ-

ment at 0 and 32 days as well as the 44 sequenced individuals at

32 days (Experimental Procedures). We measured the growth

rate of each isolate and determined the population growth rate

with respect to the mean of the fitness distribution. The variance

of the fitness distribution varied significantly with different drugs,

consistent with previous studies (Chevereau et al., 2015).

While the variance of the fitness distribution at 0 days was nar-

row in hydroxyurea ðs2 = 3:1310�3Þ, growth in rapamycin

showed a wider response ðs2 = 5:4310�3Þ. In rapamycin selec-

tion, the fitness distribution becamemultimodal after 32 days, re-
Figure 3. Reconstruction of Subclonal Dynamics
Competing subclones evolved in hydroxyurea and rapamycin experienced a var

(A and C) Time is shown on the x axis, starting after crossing, when the population

(C) rapamycin between t = 0 and t = 32 days. Cumulative haplotype frequency of s

y axis. Most commonly, selective sweeps were observed where a spontaneous m

lines and passenger mutations as dashed lines, colored by subclone assignmen

respectively. For driver mutations, the mutated gene and codon are indicated ab

(B and D) Variability in intra-population growth rate, estimated by random samplin

purple), before and after selection with (B) hydroxyurea and (D) rapamycin. Rela

calculated by averaging over nr = 32 technical replicates per individual. Relative

hlkit =0 at t = 0 days. The posterior means of the distribution modes fitted by a Ga

carry driver mutations, detected by targeted sampling and sequencing. The inse

when there are many mutations of similar effect, the fitness wave will be smo

distribution will become multimodal.

See also Figures S3, S4, and S10.
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flecting the fitness of subclones substantially improving with

respect to the mean fitness of the bulk population (Figure 3D).

The clonal subpopulation divided on average twice as fast as

the ancestral population. Sequenced isolates with driver muta-

tions in FPR1 and TOR1 were on the leading edge of the fitness

distribution, far ahead of the bulk. Furthermore, the bulk compo-

nent showed a 10% average improvement, possibly because of

selection of beneficial genetic backgrounds. Conversely, bimo-

dality was only detected in one population in hydroxyurea selec-

tion (WAxNA F12 1HU 3), where the clonal peak grew 25% faster

on average comparedwith the ancestral population, and the bulk

grew 7% faster on average across all populations (Figure 3B).

Isolates with RNR2 driver mutations fell onto the leading edge

of the fitness distribution. These six isolates originated from

the same expanding subclone, and two of them had a 13% faster

growth rate than the remaining four, although they all shared the

same heterozygous RNR2 driver mutation. In both of these

isolates, we found a large region in chromosome II to have un-

dergone loss of heterozygosity (LOH), offering a putative genetic

cause for their growth advantage (Figure 4A). Finally, to under-

stand how the fitness of a typical population changes across

environments, we characterized the fitness correlations of

ancestral and evolved clonal isolates with and without stress

(Figure S9). The rank order in clone fitness did not change signif-

icantly because of selection when measured in the absence of

stress, implying that the evolutionary history of each of the

clones did not lead to trade-offs in the average fitness of the pop-

ulation. However, a strong fitness cost of driver mutations in

FPR1 was observed.

Diversification and Genomic Instability
We found several of the driver mutations to exist in homozygous

rather than heterozygous states. LOH has been shown to rapidly

convert beneficial heterozygous mutations to homozygosity in

diploid yeast evolving under nystatin stress (Gerstein et al.,

2014). Thus, we hypothesized that genomic instability, causing

widespread LOH, could be significantly contributing to adapta-

tion. To detect mechanisms of genomic instability, we used

heterozygous genetic variants as markers. First, we used the se-

quences of haploid individuals from the ancestral population,

drawn before the last round of crossing, to create in silico diploid

genomes and calculate the length distribution of homozygous

segments. Similarly, we measured the length distribution of
iety of fates.

has no macroscopic subclones and during selection with (A) hydroxyurea and

ubclones (bars) and allele frequency of de novomutants (lines) are shown on the

utation arose and increased in frequency. Driver mutations are shown as solid

t; circles and squares denote non-synonymous and synonymous mutations,

ove each line.

g of 96 individuals at initial (t = 0 days, green) and final time points (t = 32 days,

tive growth rates lkðtÞ by individual k are shown at the foot of the histogram,

growth rates are normalized with respect to the mean population growth rate

ussian mixture model are indicated as dashed lines. The fitter individuals (pins)

ts on the right depict a schematic of the fitness distribution in two limit cases:

oth and unimodal; when only few mutations of large effect exist, the fitness
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Figure 4. Pervasive Selection for Adaptive Mutations and Genomic Instability

Whole-genome sequences of clones sampled fromWAxNA F12 populations. SNVs, indels, and chromosome-level aberrations were detected by whole-genome

sequencing in single-cell diploid clones derived from evolved populations after t =32 days in (A) hydroxyurea or (B) rapamycin (Table S1). Chromosomes are

shown on the x axis; clone isolates are listed on the left, colored by lineage (Figure S3). The consensus shows the majority genotype across population isolates

with a sequence identity greater than 80%. WA/WA (blue) and NA/NA (red) represent homozygous diploid genotypes, and WA/NA (purple) represents a het-

erozygous genotype. Individual cells with a shared background genotype carry de novo SNVs and indels (circles), de novo mis-segregations with loss of het-

erozygosity (solid segments), and de novo gains or losses in copy number (hatched segments). Driver and passenger mutations are listed along the top (drivers

are shown in boldface). Populations marked by5 indicate cross-contamination during the selection phase, but any derived events are independent. All ancestral

sequenced isolates can be found in Figure S5. See also Figures 3A and 3C, Table 1, and Table S1.
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Table 1. Summary of Driver Mutations

Gene Chr Position Strand

Nucleotide

Position Substitution

Protein

Position Substitution Status Genotype Effect

Selection: Hydroxyurea (YPD+HU 10 mg/mL)

RNR2 X 392,854 + 451 A > C 151 N > H de novo N/A missense

392,864 + 461 A > G 154 E > G de novo +/� missense

392,908 + 505 T > C 169 Y > H de novo +/� missense

393,020 + 617 C > T 206 T > I de novo +/�, �/� missense

RNR4 VII 855,961 – 341 T > A 114 K > M de novo N/A missense

856,201 – 101 C > A 34 R > I de novo +/�, �/� missense

856,202 – 100 T > C 34 R > G de novo �/� missense

Selection: Rapamycin (YPD+RM 0.025 mg/mL)

CTF8 VIII 486,462 – 170 C(WA) > A(NA) 57 G > V pre-existing N/A missense

486,568 – 64 T(WA) > C(NA) 22 T > A pre-existing N/A missense

FPR1 XIV 371,920 – 306–307 T > TTG 102–103 ST > S* de novo N/A frameshift (stop

codon gained)

371,921 – 306 A > T 102 S > R de novo N/A missense

372,030 – 197 C > G 66 W > S de novo �/� missense

372,030 – 197 C > T 66 W > * de novo �/� nonsense (stop

codon gained)

372,195 – 28–31 ATTTT > ATTT 10–11 KI > K* de novo N/A frameshift (stop

codon gained)

372,224 – 3 C > A 1 M > I de novo N/A nonsense (start

codon lost)

TOR1 X 564,757 + 5,343–5,345 ATGA > A 1,781–1,782 DD > D de novo N/A in-frame deletion

565,330 + 5,915 G > T 1,972 S > I de novo +/� missense

565,331 + 5,916 C > A 1,972 S > R de novo N/A missense

565,528 + 6,113 G > T 2,038 W > L de novo +/� missense

565,529 + 6,114 G > C 2,038 W > C de novo +/� missense

565,550 + 6,135 C > A 2,045 F > L de novo N/A missense

Summary of unique SNVs, insertions and deletions found to be drivers in hydroxyurea (RNR2 and RNR4) and rapamycin (CTF8, FPR1, and TOR1).

Nucleotide and protein substitutions show the wild-type and mutated alleles. Nucleotides gained or lost are underlined. Variants are labeled as

pre-existing when they differ between the parents and as de novo when they arose during the crossing or selection phases of the experiment. The

functional effect of the mutations has been characterized using the Ensembl Variant Effect Predictor (McLaren et al., 2016). Populations and clones

carryingmutations in these driver genes are listed in Table S1. The genotype of eachmutation in individual clones is shown in Figure 4. The genotype of

mutations only found by whole-population sequencing cannot be resolved and is indicated as not applicable (N/A). Chr, chromosome.
homozygous segments from evolved isolate genomes. We

observed a significant increase of long homozygosity tracts in

the evolved clones—a hallmark of LOH (Figure 5A). Second,

we directly counted LOH events in populations using multiple

sequenced isolates from the same expanding subclone (Supple-

mental Experimental Procedures).

We identified aminimum of 6 events per genome per subclone

(Figure 4). Although this estimate is a lower bound and is limited

because of the number of sequenced individuals per subclone,

the LOH rates are substantial. To exemplify the interaction of

genomic instability with pre-existing and de novo variation, in-

spection of de novo mutations in the WAxNA F12 1 HU 3 popu-

lation shows that one RNR2 mutation spans six isolates, being

part of an expanding subclone (Figure 4A). These isolates have

further diversified by acquiring passenger mutations and under-

going LOH. Clones C5 andC6 grow faster than the other four and

share a large LOH event in chromosome II that is not present in

the other isolates, possibly providing the growth advantage and
738 Cell Reports 21, 732–744, October 17, 2017
broadening the fitness distribution (Figure 3B). An alternative

route to homozygosity was observed in a single clone found to

be haploid (clone C1 in WAxNA F12 2 RM 1) and, therefore, ho-

mozygous genome-wide. This haploid clone is closely related to

a diploid clone (C3) from the same population, and both clones

share the same FPR1W66* de novomutation (Figure 4B). These

data are consistent with the appearance of the FPR1 heterozy-

gous mutation in an ancestral diploid clone that took two inde-

pendent routes—focal LOH or meiosis—to unveil the recessive

driver mutation. Altogether, we find that genomic instability can

render de novo mutations homozygous as a necessary event in

a multi-hit process toward drug resistance.

The stress environments themselves have an active role in

accelerating genome evolution by genomic instability. Using a

fluctuation assay, we investigated the effect of the genetic back-

ground and of the selective environment on genomic instability

by tracking the loss of the URA3 marker. Consistent with previ-

ous studies (Barbera and Petes, 2006), replication stress



A B Figure 5. Elevated Rates of Loss of Heterozy-

gosity

(A) The length distribution of homozygous seg-

ments, in bins corresponding to 50-kb increments,

shows an excess of long homozygosity tracts above

300 kb in hydroxyurea and rapamycin (Kolmogorov-

Smirnov test, p < 0.01). Ancestral haploid isolates

are used to compare a set of in silico diploid ge-

nomes to evolved diploid isolates. Only unrelated

isolate backgrounds were included.

(B) Background- and environment-dependent rates

of loss of heterozygosity were measured in a fluc-

tuation assay by loss of the URA3marker. Resistant

colonies growing in 5-fluororotic acid (5-FOA+)

indicate loss of the marker. Based on the number of

5-FOA+ colony-forming units (CFUs), the mean

number of LOH events are estimated using the

empirical probability-generating function of the Lu-

ria-Delbr€uck distribution (Supplemental Experi-

mental Procedures). The locus-specific LOH rates

are shown, given by the mean number of LOH

events divided by the total number of cells in YPD.

Error bars denote the upper and lower 95%confidence intervals. LOH rates were elevated in hydroxyurea comparedwith the control environment andmanifested

background-dependent effects between the parents and their hybrid.

See also Figure 4.
induced by hydroxyurea caused an increase in LOH rates. We

also observed a background-dependent increase in LOH in ra-

pamycin (Figure 5B).

Decomposing Fitness Effects of Genetic Variation by
Background Averaging
Finally, we sought to partition and quantify the individual fitness

contributions of pre-existing and de novo genetic variation. The

genotype space is extremely vast, but we can uniformly sample a

representative ensemble to reconstruct a fraction of the genetic

backgrounds where beneficial mutations could have arisen. To

this end, we designed a genetic cross where background and

de novo variants were re-shuffled to create new combinations

(Figure 6A). We randomly isolated diploids from both ancestral

and evolved populations, sporulated these, and determined

whether the derived haploids contained wild-type or mutated

RNR2, RNR4, FPR1, and TOR1 alleles. We then crossed hap-

loids to create a large array of diploid hybrids where all geno-

types (+/+, +/–, –/–) for each of these genes existed in an

ensemble of backgrounds, thus recreating a large fraction of

the genotype space conditioned on the presence or absence

of driver mutations. We measured the growth rates of both

haploid spores and diploid hybrids, estimating and partitioning

the variation in growth rate contributed by the background geno-

type and by de novo genotypes using a linear mixed model (Fig-

ure 6B; Figure S10; Supplemental Experimental Procedures).

The ensemble average over backgrounds showed that the

mean effect of RNR2, RNR4, and TOR1 mutations was fully

dominant and highly penetrant regardless of the background

(Figures 6D and 6F). In contrast, FPR1 mutants were recessive

and only increased the growth rate when homozygous, again

irrespective of the background (Figure 6F). Recombinants

with RNR2 and RNR4 mutations show epistatic interactions,

consistent with the products encoded by these genes, which

are known to interact as subunits of the same protein complex
(Figure 6C). After conditioning for RNR2, RNR4, FPR1, and

TOR1 driver mutation status, a large fraction of the phenotypic

variance still remained, reflecting the effect of the genetic back-

grounds in which they emerged (Figures 6C and 6E). In fact,

under hydroxyurea exposure, background genetic variation ac-

counted for an estimated 51% of the growth rate variance,

more than twice the estimated 23% contributed by RNR2 and

RNR4 de novomutations. Furthermore, these mutations eventu-

ally landed on genetic backgrounds much fitter than average in

the ancestral fitness distribution, as denoted by the estimated

7% explained by the time of sampling. Both of these results

directly imply that moderate-effect de novomutationsmust arise

on favorable genetic backgrounds to give rise to macroscopic

subclones. In contrast, under rapamycin exposure, the pre-ex-

isting genetic variation accounted for only 22% of the variance,

much less than the 70%attributed to FPR1 and TOR1mutations.

Such large-effect mutations can expand in a vast majority of

backgrounds, explaining how they can almost entirely surpass

the bulk of the fitness distribution (Figure 3D). Taken together,

these results are consistent with the aggregation of small-effect,

pre-existing variants that can condition the fate of newmutations

in both selection environments.

DISCUSSION

Here we showed that populations containing extensive fitness

variability can adapt to strong selective pressures utilizing both

pre-existing and de novo genetic variation. Theory predicts

that pre-existing genetic variation forms a traveling fitness

wave, with the mean fitness increasing at a rate that is propor-

tional to its fitness variance (Desai and Fisher, 2007; Rouzine

and Coffin, 2005). New mutations are expected to be successful

when they land on a favorable background or when they are

beneficial enough to escape from the bulk dynamics by their

own merits. Recent theoretical results have suggested the
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Figure 6. Ensemble-Averaged Fitness Effects of Genetic Background and De Novo Mutations

(A) To quantify the fitness effects of background variation and de novomutations in hydroxyurea (RNR2 and RNR4) and rapamycin (FPR1 and TOR1), we isolated

individuals from ancestral and evolved populations. From these diploid cells, we sporulated and selected haploid segregants of each mating type. Spores with

mutations in RNR2, RNR4, and TOR1 were genotyped to test whether they carry the wild-type or mutated allele. We crossed the MATa and MATa versions to

create hybrids (48 3 48 in hydroxyurea and 56 3 56 in rapamycin). Independent segregants were used to measure the biological variability of ancestral and

evolved backgrounds.

(B) Variance decomposition of the growth rate of spores (solid) and hybrids (hatched) that can be attributed to different components using a linear mixed model.

The model components are the background genotype, b; de novo genotype, d; time of sampling during the selection phase, t; and auxotrophy, x. Estimates of

variance components are obtained by restricted maximum likelihood (Figure S12 and Table S6).

(C and E) Relative growth rate of spores, lbtdfa;ag, and hybrids, lbtdaa , measured for multiple combinations of background and de novo genotypes and averaged over

measurement replicates. Relative growth rates are normalized with respect to the mean growth rate of the ancestral WAxNA cross. Measurements of cells

selected in (C) hydroxyurea and (E) rapamycin were taken in the respective stress environments. Medians and 25%/75% percentiles across groups are shown,

with medians shown as horizontal black lines and colored by de novo genotype (wild-type, blue; heterozygote, cyan; homozygote, green). Outliers (circles) and

isolated, selected clones with matching genotypes (diamonds) are highlighted.

(D and F) Ensemble average of the relative growth rate of spores, hlitdfa;ag, and hybrids, hlitdaa, measured in (D) hydroxyurea and (F) rapamycin. The color scale for all

matrices is shown at the right and indicates the difference in the ensemble average with respect to the ancestral WAxNA crosses.

The symbols in (C)–(F) follow the legend in (A) and indicate combinations of the type of genetic background (WA parent, ; NA parent, ; WAxNA segregant, )

and the genotype of de novomutations (no de novomutation, ; wild-type, ; mutated, ). An extended version of the figure with all combinations and controls

can be found in Figures S10 and S11, respectively.
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existence of a selective advantage threshold above which the

fate of a newmutation becomes decoupled from the background

on which it lands (Good et al., 2012; Schiffels et al., 2011). Our

results show that new beneficial mutations expanded on a range

of genetic backgrounds and selection concomitantly acted on

pre-existing variation through its combined effects on fitness,

steadily improving the bulk of the population. The observed dy-

namics are, at this level, consistent with the theoretical picture.

The rate of adaptation and the type of beneficial mutations that

expand and fix in a population depend on multiple factors, such

as population size, mutation rate, and ploidy (Barrick and Lenski,

2013; Selmecki et al., 2015; zur Wiesch et al., 2011). Our results

show that sufficiently large populations could readily find bene-

ficial de novo mutations, but their adaptive trajectories were

simultaneously shaped by pre-existing and de novo variation

with overlapping timescales. Previous experimental studies

with substantial founder diversity did not observe de novomuta-

tions playing an important role in either asexual or sexual evolu-

tion (Burke et al., 2010, 2014; Parts et al., 2011). This may be due

to differences in the selective constraints that affect the time-

scale for the emergence of de novo mutations or may depend

on the genetic architecture of the selected phenotype, making

the background fitness variation harder to overcome. Despite

the large genetic heterogeneity of the founders, mutations in

driver genes were recurrent, indicating convergent evolution

toward a restricted number of molecular targets. This is an

important aspect to be able to predict the outcome of selection.

Larger studies that systematically vary key parameters, such as

population size, are needed to quantify how pre-existing varia-

tion conditions the repeatability of new mutations.

Measurements of the fitness distribution revealed markedly

different variability within a population in response to different in-

hibitors. There were two different outcomes of selection: when

many mutations had comparable fitness effects as in hydroxy-

urea, the fitness distribution remained smooth; on the contrary,

when few large-effect mutations were available, such as muta-

tions in the target-of-rapamycin (TOR) pathway in rapamycin,

the fitness distribution became multimodal. We were not able

to attribute increases in the bulk of the fitness distribution to

particular alleles beyond the CTF8 gene, probably because of

the contribution of many small-effect loci. Previous studies in

isogenic populations have reported adaptive mutations sweep-

ing to fixation on a comparable timescale without specific selec-

tive constraints such as drugs (Lang et al., 2013). In contrast, we

did not observe complete fixations. This is partially due to the

duration of the experiment: the clones are still expanding after

32 days in hydroxyurea. However, most rapamycin-resistant

clones become stable between 16 and 32 days. Although we

do not know the underlying cause, the observation has important

consequences. Notably, the substantial genotypic and pheno-

typic diversity that remained after selection could be a potent

substrate to re-sensitize a population and may compromise tar-

geted therapies against resistant clones. Understanding the role

of clonal competition in isogenic and heterogeneous populations

requires further work, which could be approached experimen-

tally using lineage tracing (Levy et al., 2015).

We observed a balance between the loss of diversity because

of selection and active diversification mechanisms that partially
re-established and refined existing variants. The background

not only contributed substantially to fitness but was also contin-

uously re-configured by genomic instability, diversifying the ex-

panding clones. Chromosomal rearrangements represent a key

mechanism in shaping genome diversity in asexual organisms

(Dunham et al., 2002; Flot et al., 2013) and in somatic evolution

of cancer (Stephens et al., 2011), where cells accumulate a ge-

netic load during tumor development that LOH can reveal

phenotypically. In asexual diploids such as those studied here,

successful beneficial mutations are expected to be dominant

in a phenomenon known asHaldane’s sieve (Orr andBetancourt,

2001). However, LOH has been shown to overcome this

constraint by rapidly converting initially heterozygous mutations

to homozygosity (Gerstein et al., 2014). Therefore, LOH may

enable asexually evolving populations to approach the adaptive

rates seen in sexual organisms with recombination. Here we also

saw these dynamics at play because recessive FPR1 mutations

needed a second hit by LOH. Additionally, the process gained a

new dimension: although these rearrangements were mostly

copy number-neutral, they led to fitness increments by changing

scores of background variation from the heterozygous to the ho-

mozygous state in a single step. As a result, certain passenger

mutations hitchhiking with a beneficial driver may provide an

additional fitness advantage distributed across one or multiple

loci (Figure 4). The implications of the ongoing diversification

by chromosomal rearrangements are worthwhile pursuing

further, both theoretically and experimentally. Even if a driver

mutation were to fully fix, a substantial amount of genetic varia-

tion would remain. Multiple genetic backgrounds with the same

driver mutation would diverge (Hermisson and Pennings, 2005),

and it may drastically alter the theoretical expectation of a

sharp transition between evolutionary regimes at the selective

threshold (Good et al., 2012; Schiffels et al., 2011). Experimen-

tally, recently developed genome-editing techniquesmay enable

localizing and measuring the fitness effect of specific LOH re-

gions (Sadhu et al., 2016).

We carried out background-averaged fitness measurements

of a recombinant library of pre-existing and de novo mutations.

We found that large-effect mutations, such as those in the TOR

pathway, confer resistance to rapamycin regardless of the

genetic background where they arise. These mutations were of

sufficient magnitude to surpass the bulk of the fitness distribu-

tion and can be interpreted to be above the selective threshold.

Conversely, the pre-existing fitness variance influenced the fate

of de novo drivers likeRNR2 andRNR4mutations, which needed

to land on a favorable background to be competitive. Thus far,

most biological systems have been found at the edge of the

two regimes. Large-effect mutations being amplified on well-

adapted background genotypes have been observed in labora-

tory populations (Lang et al., 2011) and in the wild (e.g., in

the seasonal influenza virus; Illingworth and Mustonen, 2012;

Luksza and Lässig, 2014), which suggests that these dynamics

represent a general mode of adaptation. Interestingly, our

combinatorial strategy of background averaging shows that

both of the limit cases can be true. Thus, the predictability of

the outcomes of selection will hinge on characterizing the back-

ground fitness variance and finding a common framework to

describe the selective potential of a population (Boyer et al.,
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2016). Detecting a known driver mutation without a measure-

ment of the background fitness distribution will be insufficient

to predict its ultimate fate. This is a necessary requisite to even-

tually rationalize the design of therapies for the treatment of bac-

terial and viral infections or cancer. It may also be possible to bal-

ance and control the fitness effects of pre-existent and de novo

mutations—i.e., to change the selective threshold; for example,

by modulating the dose-dependent effects of inhibitors (Chever-

eau et al., 2015) or by inhibiting global regulators (Jarosz and

Lindquist, 2010).

Taken together, our findings can help us understand the evo-

lution of large asexual populations with extensive genetic varia-

tion. Bacterial infections and cancer, which easily reach sizes of

billions of cells, host a comparable mutation load before any

selective treatment is applied. For example, the number of pre-

existing variants in our experiment is comparable with the typical

number of somatic mutations accrued before treatment during

carcinogenesis, which varies between 102–105 depending on

the cancer type (Lawrence et al., 2013), and it is also comparable

with the genetic diversity in bacterial communities (e.g., in cystic

fibrosis patients; Lieberman et al., 2014). In either of these cases,

the number of possible mutations available to escape antimicro-

bial or chemotherapy drugs is limited, and it is comparable with

the balance we observe between the number of drivers and pas-

sengers. Clearly, whether these results hold true more generally

needs to be studied across systems. Overall, we hope that our

results will encourage new theoretical and empirical investiga-

tions of the complex interplay of selection simultaneously acting

on pre-existing and de novo genetic variation and of the role of

genomic instability continuously molding the genomes in a

population.

EXPERIMENTAL PROCEDURES

A summary of the experimental protocols of this study is presented here. A full

exposé of the experimental methods is given in the Supplemental Experi-

mental Procedures, where we describe protocols for clone isolation, engineer-

ing genetic constructs, genetic crossing, fluctuation assays, and growth

phenotyping. This is followed by a presentation of the theory and data analysis,

where we define the model for localization of drivers among hitchhiking pas-

sengers and the probabilistic inference method for subclonal reconstruction.

Furthermore, we also discuss the model for the estimation of variance compo-

nents from background-averaged fitness measurements.

Study Design

In our study, we begin with two yeast strains that have diverged over millions of

generations (divergence phase) and are randomly mated by meiotic recombi-

nation to generate a large pool of recombinant mosaic haplotypes (crossing

phase), followed by applying a selective constraint of the population under

stress (selection phase).

Divergence Phase

Parental strains were derived from a WA strain (DBVPG6044; MATa, ura3::

KanMX, lys2::URA3, ho::HphMX) isolated from palm wine and a NA strain

(YPS128; MATa, ura3::KanMX, ho::HphMX) isolated from the oak tree. These

strains were selected from two diverged S. cerevisiae lineages and feature

52,466 single-nucleotide differences uniformly distributed across the genome.

Crossing Phase

The selection experiments were carried out using WA, NA, WAxNA F2, and

WAxNA F12 founder populations derived from hybrids between WA and NA.

The WAxNA F2 and F12 populations were, respectively, generated from the

F1 and F11 hybrids between WA and NA. The WAxNA F1/F11 diploid popula-

tions were expanded in YPD and sporulated in solid potassium acetate
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(KAc) medium (2% potassium acetate, 2% agar) for 14 days at 23�C. Sporu-
lation of diploids was confirmed by visual inspection of asci. Over 90% of

sporulation efficiency was observed after 14 days. Any remaining unsporu-

lated cells were selectively removed using the ether protocol (Parts et al.,

2011). The haploid population was subjected to mass mating according to

the protocol described by Parts et al. (2011). Briefly, the asci were resus-

pended in 900 mL of sterile water and digested with 100 mL of zymolase

(10 mg mL�1) for 1 hr at 37�C. The cells were washed twice with 800 mL of

sterile water, vortexed for 5 min to allow spore dispersion, plated in YPD,

and incubated for 2 days at 23�C. The YPD plates were replica-plated in min-

imal medium to select diploid cells (MATa/MATa, LYS2/lys2::URA3). The

WAxNA F2/F12 generation was collected from the plates and used as a

founder population for the selection experiments and stored at �80�C as a

frozen stock.

Selection Phase

In the selection phase, WA, NA, WAxNA F2, and WAxNA F12 founder popula-

tions (referred to as ancestral) were evolved asexually in two selective envi-

ronments and one control environment. Each of the ancestral populations

consisted of a total population size of 3:23107 cells, determined by plating

and counting colony-forming units. We serially propagated multiple replicate

populations over a period of 32 days, which we refer to as evolved popula-

tions. Every 48 hr, 1:10 of the total cell population was transferred to fresh

plates, avoiding severe bottlenecks to minimize the effect of genetic drift.

We estimated that 1.74 generations per day took place in hydroxyurea and

1.63 generations per day in rapamycin, based on the mean growth rate of

three representative populations in each environment and accounting for

acceleration and deceleration of growth every 48 hr cycle (Supplemental

Experimental Procedures). These empirical estimates amount to �54 gener-

ations between 0 and 32 days, in agreement with a theoretical bound on

the number of generations, assuming exponential growth with a 1:10 dilution

factor every 48 hr.

Where indicated, the selective media were supplemented with hydroxyurea

(HU) at 10 mg mL�1 or rapamycin (RM) at 0.025 mg mL�1 and maintained at

constant drug concentration until day 34. The drug concentrations were cho-

sen based on the dose response of the WA and NA strains. We selected con-

centrations that maximized the differential growth between the two diploid

parents in each environment. We observed a clear dose response in hydroxy-

urea, with at least 10-fold differential growth between the two diploid parent

strains at 10 mg mL�1 (Figure S7). For rapamycin, we used 0.025 mg mL�1,

which also results in a 10-fold difference between the parent strains (FigureS8).

This concentration is well below the minimum inhibitory concentration of

0.1 mg mL�1 originally used to identify the highly penetrant TOR1 mutations

in the lab strain (Heitman et al., 1991).

Whole-Genome Sequencing and Phenotyping

We followed the evolution of these populations over the course of the experi-

ment using whole-genome sequencing and phenotyping of the bulk popula-

tion and of ancestral and evolved isolates. WA and NA populations are labeled

by their background, the environment in the selection phase, and the selection

replicate; e.g., NA RM 1. WAxNA populations are labeled by background,

number of crossing rounds, cross replicate, selection environment, and selec-

tion replicate; e.g., WAxNA F12 2 HU 1. Time series samples are labeled from

T0 to T32, and isolate clones carry a suffix; e.g., C1, C2, etc. Whole-population

sequencing was performed after t = 0, 2, 4, 8, 16, and 32 days, and ancestral

and evolved individuals were also sequenced (Table S1). Genomic DNA was

extracted from the samples using the Yeast MasterPure kit (Epicenter, USA).

The samples were sequenced with Illumina TruSeq SBS v4 chemistry using

paired-end sequencing on Illumina HiSeq 2000/2500 at the Wellcome Trust

Sanger Institute. Phenotyping of ancestral and evolved individuals was per-

formed by monitoring growth after t = 0 and 32 days using transmissive scan-

ning (Supplemental Experimental Procedures).
DATA AND SOFTWARE AVAILABILITY

The study accessions for the sequence data reported in this paper are avail-

able from the European Nucleotide Archive (ENA) and the NCBI BioProject.



The dataset in study accession PRJEB2608 corresponds to raw DNA

sequence reads previously reported in Parts et al. (2011). The dataset in study

accession PRJEB4645 corresponds to raw DNA sequence reads newly re-

ported in this study. The dataset in study accession PRJEB13491 corresponds

to mutation calls in the two aforementioned datasets. All datasets have been

jointly analyzed in this manuscript.

Phenotype data, fluctuation assay data, code, and notebooks are

available from the GitHub repository (https://github.com/ivazquez/clonal-

heterogeneity)
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Luksza, M., and Lässig, M. (2014). A predictive fitness model for influenza.

Nature 507, 57–61.

Luria, S.E., and Delbr€uck,M. (1943). Mutations of bacteria from virus sensitivity

to virus resistance. Genetics 28, 491–511.

Marusyk, A., Tabassum, D.P., Altrock, P.M., Almendro, V., Michor, F., and Pol-

yak, K. (2014). Non-cell-autonomous driving of tumour growth supports sub-

clonal heterogeneity. Nature 514, 54–58.

McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R.S., Thormann, A., Fli-

cek, P., and Cunningham, F. (2016). The Ensembl Variant Effect Predictor.

Genome Biol. 17, 122.

Neher, R.A. (2013). Genetic draft, selective interference, and population ge-

netics of rapid adaptation. Annu. Rev. Ecol. Evol. Syst. 44, 195–215.

Orr, H.A., and Betancourt, A.J. (2001). Haldane’s sieve and adaptation from

the standing genetic variation. Genetics 157, 875–884.

Parsons, A.B., Brost, R.L., Ding, H., Li, Z., Zhang, C., Sheikh, B., Brown, G.W.,

Kane, P.M., Hughes, T.R., and Boone, C. (2004). Integration of chemical-ge-

netic and genetic interaction data links bioactive compounds to cellular target

pathways. Nat. Biotechnol. 22, 62–69.

Parts, L., Cubillos, F.A., Warringer, J., Jain, K., Salinas, F., Bumpstead, S.J.,

Molin, M., Zia, A., Simpson, J.T., Quail, M.A., et al. (2011). Revealing the ge-

netic structure of a trait by sequencing a population under selection. Genome

Res. 21, 1131–1138.

Peter, B.M., Huerta-Sanchez, E., and Nielsen, R. (2012). Distinguishing be-

tween selective sweeps from standing variation and from a de novo mutation.

PLoS Genet. 8, e1003011.
744 Cell Reports 21, 732–744, October 17, 2017
Rouzine, I.M., and Coffin, J.M. (2005). Evolution of human immunodeficiency

virus under selection and weak recombination. Genetics 170, 7–18.

Sadhu, M.J., Bloom, J.S., Day, L., and Kruglyak, L. (2016). CRISPR-directed

mitotic recombination enables genetic mapping without crosses. Science

352, 1113–1116.

Schiffels, S., Szöllosi, G.J., Mustonen, V., and Lässig, M. (2011). Emergent

neutrality in adaptive asexual evolution. Genetics 189, 1361–1375.

Selmecki, A.M., Maruvka, Y.E., Richmond, P.A., Guillet, M., Shoresh, N., Sor-

enson, A.L., De, S., Kishony, R., Michor, F., Dowell, R., and Pellman, D. (2015).

Polyploidy can drive rapid adaptation in yeast. Nature 519, 349–352.

Stephens, P.J., Greenman, C.D., Fu, B., Yang, F., Bignell, G.R., Mudie, L.J.,

Pleasance, E.D., Lau, K.W., Beare, D., Stebbings, L.A., et al. (2011). Massive

genomic rearrangement acquired in a single catastrophic event during cancer

development. Cell 144, 27–40.

Toprak, E., Veres, A., Michel, J.-B., Chait, R., Hartl, D.L., and Kishony, R.

(2011). Evolutionary paths to antibiotic resistance under dynamically sustained

drug selection. Nat. Genet. 44, 101–105.

Venkataram, S., Dunn, B., Li, Y., Agarwala, A., Chang, J., Ebel, E.R., Geiler-Sa-

merotte, K., Hérissant, L., Blundell, J.R., Levy, S.F., et al. (2016). Development

of a comprehensive genotype-to-fitness map of adaptation-driving mutations

in yeast. Cell 166, 1585–1596.e22.

Zhu, Y.O., Siegal, M.L., Hall, D.W., and Petrov, D.A. (2014). Precise estimates

ofmutation rate and spectrum in yeast. Proc. Natl. Acad. Sci. USA 111, E2310–

E2318.
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Supplemental Experimental Procedures

1 Experimental methods

1.1 Random and targeted clone isolation

We isolated ancestral and evolved individuals from representative selection experiments to charac-
terize their individual genome sequences and their fitness. Each sample underwent serial dilution
to attain a single-cell bottleneck. We isolated individuals from both ancestral populations (WAxNA
F12 1 YPD, WAxNA F12 2 YPD) and 6 evolved populations (WAxNA F12 1 HU 2, WAxNA F12
1 HU 3, WAxNA F12 2 HU 3, WAxNA F12 1 RM 3, WAxNA F12 1 RM 4, WAxNA F12 2 RM
2) to measure the initial and final fitness distribution. 96 colonies were randomly picked from each
population to span a range of fitness. We measured their growth rate using the high-resolution
scanning platform described in ‘Growth phenotyping’.

Furthermore, we isolated individuals at the fitter end of the fitness distribution, possibly har-
boring driver mutations. Since adaptation to one environment typically results in fitness gains or
losses in other environments, we profiled 96 individuals from each selection experiment with an
array of 6 different environments (YPD, HU at 10 mgmL−1, RM at 0.025 gmL−1, galactose at
2%, heat at 40 ◦C and sodium arsenite at 1.5 mM) to discriminate cells based on their phenotypic
response. After visual inspection of shared effects across environments, we tested genetic markers
by PCR, digestion and targeted resequencing of de novo mutations identified from the genome
analysis of whole populations. In the hydroxyurea experiment, a heterozygous mutation in RNR4

was genotyped by PCR followed by BanI digestion. In the rapamycin experiment, heterozygous
DEP1 and INP54 de novo mutations were genotyped using PCR, followed by AluI digestion and
confirmed by Sanger sequencing in a subset of samples. We chose a total of 44 clones (22 per
environment) for whole-genome sequencing (Table S1).

1.2 Engineered genetic constructs

We selected two genes in which we found putative driver mutations in hydroxyurea (RNR2, RNR4)
and five genes in rapamycin (CTF8, DEP1, FPR1, TOR1, YNR066C), and engineered gene dele-
tions to investigate their phenotypic effect. We also built hemizygous strains to determine the
adaptive value of background variation in putative driver genes, by engineering in or out ancestral
or evolved alleles in opposite backgrounds. For pre-existing variants, the test for reciprocal hem-
izygosity uses one-step PCR deletion with URA3 as a selectable marker. Starting from haploid ver-
sions of the WA and NA strains (either MATa, ho::HygMX, ura3::KanMX or MATα , ho::NatMX,
ura3::KanMX), we deleted the candidate genes and constructed all possible combinations of re-
ciprocal hemizygous strains (Figure S6). The deletion in the haploid strain was confirmed by PCR



and then crossed with the opposite mating type to generate the hemizygous hybrid strains. To test
driver de novo mutations, we engineered reciprocal hemizygous deletions for two clones carry-
ing the same background allele with heterozygous de novo mutations in RNR2 and TOR1. The
gene deletion was performed using the dominant selectable marker NatMX and we used Sanger
sequencing to identify the deleted allele (wild-type or mutated copy).

1.3 Genetic cross

We sought to measure the fitness contributions of pre-existing and de novo mutations using a library
of recombinant genomes. To do so, we designed a genetic cross where both ancestral and evolved
genetic backgrounds were re-shuffled in new combinations and tested for fitness with and without
drugs. The genetic cross included the parents, ancestral and evolved isolates. The WA and NA
haploid parents were used in MATa, ura3 and MATα , lys2 configurations. We derived haploid
lines by sporulation on KAc medium from the ancestral and evolved clones. Only tetrads with four
viable spores were chosen for continuation in the experiment. Spores were genotyped for mating
type (MATa, MATα) using tester strains and for auxotrophies (ura3, lys2) by plating on dropout
medium. We chose spores from tetrad configurations with the mating marker co-segregating as
MATa, ura3 or MATα , lys2, allowing a systematic cross between all strains of opposite mating
type. We then determined whether each spore inherited the wild-type or the mutated allele by
Sanger sequencing of the candidate gene.

Eight ancestral haploid segregants (4 MATα , lys2 and 4 MATa, ura3) were randomly isolated
from the ancestral population. For the hydroxyurea environment, we probed individually beneficial
de novo mutations in RNR2 (Y169H) and RNR4 (R34I), which reside on different chromosomes
of the S. cerevisiae genome. The RNR2 mutant was isolated from WAxNA F12 1 HU 3 (clone
C3) and the RNR4 mutant from WAxNA F12 2 HU 1 (clone C1) at t=32 days. For rapamycin,
three evolved clones isolated at t=32 days were used: one clone with no identifiable driver from
WAxNA F12 2 RM 2 (clone C1), a homozygous FPR1 mutant (W66*) from WAxNA F12 2 RM 1
(clone C3); and a heterozygous TOR1 mutant (W2038L) from WAxNA F12 1 RM 2 (clone C3).
For the hydroxyurea experiment, 21 tetrads were taken for crossing (12 for RNR2 and 9 for RNR4)
resulting in 84 spores. For the rapamycin environment, 25 tetrads were used (1 without driver,
4 for FPR1, 20 for TOR1), resulting in 100 spores.

A genetic cross of size 48×48 in hydroxyurea yielded 2,304 hybrids, and 56×56 in rapamycin,
giving 3,136 hybrids. We performed the genetic cross using the Singer RoToR HDA robot on
YPD plates (see ‘Media composition’). Subsequently, the hybrid populations were grown for two
rounds on minimal medium to ensure colonies of solely diploid cells and avoid haploid leakage.
A small number of crosses were not successful due to mating inefficiency or slow growth (56 in
hydroxyurea and 654 in rapamycin), leaving a total of 2,248 and 2,482 hybrids, respectively. This



was due to mistyping of the mating locus in one FPR1 spore and three TOR1 spores, which were
excluded together with their derived hybrids. Phenotypic measurements of the crosses were carried
out using the high-throughput method of yeast colony growth described in ‘Growth phenotyping’.

1.4 Luria-Delbrück fluctuation assay

We performed a fluctuation test to determine the rate of loss-of-heterozygosity (LOH) in different
backgrounds, by following the loss of a heterozygous URA3 marker that results in 5-FOA resistant
colonies (Lang and Murray, 2008; Luria and Delbrück, 1943). In all strains tested the URA3 gene
was deleted from its native location in chromosome V and inserted in the lys2 locus (lys2::URA3)
in chromosome II (∼470 kb). This genotype is the same used in the crossing phase and therefore
shared by all individuals in the population. Our system does not have dedicated markers to dis-
tinguish different mechanisms leading to LOH but instead gives an aggregate measurement of the
total LOH rate at the URA3 locus (Figure 5B). The strains were first patched in dropout medium
minus uracil and then streaked for single colonies in plates with YPD or YPD supplemented with
the drugs (HU at 10 mgmL−1 or RM at 0.025 gmL−1). Colonies were grown for 3 days at 30 ◦C.
Cells were resuspended in water and cell concentration was measured by flow cytometry to obtain
a correct dilution factor in the subsequent plating. Cells from each replicate were plated in YPD
to determine the total number of colony-forming units (CFUs), and in 5-FOA plates (1 gL−1) to
count the number of URA3-defective CFUs. For each genetic background, we confirmed the loss
of the URA3 marker in 96 colonies by diagnostic PCR. Four replicates per experiment were used
to determine the LOH rate.

To ensure the absence of meiotic spores we inspected ∼100 cells per sample. This control
was introduced for two reasons. First, the NA parent is a very fast and efficient sporulator (Gerke
et al., 2006). We observed the induction of meiosis even without the specific KAc environmental
signal required in the laboratory strain S288C (and its derivatives) to initiate sporulation. Second,
rapamycin has been shown to promote sporulation by modulating the nutrient sensing pathway
(Zheng and Schreiber, 1997). In contrast, hydroxyurea is a very potent meiotic inhibitor. We did
not observe fully formed meiotic spores throughout the experiment, though we cannot exclude
that meiotic events before the meiotic commitment point (e.g. double-strand breaks) may have
occurred that could affect the LOH rate. Therefore, whilst meiotic sporulation can play an adaptive
role to reveal recessive mutations (Figure 5), it is most likely neutral on its own in both stress
environments.

1.5 Growth phenotyping

To carry out phenotype measurements we used a high-resolution scanning platform, Scan-o-matic,
to monitor growth in a 1,536-colony design on solid agar medium (Zackrisson et al., 2016). Solid



media plates designed for use with the Singer RoToR HDA robot (Singer Ltd) were used through-
out the experiment. Casting was performed on a leveled surface, drying for ∼1 day. We designed
a randomized experimental layout by distributing genotypes of interest over 1,152 positions across
each plate, keeping every fourth position for 384 controls used for removal of spatial bias. Controls
were interleaved in the pre-culture step using a custom-made RoToR pinning program.

We recorded phenotypic measurements using high-quality desktop scanners (Epson Perfec-
tion V700 PHOTO scanners, Epson Corporation, UK) connected via USB to a standard desktop
computer. Scanner power supplies were separately controlled by power managers (GEMBIRD
EnerGenie PowerManager LAN, Gembird Ltd, Netherlands) that immediately shut down the scan-
ner lamp between scans. Images were acquired using SANE (Scanner Access Now Easy). We
performed transmissive scanning at 600 dpi using 8-bit grey scale, capturing four plates per im-
age. Plates were fixed by custom-made acrylic glass fixtures. Orientation markers ensured exact
software recognition of fixture position. Each fixture was calibrated by the scanner using a calibra-
tion model that provided positions for each feature of the fixture, relative to its orientation markers.
Pixel intensities were normalized and standardized across instruments using transmissive scale cal-
ibration targets (Kodak Professional Q-60 Color Input Target, Kodak Company, USA). Scanners
were maintained in a high-humidity environment at 30 ◦C (incubation room) and kept covered in
custom-made boxes during experiments to avoid light influx and minimize evaporation.

Experiments were run for 3 days and scans were continuously performed every 20 minutes.
Each image stack was processed in a two-pass analysis. The first-pass was performed during im-
age acquisition and was responsible for setting up the information needed for growth estimations.
Positions in each image were matched to the fixed calibration model using the fixture orientation
markers, allowing detection and annotation of plates and transmissive scale calibration strips. In the
second-pass analysis, images were segmented to identify the location of the plate and the transmis-
sive scale calibration strip. The calibration strips were trimmed and the pixel intensities compared
to the manufacturer’s supplied values, such that normalized pixel values remained independent of
fluctuations in scanner properties over time and space. The colonies were detected using a virtual
grid across each plate based on pinning format, and the grid was adjusted for the intersections to
match the center of the features detected. At every intersection, each colony and the surrounding
area were segmented to determine the local background and pixel intensities. Differences in pixel
intensity were converted to population size estimates by calibration to independent cell number
estimates (spectrometer and FACS). Based on these, we obtained growth curves in physical units.

Raw measurements of population size n(t) were smoothed in a two-step procedure. First, a
median filter identified and removed local spikes in each curve. Second, a Gaussian filter reduced
the influence of remaining local noise. Since we expect a population to double in size during the
average time taken to progress through the cell cycle, we use an exponential growth model defined



as n(t) = n(0)eλ t , where λ is the absolute growth rate. If the time that has passed is exactly the
doubling time τ , it is trivial to show that within this time span the growth rate can be rewritten as
λ = ln2

τ
. It then follows that the absolute growth rate λ can be obtained from the linear fit of any

two log-transformed measurements of n(t) in exponential phase, according to λ =
lnn(t f )/ lnn(ti)

t f−ti
.

Therefore, we define the absolute growth rate as the maximum rate during exponential phase,
which we estimate by the steepest slope using local regression over five consecutive measurements
of n(t). For quality control, the residuals of the model are then used to determine goodness-of-fit
and to flag growth curves suspected to be of poor quality, which are visually inspected for artefacts.
Rejection rates averaged approximately 0.3% across experiments.

To account for systematic errors, we used an isogenic control at every fourth position in each
plate. The fitter of the two parental strains (NA) was chosen as the isogenic control to ensure
sustained and reproducible growth across the plate that would enable us to subtract systematic
errors. We defined a two-dimensional reference matrix of the 384 controls (on each 1,536 plate)
to correct for structured spatial bias in growth rate estimates. Controls with extreme values were
removed and the remaining control positions were used to interpolate a normalization surface.
This surface was first smoothed with a kernel filter to exclude any remaining noisy measurements,
and then by Gaussian smoothing to soften the contours of the landscape. For a colony measured
at position (i, j), the absolute growth rate was rescaled by taking the log-transformed difference
between the observed estimate and the growth of the normalization surface, i.e. the relative growth
rate is then λi j→ log2

λi j
λ norm

i j
.

1.6 Media composition

During the crossing phase, the cells were expanded and maintained in YPD medium (1% yeast
extract, 2% bacto peptone, 2% D-glucose and 1.7% agar). WAxNA F1/F11 populations were sporu-
lated in solid KAc medium (2% potassium acetate and 2% agar). WAxNA F2/F12 populations were
then selected in minimal medium lacking uracil and lysine (0.67% of yeast nitrogen base (YNB),
2% glucose and 0.2% of dropout mix minus uracil and lysine). The selection phase of the experi-
ments was carried out in YPD medium supplemented with the drug. All selection experiments with
drugs (as well as follow-ups) used media supplemented with hydroxyurea (HU) at 10 mgmL−1 or
rapamycin (RM) at 0.025 gmL−1, supplied by Sigma-Aldrich.

As part of the follow-up assays, we used antibiotic resistance as a selectable marker to engi-
neer gene deletions and build hemizygous strains, plating in YPD supplemented with the corre-
sponding antibiotic (see ‘Engineered genetic constructs’). We supplemented YPD medium with
nourseothricin (Nat) at 100 gmL−1, hygromycin B (Hyg) at 200 gmL−1 and G418 at 400 gmL−1.
Transformations of reciprocal hemizygous strains also relied on URA3 as a selectable marker and
were plated in minimal medium lacking uracil (0.67% YNB, 2% glucose and 0.2% dropout mix mi-



nus uracil). The fluctuation assay was carried out in YPD, or YPD supplemented with the drug (see
‘Luria-Delbrück fluctuation assay’). Colonies defective in the URA3 allele were selected in 5-FOA
plates (YPD medium supplemented with 5-fluoroorotic acid at 1 gmL−1). In the genetic cross, the
clones used were sporulated in solid KAc medium described above (see ‘Genetic cross’). Hap-
loid strains were derived from dissected spores and genotyped for their mating type, URA3/LYS2

auxotrophies and known de novo mutations. Strains were crossed in YPD and selected in minimal
medium depleted of uracil and lysine.

Growth phenotyping was performed on solid medium using Singer PlusPlates (Singer Ltd).
Each plate was cast with 50 mL of synthetic complete (SC) medium, composed of 0.14% YNB,
0.5% ammonium sulphate, 0.077% Complete Supplement Mixture (CSM, ForMedium), 2% (w/v)
glucose and pH buffered to 5.8 with 1% (w/v) succinic acid. The medium was supplemented with
20 gL−1 of agar. Due to the need for quantitative measurements we chose SC over YPD medium
for phenotyping. Measurements in SC and YPD should be comparable since both environments
are nutrient rich, though we cannot exclude potential interactions of SC or YPD with the different
drugs. However, we deemed the potential error associated with this difference in medium to be
substantially less than the error due to systematic biases when using YPD for high-throughput
phenotyping (see ‘Growth phenotyping’).

2 Theory and data analysis

2.1 Sequence analysis

Short-read sequences were aligned to the S. cerevisiae S288C reference genome (Release R64-
1-1, downloaded from the Saccharomyces Genome Database on February 5, 2011). Sequence
alignment was carried out with Stampy v1.0.23 (Lunter and Goodson, 2011) and local realignment
using BWA v0.7.12 (Li and Durbin, 2009). After removing PCR duplicates, the median genome-
wide DNA coverage was 94× across whole-population samples, 23× across ancestral isolates and
30× across evolved isolates (ranging from 9× to 150×; first quartile 24× and third quartile 91×).

We detected single-nucleotide variants where the WA and NA parents differ, which comprises
the background variation segregating in the cross (52,466 sites). We obtained allele counts on these
loci using GATK UnifiedGenotyper v3.5-0-g36282e4 (DePristo et al., 2011). These counts were
polarized to report WA alleles at each locus, as neither of the parents is the reference genome. The
allele counts for segregating variants were first processed using the filterHD algorithm, which takes
into account persistence along the genome due to linkage and allows for jumps in allele frequency
if there are emerging subclones in the populations.

To detect de novo mutations we used three different algorithms: GATK UnifiedGenotyper v3.5-
0-g36282e4 (DePristo et al., 2011), Platypus v0.7.9.1 (Rimmer et al., 2014) and SAMtools v1.2-10



(Li, 2011). We focused on single-nucleotide variants (SNVs) and small insertions and deletions
(indels). We first performed calling of both SNVs and indels for all ancestral isolates, evolved
isolates and the parents. Using BCFtools (Li, 2011), we subtracted parental variation from all
derived samples (ancestral and evolved), and excluded variation found in ancestral isolates from
all evolved samples to account for segregating variation that was missed. We then required to see
a given variant in more than six reads, be covered by more than ten reads and pass the default flags
for the algorithms. For clonal isolate sequences, we further required that only a single alternative
allele is observed. We then used GATK UnifiedGenotyper to genotype variants identified by at
least two of the algorithms. For whole-population sequences, we allowed calls reporting more
than one allele and we changed Platypus filtering to allow also ‘allele bias’ calls. To detect allele
frequency changes over time, we only considered loci where the minimum variant allele count
across time points was less than two and the maximum more than six reads. To avoid an increase
of false positives in whole-population samples, we used more stringent filters on mapping and
base quality biases and goodness of fit than for isolate samples. This is particularly important in
complex regions where subclonal heterogeneity (e.g. due to variation in copy number) could cause
difficulties in calling mutations. Finally, to increase our sensitivity of detection of putative de novo

variants in recurrent target genes, we kept mutations in CTF8, RNR2, RNR4, FPR1 or TOR1 that
were only called by a single algorithm.

2.2 Genome-wide scan of pre-existing variants under selection

We observed patterns of selective sweeps when a driver allele with a significant fitness advantage
starts to gain in frequency due to the selective pressure applied (Figures 2 and S2). This movement
also causes allele frequency changes at nearby loci containing passenger alleles that are genetically
linked with the driver, in a process called genetic hitchhiking.

To discern drivers and passengers, we consider a model of a population evolving in a regime of
strong selection, where there is a favored allele (driver) at locus i, and a set of linked passengers.
We have previously developed a computational approach to analyze selection acting on pre-existing
genetic variation that results from a cross (Illingworth et al., 2012). Genetic drift plays a negligible
role for allele frequency changes in the selection phase as the population size (∼107 cells) is much
larger than its duration (∼54 generations). Therefore, we can assume that the allele frequencies
change deterministically and the remaining noise is due to sampling caused by finite sequencing
depth.

A selective sweep is then well approximated by a model of the frequency xWA
i of the WA allele

at locus i which satisfies the logistic equation,

dxWA
i

dt
=

σi

2
xWA

i (1− xWA
i ). (S1)



The frequency of the NA allele at locus i is xNA
i = 1− xWA

i . Here, the selection coefficient σi is
the fitness difference f WA

i − f NA
i between the alleles, and the pre-factor reflects a diploid popula-

tion with additive selection. This growth model is a deterministic approximation to the stochastic
evolution of xi(t), which is commonly described by the Wright-Fisher model with directional se-
lection.

To account for the effects of linkage between mutations, we consider a model with two alleles
possible at each locus, in which the driver mutation is at locus i and passengers at loci j. We refer
to the two alleles at the i locus as a∈{WA, NA}, and the alleles at the j loci as b∈{WA, NA}.

According to our model, the dynamics of passenger alleles are fully specified by the motion
of the local driver. The effect of the selected allele on existing variation at a passenger locus j is
given by

xb
j(t) = ∑

a∈{0,1}
xa

i (t)
xab

i j (t0)

xa
i (t0)

, with j 6= i (S2)

where the two-locus haplotype frequency is xab
i j (t0) = xa

i (t0)x
b
j(t0)+ (−1)a+bDi j, and Di j denotes

linkage disequilibrium.
We note that due to short-read sequencing of a mixed population we cannot directly measure

the two-locus haplotype frequency xab
i j or linkage disequilibrium Di j, but we can parameterize Di j

in terms of the recombination which took place during the crossing phase. After Nc generations
of sexual recombination, linkage disequilibrium is given by Di j(t) = (1−ρtot)

NcDi j(t0), where the
total recombination rate depends on the distance between the loci ∆i j in base pairs (bp) and the
local recombination rate ρ in units of bp−1 gen−1.

Therefore for a given driver locus and a set of passengers the model is fully specified by the
strength of selection, the pairwise linkage structure (or recombination landscape), and allele fre-
quencies at both driver and passenger loci at t=0 days.

We learn these parameters via a maximum likelihood approach with a binomial noise model
accounting for sequencing noise. We would like to carry out a systematic driver scan, rather than
using a search heuristic for proposing candidate driver locations. To achieve this, we first param-
eterized the linkage structure with a recombination landscape inferred for this cross in a separate
study (Illingworth et al., 2013), avoiding the need to estimate a local recombination rate from allele
frequency changes. Secondly, we use the posterior mean of the allele frequency at t=0 days, as
obtained with the filterHD algorithm, to fix the initial condition. Setting the initial frequency fac-
tors out any frequency deviations of either allele that took place during the crossing phase, which
are due to selection on differential mating efficiency. As a result, for each driver-passenger model
we only need to learn the strength of selection and we can therefore systematically scan through
each of the 52,466 segregating sites, testing the alleles at each locus to be under selection. The



resulting log-likelihood score is compared to a null model where selection on the driver locus is
set to zero. This null model corresponds to no frequency changes during the experiment and does
not have any parameters to be learned.

We performed a systematic driver scan including passengers within variable window sizes
± 2 kb, 5 kb, 10 kb, 30 kb, 50 kb. Emerging subclones result in global allele frequency changes
that supersede the local signal, which is the hallmark of selection acting on pre-existing variation.
In consequence, we only considered time points when populations had not yet become clonal, up
to t=4 days. For each scan we selected the top 200 loci (out of 52,466) and then required that
a given window was identified to be among the top scoring ones in at least two populations. The
remaining windows were merged if their passenger loci overlapped. Finally, we required that the
region was not identified among those scoring highly in the control environment.

The scan identified a region of interest for rapamycin resistance, found in chromosome VIII
(460–490 kb) as discussed in the main text. The signal is visible in all rapamycin populations but
not in the control. However, we were not able to localize it fully due to a low recombination rate in
this region and possibly also caused by the presence of multiple drivers. The top hits with different
passenger window sizes show substructure in terms of peak location. Smaller windows contain
multiple peaks, which then get merged to single peaks in larger windows. We note that theoretically
the passenger window size should not matter provided the linkage model is adequate and there are
no multiple drivers affecting the passenger dynamics. In summary, the region as a whole has strong
support across populations to contain pre-existing variation where NA allele(s) are beneficial in
rapamycin, albeit we cannot statistically map the signal more finely. We followed up two candidate
genes in the region (CTF8 and KOG1), and we validated CTF8 to have a resistance phenotype (see
‘Validation of putative driver genes’). KOG1, which is part of the target-of-rapamycin (TOR)
pathway, harbors pre-existing missense variants in the population and is thus a plausible target of
selection. We did not find regions that replicated across all populations in hydroxyurea.

2.3 Reconstruction of subclonal composition

In the late stages of the selection experiment we identified global allele frequencies changes of
pre-existing, segregating variants caused by one or multiple de novo mutations (or a particularly
favorable combination of the background variation itself) in subclones that are under positive selec-
tion. During the selection phase, which is asexual, mutations in the genome of a cell are physically
linked. Thus after a cell acquires a beneficial de novo mutation this can outweigh all its back-
ground variants, which become passengers (they may of course contribute to the fitness of that
cell as well). At the genomic level, such an expanding subclone leaves a large imprint on the data
at polymorphic sites, with long-range correlations reflecting the genotype of the cell hit by the
beneficial de novo mutation. This signal with global, long-range correlations and sudden jumps



corresponding to the expanding genotype is qualitatively different from the signal resulting from
the localized sweep picture discussed in the previous section.

In this section, we describe how we extend and use the cloneHD algorithm (Fischer et al., 2014)
to reconstruct the emerging subclone dynamics in a cell population. The cloneHD algorithm was
developed to explain data from short-read DNA sequencing experiments of mixed cell populations
(read depth and variant counts) under the following assumptions: (i) The cells evolve asexually
(without recombination). This ensures that there are long-range correlations along the genome,
which can, in principle, be reconstructed from short-read data. (ii) The population consists of a
mixture of subclones, i.e. groups of genetically identical cells. The total number of subclones
and their relative fractions in the population are unknown. The number of subclones, which can
be reconstructed from real data, is small and depends on how different they are and what their
population fractions are. (iii) Each subclone carries a unique copy number profile and genotype.
Both of which are unknown. (iv) There is a distinct bulk component of the population which differs
from the subclones, e.g. by having a different set of genotypes. Its fraction is also unknown.
(v) When several samples are jointly analyzed, the same subclonal populations are assumed to be
present in all samples. However, their frequencies in some of the samples can be zero.

Previously, cloneHD was used to explain subclonal heterogeneity found in human cancers.
With a few extensions, this methodology can also be used for the yeast evolution experiment stud-
ied here. After the crossing phase, the populations evolve asexually under selective pressure. The
rounds of crossing of the two original strains have produced a diverse pool of recombinants, where
the genotype of each cell is – for all practical purposes – unique. This ancestral population of
diploid cells is modeled here as the bulk component. Its allele frequency profile can be seen in
Figures 2 and S2.

At the later stages of the evolution, a small number of individual yeast cells start to outgrow the
rest of the population, maybe due to a beneficial combination of pre-existing variation or due to
de novo mutations. These cells grow clonally to measurable fractions of the population and leave
their fingerprint in the allele frequency profile genome wide. In the extreme case, a single cell
grows clonally to take over the entire population and its individual genotype that can be directly
observed in the sequencing data. In the general case, there will be a mixture of subclones and bulk
population as described above. As an added complication, subclone copy number profiles need not
be pure diploid.

This scenario is already covered in principle in the model underlying cloneHD (see Section 4
in the Supplemental Information of Fischer et al. (2014)). In the current study, the population is
sequenced at several time points such that there are multiple related samples available for inference

http://www.sanger.ac.uk/science/tools/clonehd


with cloneHD. For the read depth Nt
i at locus i and time point t, the emission probability is

Nt
i ∼ Pois

(
Nt

i |Mt 〈c〉ti
)
, (S3)

with 〈c〉ti ≡ c0 (1−F t)+
n

∑
j=1
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where Mt is the mean sequencing depth per haploid DNA, ct
i j is the total copy number of subclone j

at locus i, c0 is the total copy number of the reference compartment (2 for diploid) and f t
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∑
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gi j f s
j (S6)

where gi j is the genotype of subclone j at locus i and xt0
i is the initial allele frequency spectrum.

The only substantial difference to the situation in the cancer setup is that here the genotype of a
particular subclone j is persistent across large regions of the yeast genome, reflecting the haplotype
structure resulting from the cross. In cancer, these correlations along the genome are missing since
the aforementioned model is only applied to somatic point mutations which occur randomly along
the genome. Altogether, the subclonal structure of the yeast cell populations can be reconstructed
with cloneHD in cna+snv mode, where both the CNA and SNV data are modeled with persistence
along the genome. The rest of the cloneHD workflow fully applies. First, the read depth and the
allele frequency data are analyzed with filterHD, thus finding a segmentation of both data tracks
for all samples jointly (in later stages subclones are larger and the transition points become more
prominent). This information and the initial allele frequency profile xt0

i are provided to cloneHD
together with the read depth and pre-existing variant allele data in cna+snv mode. The maximum
likelihood set of subclonal genomes (including their copy number profiles and genotypes) and their
cell fractions is then found by cloneHD at each time point. Figure S1 shows the general setup and
the cloneHD reconstruction for simulated data in one population.

We assessed the ability of our algorithm to recover several features of interest from simulated
jump-diffusion processes over a range of plausible parameters. For each parameter set, we simu-
late a 1 Mb region with L=10,000 observations and 60 reads per locus on average, then compute
maximum likelihood estimates using different numbers of subclones. Our choice of jump proba-
bility for simulated data is set to 4× 10-5 per base. This reflects the size of linkage blocks with
plausible recombination scenarios during crossing. The clones are added in a chosen background



assuming the bulk has reached a steady profile. We would like to reconstruct three features: (i) the
total number of subclones, (ii) their subclonal frequency, and (iii) obtain posterior estimates of
subclonal genotypes.

The maximum-likelihood estimates of the subclonal fractions are approximately equal to the
true values. The reconstruction is shown in Figure S1B as a black solid line, which is the cloneHD
solution for the mean posterior SNV emission rate. We can recapitulate the correct number of
breakpoints and their location. The fidelity of our reconstruction to the true subclonal genotype
is corroborated by the close correlation between our estimates from whole-population sequencing
and the true genotypes derived from clonal isolates.

2.4 Subclonal dynamics resolved by whole-population genome sequencing

To reconstruct the subclonal composition of each WAxNA replicate from whole-population se-
quencing, we used cloneHD providing the jumps found by filterHD and the posterior mean allele
frequencies of the ancestral population to act as a bulk component for the inference (see ‘Recon-
struction of subclonal composition’). We used cloneHD in snv mode, as visual inspection did not
reveal copy-number aberrations from whole-population sequencing. For each population, we sys-
tematically tested 0–4 subclones and determined the total data likelihoods under each model. The
number of subclones per population are summarized in Table S1, together with the time evolution
of subclone frequencies in Figure S3. We required a log-likelihood gain greater than 20,000 units
for the inclusion of an additional subclone. This conservative cut-off only allows genome-wide
signals to be associated with a subclone. This is necessary as the bulk component of the pop-
ulation can also change throughout the experiment. This prevents that, with a less conservative
cut-off, other solutions would be favored that would introduce artifactual subclones with suitable
genotypes to improve fits in regions where selection acts on the bulk (see ‘Genome-wide scan of
pre-existing variants under selection’).

To ascertain the expansion of subclones throughout the experiment, we determined the al-
lele frequency of de novo mutations in WA, NA and WAxNA populations during the selection
phase from whole-population sequencing. We found that these mutations typically did not reach
detectable frequency (i.e. between 1–5%) until more than 8 days had passed, with steady in-
creases thereafter (Figures S3 and S4). Across populations, we found 66 point mutations by whole-
population sequencing spanning 41 unique loci, out of which 50 fall onto coding sequence. These
loci contain 32 functional driver mutations: 4 in RNR2, 10 in RNR4, 11 in FPR1, and 7 in TOR1.
This includes two tri-allelic loci: one corresponding to FPR1 driver mutations W66* and W66S,
and another to a SNV and an insertion in FPR1.



2.5 Adaptive de novo mutations and genomic instability in clonal isolates

Overall, we identified 91 SNVs and indels in 173 ancestral haploid isolates, and 140 SNVs and
indels in 44 evolved diploid isolates. We detected 82 SNVs and 1 insertion across 22 evolved
isolates in hydroxyurea (range 1–8 per isolate), containing 10 adaptive mutations in RNR2 and 12
in RNR4 (Figure 4A). There were 56 SNVs and 1 deletion across 22 evolved isolates in rapamycin
(range 0–6 per isolate), which contained 8 adaptive mutations in FPR1 and 5 in TOR1 (Figure 4B).
33 out of 36 mutations detected by whole-population sequencing across WAxNA populations could
be found in clonal isolates. All de novo driver mutations found by clone sequencing were confirmed
by targeted Sanger sequencing. Assuming the ancestral genomes to have passed through ∼150
generations during the crossing phase, we estimated a point mutation rate µ = 2.89× 10−10 per
base per generation; and similarly for evolved genomes going through ∼54 generations in the
selection phase (µ = 5.32×10−9 bp−1 gen−1). We detected two instances of cross-contamination
between populations, so the derived events in clones isolated from these populations are valid to
estimate the mutation rate but should not be counted to have arisen independently.

Sequence analysis revealed that 3 out of 4 unique variants in RNR2 (N151H, E154G and
Y169H) and 2 out of 3 unique variants in RNR4 (R34G/I) mapped to a conserved domain of the
ribonucleotide-diphosphate reductase small chain. FPR1 mutations occurred at W66, either intro-
ducing a premature stop codon or changing to serine. Previous studies indicate that the majority
of non-synonymous changes in FPR1 affect protein stability (Koser et al., 1993). Furthermore, the
premature stop at W66 truncated the residue required for rapamycin binding (Y89). We observed
clones carrying the W66* mutation selected multiple times from the same founder population in-
dicating a pre-existent individual carrying a heterozygous mutation and independent LOH events
that render the loss-of-function mutation homozygous (Figure 4B). All five driver SNVs in TOR1

(S1972I/R, W2038L/C and F2045L) mapped to the FKBP12-rapamycin-binding (FRB) domain,
which is∼100 aa long, providing a mechanistic explanation of the drug resistance (Figure 4B). Pre-
vious studies have found dominant mutations in S1972 and equivalent mutations in the mammalian
TOR (mTOR) have a similar effect on drug binding. Substitutions at W2038 with a similar dom-
inant effect are equivalent by homology to those previously described in TOR2 (W2042) (Lorenz
and Heitman, 1995).

To identify copy-number aberrations from clone sequencing, we segmented the coverage depth
as a function of genomic position with cloneHD. We found one copy number gain (n>2n) of chro-
mosome IX in ancestral haploid isolates. Evolved diploid isolates accrued copy number gains
(2n>3n) in chromosomes VIII, IX and X in hydroxyurea and chromosome IX in rapamycin, as
well as whole-genome copy loss (2n>n) in rapamycin.

Using background variants as markers, we could detect mis-segregation of chromosomes lead-
ing to loss-of-heterozygosity. The presence or absence of the WA or the NA allele provides a



robust signal of heterozygosity or LOH that is not affected by sampling noise in coverage. We
used cloneHD to genotype the sequenced isolate samples at segregating sites. We then grouped
isolate sequences by subclone lineage, requiring at least 80% genotype similarity to belong to the
same lineage. In hydroxyurea, this resulted in 22 isolates stemming from 8 subclone lineages, with
more than a single isolate each. In rapamycin, 22 isolates were assigned to 4 subclone lineages,
with more than a single isolate each. For each subclone lineage, we inferred its ancestral genotype.
In case of a locus with a unique genotype across all isolates we assigned this to be the ancestral
state. In all other cases we inferred the ancestral state to be heterozygous, as lost alleles cannot be
regained. We then annotated all the isolates from each clone for LOH events. Figure 4 shows the
inferred ancestral genotypes and the derived SNVs, indels, LOH events and copy number variants,
grouped by population and subclone lineage. Whilst we did not find evidence of copy-number aber-
rations to be adaptive, we characterized fitness increases associated with LOH caused by changes
in the allelic state of pre-existing and de novo variants (Figure 3B). To determine the rate of LOH
events, we counted the number of independent events within a chromosome that have led to the
gain or loss of the ancestral allele in the evolved isolate sequences. This estimate is challenging
given that the ancestral states contain both homozygous and heterozygous loci, so that the precise
end points of individual LOH events are uncertain. To obtain a lower bound, we counted whether
any isolate had undergone LOH affecting ≥10 consecutive background variants, for each chromo-
some in each clone. We found 48 events in hydroxyurea and 24 events in rapamycin (6 per genome
per clone). We excluded two haploid individuals from this counting as well as from the length
distribution of homozygosity tracts in Figure 5A.

We compared our genome-wide estimates of the point mutation and LOH rates based on the
mutation counts in clone genome sequences with locus-specific measurements of the LOH rate
using a fluctuation test (see ‘Luria-Delbrück fluctuation assay’). We fitted the fluctuation data to
a model of the Luria-Delbrück distribution. We determined the average number of LOH events
per culture m, such that LOH rate can be estimated by µ = m

N , where N is the average number
of cells per culture. To determine the mean number of LOH events m, we used the probability
generating function of the Luria-Delbrück distribution defined by Hamon and Ycart (2012). In the
control environment, we observed a rate of µ = 2.59×10−5 per generation in the NA background,
consistent with previous reports (Barbera and Petes, 2006). We observed an intermediate rate in
the WA background (µ = 8.01× 10−6 gen−1) and the WAxNA F1 hybrid had an approximately
ten-fold lower rate (µ = 4.01×10−6 gen−1). These data indicate that LOH rates can vary between
genetic backgrounds. There was a sharp increase of LOH rates when colonies were grown in
hydroxyurea, irrespective of the background tested. This finding is consistent with previous studies
in the laboratory strain S288C reporting that replication stress promotes recombinogenic DNA
lesions (Barbera and Petes, 2006). We also observed a background-dependent increase in LOH rate



in the presence of rapamycin, especially in the NA founder. Our estimates of the point mutation
rate based on the mutation counts in ancestral and evolved clones (∼10−10 bp−1 gen−1) and of
the LOH rate based on the fluctuation assay (∼10−5 gen−1), suggest that any recessive genes will
be likely to lose the wild-type allele by LOH. Given that the LOH rate is much higher than the
point mutation rate and it typically affects large regions (100-1,000 kb, see Figure 5A), recessive
mutations can feasibly be ‘rescued’ by LOH.

2.6 Validation of putative driver genes

To test candidate driver mutations, we measured the growth rate of engineered gene deletions
to confirm whether their knockouts are beneficial. We also measured the growth of hemizygous
strains to test allelic differences in driver genes with pre-existing and newly acquired mutations.
The engineered genetic constructs are listed in Supplemental Tables. We performed nr=64 repli-
cate measurements of each construct in two independent runs, which were initiated from a single
pre-culture plate, evenly distributed over 16 experimental plates and simultaneously run in 4 scan-
ners. The growth rate of each of these strains is shown in Figures S7 and S8, labeled by genetic
background b and genotype g.

We deleted one copy of RNR2 in WA and NA diploids and sporulation of these strains re-
sulted in tetrads with two viable spores and two unviable rnr2∆ mutants, indicating that this gene
is essential in both backgrounds. RNR2 is also essential in the laboratory S288C background.
Furthermore, the heterozygous deletions of RNR2 diploids show strong haploinsufficiency for hy-
droxyurea resistance (Figure S7). In contrast to its interaction partner, RNR4 is not essential in
the laboratory background. However, deletion of this gene in diploid WA and NA backgrounds
proved it to be essential in the WA background. The NA strain is viable after deletion, though with
severe growth defects. Diploid hemizygous strains for RNR4 deletions in both backgrounds show
increased sensitivity due to dosage effects (Figure S7).

FPR1 and TOR1 are not essential genes and we performed deletions in both haploids and
diploids. FPR1 directly binds rapamycin inhibiting the TOR pathway and its deletion is highly
resistant (Figure S8). Deletion of one copy of FPR1 does not increase the growth rate in rapamycin,
indicating that both copies of the gene need to be inactivated to drive resistance. Consistently with
this observation, all mutations observed in FPR1 are homozygous. Large colonies in the FPR1

plating assay all acquired double-hit events (de novo SNV or indel plus LOH) that inactivated both
functional copies of the gene (inset in Figure S8). Estimates of the number of colonies for parent
and hybrid backgrounds follow a similar trend to the estimates obtained with the fluctuation test.
In contrast, TOR1 deletion results in high sensitivity to rapamycin and a single deleted copy does
not alter the drug response (Figure S8).

Reciprocal hemizygosity tests in ancestral hybrids confirmed background-dependent effects in



CTF8, with strong positive selection acting on the NA allele as predicted by our model of driver-
passenger dynamics (Figure S8). KOG1, which is a component of the TOR signaling pathway, did
not show any allelic differences but deleting either copy caused haploinsufficiency in rapamycin.
We also deleted either the wild-type or the mutated allele of evolved mutant clones, generating
pairs of clones identical throughout the genome except for the candidate driver mutation. The four
genes harboring de novo driver mutations do not appear to show allelic differences between the
two parental backgrounds as shown by the reciprocal hemizygosity test (Figure S8). No allelic
differences were observed for DEP1, INP54 and YNR066C, which are confirmed as passengers.

2.7 Fitness distribution and population averaging

To characterize the fitness of cells in a heterogeneous population with multiple subclones, i.e.
where several haplotypes may be present, we measured the growth properties of an ensemble of
cells. With an ensemble method, we will typically measure the population average. However, since
we found subclones co-existing, these may be found in states that are far from the population mean.
Hence, we determined the intra-population growth rate of the populations at the start and the end
of the selection phase (Figures 3 and S9). For each population, we estimated the probability distri-
bution P(λ t) of the growth rate λ at time t by sampling nk isogenic individuals. With an ensemble
of nk=96 individuals per time point we took nr=32 replicate measurements per individual. The
replicates were measured in two independent runs, evenly distributed over 16 experimental plates
which were initiated from a single pre-culture plate and run in 4 scanners, all in parallel.

We modeled the probability distribution of the data, {λ t
n}

nk
n=1, as a mixture model of normal

distributions,

P(λ t) =
K

∑
k=1

πkN
(
λ

t |µk,σ
2
k
)
, (S7)

where K is the number of components. We can interpret the mixing coefficients, π , as the bulk
and multiple clonal components. We determined the fraction of cells in the fitter, faster clonal
state(s) and the slower, bulk component by fitting p(λ ) to a mixture of normal distributions with
K ∈ {1,2,3} components. There are 2K+1 fitting parameters, which are learned by maximizing
the likelihood function P(λ t): the component means {µk} and variances {σ2

k }, and the relative
weights between them. In multimodal populations, the weights are in good agreement with the
average of two consecutive inflection points surrounding the trough between the bulk and the clonal
subpopulations (Figure S9).

2.8 Decomposition of background-averaged fitness effects of mutations

We carried out a genetic cross to reconstruct a fraction of the genotypes that a population can
explore and examined the average mutational effect of beneficial variants in multiple genetic back-



grounds. We isolated isogenic individuals from parents, ancestral and evolved populations. As
described in the ‘Genetic cross’ section, we sporulated these diploid cells and selected haploid
segregants of each mating type (48 in hydroxyurea and 56 in rapamycin), parameterized by an
index a or α . We crossed the MATa and MATα versions to create hybrids. The cross forms a
two-dimensional lattice that is conveniently parameterized by the set of lattice positions (a,α).

We obtained a set of measurements for the growth rate λ of individuals, each of which has a
unique combination of background genotype b, de novo genotype d, sampling time t and auxotro-
phy x. Every haploid genome being crossed is an independent background indexed by b{a,α} =

1,2, . . . ,nb (nb=48 in HU and nb=56 in RM, either a or α), such that reshuffled diploid hybrids
are parameterized by baα . Genetic backgrounds are sampled before the cross (parents), before se-
lection starts at t=0 (ancestral) or after t=32 days (evolved), such that t{a,α} = 1,2, . . . ,nt (nt =2
for the parents; nt =4 at t=0; nt =42 in HU and nt =46 in RM at t=32). We denote de novo geno-
types by d{a,α} = 1,2, . . . ,nd (nd =12 for RNR2; nd =9 for RNR4; nd =1 without driver; nd =4 for
FPR1, nd =20 for TOR1). Haploid spores are auxotroph and segregate with the mating locus, such
that x{a,α} ∈{ura3-, lys2-}, whereas diploid hybrids do not have amino acid deficiencies. To esti-
mate the measurement error, we carried out replicate measurements of each unique spore (nr=12
in HU and nr=6 in RM) and of each hybrid genotype combination (nr=3). Replicates were initi-
ated from the same pre-culture plate, evenly distributed over 32 plates that and run in 4 scanners,
all in parallel.

The data matrix shows the fitness effect of every de novo genotype d at each background b

sampled at time t, averaged over measurement replicates and measured relative to the ancestral
population (Figure S10). Based on these measurements, we observed that de novo mutations are
beneficial, yet their associations to genetic backgrounds have idiosyncratic effects. The effects
of de novo mutations are mediated by background fitness as evidenced by the large phenotypic
variance. We note that genetic crosses between different backgrounds need not give rise to a ‘sym-
metric’ phenotype data matrix, as we only enforce 2:2 segregation for the mating locus MATa/α .
Whilst background variants will co-segregate with the mating locus, de novo mutations need not.

To examine the average fitness effects of functional genotypes in hydroxyurea (RNR2, RNR4) or
rapamycin (FPR1, TOR1), we calculated an ensemble average of the growth rate λ . The ensemble
average 〈λ 〉 is either taken over single spore backgrounds b{a,α} or pairs of hybrid backgrounds baα

with different degrees of relatedness,

〈λ 〉td{a,α} =
1
nb

nb

∑
b=1

λ
btd
{a,α} and 〈λ 〉tdaα

=
1
nb

nb

∑
b=1

λ
btd
aα , (S8)

where 〈· · ·〉 denotes the mean over genetic backgrounds. We found that, on average, RNR2, RNR4

and TOR1 mutations are dominant and highly penetrant (Figures 6D and 6F). In contrast, FPR1 is
recessive, only increases fitness when the mutation is homozygous and carries a fitness cost in the



absence of rapamycin (Figures 6F and S11D, respectively).
We partitioned the variation in fitness contributed by background and de novo driver mutations

using linear mixed models. To model genetic backgrounds containing beneficial mutations we
need to describe how likely a phenotype is in the presence or absence of any mutation. We re-
stricted our model to pairs of individuals that are not closely related to avoid spurious correlations
by population structure, so we retained ancestral and evolved individuals and excluded the parents.
We are interested in the aggregate effect across all mutations within a spore or hybrid rather than
the effects of individual variants. As the data represents a finite sample from the distribution of all
possible genetic backgrounds, the background contribution to the phenotype is naturally modeled
as a random-effect term (i.e. individual genetic backgrounds are drawn at random from a popula-
tion, and the variance of the underlying distribution is to be inferred). In addition, other systematic
effects that potentially contribute to fitness are modeled as fixed-effect terms: (i) time t when the
individual was sampled, i.e. at t=0 (ancestral) or t=32 (evolved); (ii) de novo driver mutation
status d of the individual, e.g. FPR1 driver mutation in homozygous state; and (iii) auxotrophy,
denoted by x, e.g. ura3- or lys2-. We implemented four nested linear mixed models outlined below.

Model 1 We first considered a model where we only included the background without other
effects. This means that the observed growth rate λb for a background b conditioned on the random
effect taking a value βb is distributed as

λb|B=βb
∼N

(
β0 +βbxb,σ

2
ε

)
, (S9)

where β0 is a shared constant baseline per background that must be inferred, σ2
ε represents mea-

surement noise, xb is an element from the model design matrix (here 1 for each b as they all are
assigned a value). Finally, the background growth rate is distributed as B ∼N

(
0,Σ2) and its vari-

ance Σ2 is a model parameter to be inferred. We note that for each background b we have multiple
measurement replicates of λb. Altogether, Model 1 has three modeling parameters, β0, Σ2 and σ2

ε .

Models 2, 3 and 4 Model 2 includes the same factors as Model 1, but the time of sampling t is
nested as a fixed effect. Model 3 also accounts for de novo driver mutation status denoted by d. In
addition, Model 4 includes a fixed effect accounting for amino acid deficiencies (or auxotrophy),
denoted by x. Altogether the growth rate λbtdx, conditioned on the random effect taking a value βb,
is distributed as:

λbtdx|B=βb
∼N

β0 + βbxb︸︷︷︸
random

+βtxt +βdxd +βxxx︸ ︷︷ ︸
fixed

,σ2
ε

 , (S10)

where βt ,βd,βx are fixed-effect terms to be inferred and xt ,xd,xx are elements of the model design
matrix. Compared to Model 1, Models 2, 3 and 4 have extra parameters βt , βd , and βx. The number



of free parameters depends on how many unique levels each factor contains, e.g. how many driver
mutations are sampled in the experiment.

The likelihood for a data vector λ given the full model (Model 4) can then be written as

P(λ | model) = P
(
λ
∣∣ β0,βt ,βd,βx,Σ

2,σ2
ε

)
= ∏
〈a,α〉

nr

∏
r=1

∫
P
(
λbtdx

∣∣ βb,β0,βt ,βd,βx,Σ
2,σ2

ε

)
×P

(
βb
∣∣ Σ

2 )dβb

where the integrand is the product of the probability density given by Equation S10 and the poste-
rior distribution over the random effects.

Next, we applied all four models to the phenotypes of the genetic cross: a genetic cross based
on hydroxyurea selection, measured in hydroxyurea and a control environment; and a genetic
cross based on rapamycin selection, measured in rapamycin and a control environment, both for
spores and hybrids. We fitted each model using restricted maximum likelihood with the R-package
lme4 (Bates et al., 2015), summarized in Table S2. Using Akaike’s Information Criterion (AIC)
for model selection all conditions had a score supporting Model 4 apart for those selected and
measured in hydroxyurea, where both spores and hybrids supported Model 3. We compared the
fitted and observed values and in all cases the fits were good, as shown in Figure S12 for Model 4.

We can assess the overall goodness-of-fit of the models by the proportion of variance explained.
In particular, we would like to know the contribution of various model components to the overall
fit, and to do so we obtain separate measures for the partial contributions of fixed and random
effects (Gelman and Hill, 2006)

r2 =
σ2

F +σ2
R

σ2
F +σ2

R +σ2
ε

, (S11)

where σ2
R is the variance contribution by random effects, any incremental fixed effect contributes

additively to the fixed-effect variance, s.t. σ2
F = Var(βtxt + βdxd + βxxx), and r2 represents the

proportion of variance explained by the fixed and random effects combined. Dropping the σ2
R term

from the numerator, we can evaluate r2 and the fixed-effects variance r2
F for linear mixed models,

and estimate the background contribution to the variance by r2−r2
F . Then to further assign the

fixed-effect variances to individual variance components shown in Figure 6B, we used the simpler
models and their estimated r2

F . We note that modeling the background component using fixed
effects instead leads to a variance decomposition that is nearly identical to the decomposition with
linear mixed models described here. However, modeling the background as a fixed effect requires
fitting a large number of parameters (one extra parameter per background) and thus describing the
background by random effects is a better model for the data.



Supplemental Figures

Figure S1: Subclonal reconstruction of a simulated example. Related to Figures 2, 3A and 3C. Subclonal reconstruc-
tion for a simulated example of two macroscopic subclones using cloneHD. The physical locations of the segregating sites
are represented along the x axis and the y axis shows the allele frequency at every locus. (A) The true allele frequency of
the bulk (grey) and the true genotypes gi j of two subclones (blue and red) at locus j for the simulated example. (B) Sim-
ulated jumps (subclones) and diffusion (bulk), in the presence of two subclones of size f j =(0.1,0.0) at t0, f j =(0.2,0.1)
at t1 and f j =(0.6,0.2) at t2. The path along the genome is described by a mixture of the two, with jump probabil-
ity p=4×10−5 bp−1, diffusion constant σ =5×10−4, and binomial draws as emissions. The simulated observations are
probabilistically color-coded according to the bulk fraction or each of the subclone fractions. The mean posterior estimate
of the SNV emission in black solid line shows the accuracy of the reconstruction. The pie charts indicate the inferred bulk
and subclone frequency estimates, f̂ j.
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Figure S2: Genome-wide allele frequency changes of pre-existing genetic variation. Related to Figures 2, 3A and 3C.
Time series of genome-wide frequencies of pre-existing, parental variants after t= (0, 2, 4, 8, 16, 32) days, measured by
whole-population sequencing. From top to bottom, replicate populations were evolved in (A) hydroxyurea, (B) rapamycin
and (C) a control environment. Left panels: Chromosomes are ordered along the x axis; the frequency of the WA allele at
locus i, xWA

i , is shown for 52,466 pre-existing variants on the y axis, colored by time point. The reciprocal frequency of the
NA allele is equivalent since xNA

i =1−xWA
i . Allele frequencies are estimated from the mean posterior probability given by

the filterHD algorithm. Pre-existing and de novo driver mutations are highlighted by dashed lines. Right panels: Changes
in the allele frequency spectrum across time.
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Figure S2: (continued)



WA

NA

WA

NA

WA

NA

WA

NA

WA

NA

WANA

Figure S2: (continued)



Figure S3: Subclonal dynamics in WAxNA populations. Related to Figures 3A and 3C. Subclonal dynamics in time
for WAxNA founders evolved in (A) hydroxyurea and (B) rapamycin, measured by whole-population sequencing. Time is
on the x axis, starting after crossing when the population has no competing subclones. Cumulative haplotype frequency of
subclones (bars) and allele frequency of de novo mutants (lines) are on the y axis. The subclone frequencies are inferred
from the frequency of pre-existing variants using cloneHD (see Figure S2). Driver mutations are solid lines and passenger
mutations are dashed lines, colored by subclone assignment; circles and squares denote non-synonymous and synonymous
mutations, respectively. For driver mutations, the mutated gene and codon are indicated above each line. No macroscopic
subclones or de novo mutations were detected in any of the control replicates in YPD.



Figure S4: Subclonal dynamics in WA and NA populations. Related to Figures 3A and 3C. Subclonal dynamics in
time for WA and NA founders evolved in (A) hydroxyurea and (B) rapamycin, measured by whole-population sequencing.
WA founders evolved in hydroxyurea did not survive after t=4 days. Driver mutations are solid lines and passenger
mutations are dashed lines; circles and squares denote non-synonymous and synonymous mutations, respectively. For
driver mutations, the mutated gene and codon are indicated above each line. No de novo mutations were detected in any
of the control replicates in YPD.
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Figure S5: Genetic heterogeneity in sequences of ancestral clonal isolates. Related to Figures 4 and 5A. Whole-
genome sequences of ancestral haploid clones sampled from the WAxNA F12 founder populations, which were obtained
by bulk crossing between the WA and NA parents. Pre-existing and de novo SNVs and indels were detected by whole-
genome sequencing in single-cell clones derived from ancestral populations at t=0 days. Chromosomes are shown on
the x axis; clonal isolates are listed on the left. WA (in blue) and NA (in red) represent haploid genotypes of pre-existing
variants. Individual cells with unique background genotypes carry private de novo SNVs and indels (circles). A copy-
number gain of chromosome IX (n>2n) was also found in clone C50 of WAxNA F12 2 YPD T0 (not shown).
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Figure S6: Strategy for strain construction. Gene deletions were mediated by homologous recombination between the
terminals of the PCR product and the corresponding genomic sequence where the gene to be deleted (‘target’) is encoded.
Blue and red lines indicate WA and NA chromosomes, respectively. Flanking regions in green indicate two different
homologous sequences targeted for recombination, which are 30-40 bp long in S. cerevisiae. (A) Genes of interest were
individually deleted in both WA and NA haploids, resulting in rnr4∆, fpr1∆ and tor1∆ strains in both parental backgrounds.
(B) A similar strategy was used to delete genes in WA and NA homozygous diploids. RNR2 and RNR4 were only deleted
in one allele while there is the wild-type gene remaining in the other allele. (C) Evolved segregants with de novo mutations
were isolated from the WAxNA F12 populations. Using the same strategy, RNR2 or TOR1 mutants could be rid of either
the wild-type allele or the mutated allele. The primer sequences used are listed in Supplemental Tables. (D) We crossed
the strain constructed in (A) with the parental strain with wild-type gene, to obtain strains with deleted genes in WA,
NA homozygous diploid and WA/NA hybrid.



Figure S7: Validation tests for driver mutations in hydroxyurea. Validation tests for driver mutations in hydroxyurea,
measured in SC+HU (left panel) and SC (right panel). The relative growth rate, λbg, of each construct is shown for nr =64
measurement replicates. Genetic constructs are grouped by candidate gene and by background of the construct, where
the background b can be WA, NA (haploid); WA/WA, NA/NA (diploid); WA/NA (hybrid), and the genotype g can be
wild-type for the gene, deleted or hemizygous. Relative growth rates are normalized with respect to the mean population
growth rate 〈λk〉t=0 at t=0 days (see Figures 3B and S9A). Medians and 25%/75% percentiles are shown for each genetic
construct, with medians as horizontal lines and outliers highlighted. The color of each of the boxes reflects the background
(WA and WA/WA, blue; NA and NA/NA, red; WA/NA, purple). Lighter shades indicate a wild-type (WT) control for a
specific background and darker shades are the candidate strains. For a given background, we compared deletion strains
against their respective WT control (e.g. rnr4∆ vs WT in WA background) and hemizygous strains against the equivalent
hemizygous strain where the opposite copy has been deleted (e.g. rnr4∆ WA/RNR4 NA vs RNR4 WA/rnr4∆ NA in WA/NA
background). To test statistical significance we used a non-parametric Wilcoxon rank-sum test. Significance tests between
two strains with p < 10−4 are highlighted with an asterisk.
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Figure S8: Validation tests for driver mutations in rapamycin. Related to Figure 2. Validation tests for driver
and passenger mutations in rapamycin, measured in SC+RM (left panel) and SC (right panel). The relative growth rate,
λbg, of each construct is shown for nr =64 measurement replicates. Genetic constructs are grouped by candidate gene
and by background of the construct, where the background b can be WA, NA (haploid); WA/WA, NA/NA (diploid);
WA/NA (hybrid), and the genotype g can be wild-type for the gene, deleted or hemizygous. Relative growth rates are
normalized with respect to the mean population growth rate 〈λk〉t=0 at t=0 days (see Figures 3D and S9B). Medians and
25%/75% percentiles are shown for each genetic construct, with medians as horizontal lines and outliers highlighted. The
color of each of the boxes reflects the background (WA and WA/WA, blue; NA and NA/NA, red; WA/NA, purple). Lighter
shades indicate a wild-type (WT) control for a specific background and darker shades are the candidate strains. For a given
background, we compared deletion strains against their respective WT control (e.g. fpr1∆ vs WT in WA background)
and hemizygous strains against the equivalent hemizygous strain where the opposite copy has been deleted (e.g. fpr1∆

WA/FPR1 NA vs FPR1 WA/fpr1∆ NA in WA/NA background). To test statistical significance we used a non-parametric
Wilcoxon rank-sum test. Significance tests between two strains with p < 10−4 are highlighted with an asterisk. Visual
inspection of FPR1 heterozygous deletions using a spot assay (inset) manifests the immediate loss of the wild-type allele
by LOH – validated by colony Sanger sequencing –.



Ancestral (t = 0d)

Evolved (t = 32d)

Ancestral (t = 0d)

Evolved (t = 32d)

Ancestral (t = 0d)

Evolved (t = 32d)

Ancestral (t = 0d)

Evolved (t = 32d)

Ancestral (t = 0d)

Evolved (t = 32d)

Ancestral (t = 0d)

Evolved (t = 32d)

Figure S9: Variability in intra-population growth rate and fitness correlations. Related to Figures 3B and 3D.
Fitness correlations of ancestral and evolved populations with and without stress, estimated by random sampling of indi-
viduals at initial (t=0 days, green) and final time points (t=32 days, purple), before and after selection in (A) hydroxyurea
and (B) rapamycin. The relative growth rate λk(t) per individual k is shown, calculated by averaging over nr =32 technical
replicates per individual. The relative growth rates λk(t) in the stress environment (x axis) are compared to the control
environment (y axis). Relative growth rates are normalized with respect to the mean population growth rate 〈λk〉t=0 at t=0
days (see Figures 3B and 3D). Using a Gaussian mixture model, we found the posterior probability of the mixture modes of
the the best-fit mixture (solid lines). The posterior means of the distribution modes are indicated as dashed lines. The fitter
individuals carry driver mutations, as determined by targeted sampling and sequencing. Spearman’s rank correlation, ρ , is
shown on the top right of each panel, to assess the association between the relative growth rate of isolates in the stress and
control environments at t=0 and t=32 days.
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Figure S10: Fitness contribution of genetic background and de novo mutations. Related to Figure 6. Given an
ensemble of nb haploid spores with unique genetic backgrounds (nb=48 in hydroxyurea and nb=56 in rapamycin), every
haploid spore is crossed against itself and all other haploid spores, and the two must be of opposite mating type (MATa or
MATα) to construct a matrix of diploid hybrids of size nb× nb. In each panel, spores are represented along the vertical
and horizontal axes of the matrix and hybrids are shown as matrix elements. Symbols follow the Figure 6A legend and
indicate combinations of the type of genetic background (WA parent: , NA parent: , WAxNA segregant: ) and the
genotype of de novo mutations (no de novo mutation: , wild-type: +, mutated: ). Relative growth rates of spores λ btd

{a,α}
and hybrids λ btd

aα are shown, normalized with respect to the ancestral WAxNA cross. Each matrix element is labeled
by background genotype b, de novo genotype d, and time of sampling during selection t. Measurements were taken in
(A) SC+HU and (B) SC for populations selected in hydroxyurea; and (C) SC+RM and (D) SC for populations selected in
rapamycin. The color scale for all matrices is shown to the right of each panel and indicates the growth rate difference with
respect to the ancestral WAxNA cross. White boxes indicate missing data due to mating inefficiency and slow growth.
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Figure S11: Ensemble average of fitness effects over genetic backgrounds. Related to Figure 6. To quantify the
fitness effects of background variation and de novo mutations in the absence of stress, we measured the large recombinant
library built with the genetic cross in a control environment (SC). Symbols follow the Figure 6A legend and indicate
combinations of the type of genetic background (WA parent: , NA parent: , WAxNA segregant: ) and the genotype of
de novo mutations (no de novo mutation: , wild-type: +, mutated: ). (A and C) Relative growth rate of spores, λ btd

{a,α},
and hybrids, λ btd

aα , measured for multiple combinations of background and de novo genotypes with respect to the ancestral
population, and averaged over measurement replicates. Measurements were taken in a control environment (SC) for
cells selected in (A) hydroxyurea and (C) rapamycin. Medians and 25%/75% percentiles across groups are shown, with
medians as horizontal lines and colored by de novo genotype (wild-type, blue; heterozygote, cyan; homozygote, green).
Outliers (circles) and isolated, selected clones with matching genotypes (diamonds) are highlighted. (B and D) Ensemble
average of the relative growth rate of spores, 〈λ 〉td{a,α}, and hybrids, 〈λ 〉tdaα

. Each matrix element is labeled by de novo
genotype d, and time of sampling during selection t, and averaged over genetic backgrounds b. Measurements were taken
in (B) hydroxyurea and (D) rapamycin. The color scale for all matrices is shown to the right of each panel and indicates
the difference in the ensemble average with respect to the ancestral WAxNA cross.
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Figure S12: Hierarchical analysis of variance in the genetic cross using a linear mixed model. Related to Figure 6.
We model the growth rate of spores, λ btd

{a,α}, and hybrids, λ btd
aα , as a function of background genotype b, de novo genotype d,

time of sampling during selection t, and auxotrophy x. Relative growth rates are accurately fitted by this model (Model 4).
Model fits are summarized in Table S2. Measurements are taken in SC+HU and SC only for populations selected in
hydroxyurea (A and B); and in SC+RM and SC only for populations selected in rapamycin (C and D). The scatter shows a
set of measurements λ (x axis) against the fitted rates λ̂ (y axis). The total variance explained, r2, is separately computed
for spores and hybrids by environment.



Supplemental Tables

Table S1: Populations and clonal isolates analyzed by whole-genome sequencing. Related to Table 1. Summary of
populations and clonal isolates analyzed by whole-genome sequencing in this study. The best-fit number of subclones Nc
as estimated by cloneHD are shown together with the total clonal fraction, F t =∑

n
j=1 f t

j , after 32 days of selection. Per
population, the union set of driver mutations found by whole-population and clone genome sequencing is shown. The
genotypes of driver mutations found in clonal isolates were validated by Sanger sequencing (labeled by §). WA/WA pop-
ulations in hydroxyurea did not survive beyond 4 days of selection (labeled by †).

Time Background Cross Selection Clonality Drivers
Gen. Rep. Environment Rep. Isolates Nc F t

0 days WA/WA – – YPD – – – –
NA/NA – – YPD – – – –
WAxNA F12 1 YPD – C1–C96 – –

2 YPD – C1–C96 – –
2–32 days WA/WA – – YPD+HU 1† – – –

2† – – –
YPD+RM 1 – – – TOR1 W2038L§

2 – – – TOR1 F2045L§

NA/NA – – YPD+HU 1 – – – RNR4 R34I§, K114M§

2 – – – RNR4 R34I§, K114M§

YPD+RM 1 – – – FPR1 K11fs§; TOR1 S1972R, W2038L§

2 – – – FPR1 M1I§; TOR1 S1972I§

WAxNA F2 1 YPD+RM 1 – 2 0.74 TOR1 W2038L
2 – 1 0.10

YPD 1 – 0 –
F12 1 YPD+HU 1 C1–C2 2 0.58 RNR4 R34G§, R34I§

2 C1–C2 1 0.20 RNR4 R34I§

3 C1–C6 2 0.65 RNR2 Y169H§; chr. II LOH
YPD+RM 1 C1–C3 3 0.85 CTF8NA; FPR1 W66*§, W66S

2 C1–C6 2 0.20 CTF8NA; FPR1 W66S; TOR1 W2038L§

3 C1–C3 2 0.72 CTF8NA; FPR1 W66*§; TOR1 S1972I
4 – 2 0.81 CTF8NA; FPR1 W66*§

YPD 1 – 0 –
2 – 0 –

2 YPD+HU 1 C1–C2 2 0.63 RNR4 R34G§, R34I§

2 C1–C4 2 0.32 RNR2 N151H, T206I§; RNR4 R34I§

3 C1–C6 2 0.34 RNR2 E154G§; RNR4 R34I§

YPD+RM 1 C1–C3 4 0.93 CTF8NA; FPR1 W66S, W66*§

2 C1–C6 1 0.10 CTF8NA; TOR1 W2038C§

3 C1 1 0.10 CTF8NA; FPR1 S102R
4 – 1 0.11 CTF8NA; FPR1 S102R

YPD 1 – 0 –
2 – 0 –



Table S2: Statistical support for variance components in the genetic cross estimated using linear mixed models. Re-
lated to Figure 6B. Summary statistics for linear mixed models of the genetic cross, fitted using restricted maximum like-
lihood. Models were separately fitted for spores and hybrids in each environment. The number of unique backgrounds nb
is much greater than the number of degrees of freedom (d.o.f.) for the parameters being fitted. Each background b was
measured in several technical replicates. We selected the best model by maximum AIC (labeled by §). The breakdown of
variance components in Model 4 is shown in Figure 6B and the models fits to the data are shown in Figure S12.

Selection Measurement Type Model d.o.f. Variance Log-likelihood AIC
r2

F r2

Hydroxyurea Hydroxyurea Spores 1 3 0.0000 0.9500 1813.367 –3627.063
(YPD+HU) (SC+HU) nb =92 2 4 0.1071 0.9504 1816.932 –3636.219

3§ 7 0.5338 0.9507 1841.920 –3697.223
4 8 0.5338 0.9509 1839.372 –3695.832

Hybrids 1 3 0.0000 0.8045 6535.699 –13075.484
nb =2013 2 5 0.0652 0.8044 6608.318 –13230.265

3§ 17 0.2989 0.8067 6969.860 –14021.351
4 18 0.2990 0.8068 6966.279 –14019.752

Hydroxyurea Control Spores 1 3 0.0000 0.8914 1918.357 –3837.994
(YPD+HU) (SC) nb =92 2 4 0.0381 0.8924 1917.974 –3840.051

3 7 0.0605 0.8954 1911.224 –3836.707
4§ 8 0.1559 0.8957 1913.807 –3846.480

Hybrids 1 3 0.0000 0.8335 9435.532 –18875.965
nb =2013 2 5 0.0009 0.8337 9429.119 –18874.079

3 17 0.0451 0.8435 9454.950 –18998.377
4§ 18 0.0483 0.8428 9456.054 –19006.845

Rapamycin Rapamycin Spores 1 3 0.0000 0.9815 438.848 –875.752
(YPD+RM) (SC+RM) nb =104 2 4 0.0924 0.9817 443.237 –884.134

3 7 0.8146 0.9815 524.504 –1054.421
4§ 8 0.8699 0.9815 542.282 –1094.737

Hybrids 1 3 0.0000 0.9583 2368.301 –4738.294
nb =2271 2 5 0.0355 0.9584 2407.246 –4819.913

3 17 0.7422 0.9675 4465.029 –8981.497
4§ 18 0.7430 0.9675 4466.273 –8987.264

Rapamycin Control Spores 1 3 0.0000 0.9217 1038.794 –2078.815
(YPD+RM) (SC) nb =104 2 4 0.0011 0.9224 1036.569 –2076.940

3 7 0.1711 0.9239 1039.674 –2092.692
4§ 8 0.3953 0.9235 1054.494 –2128.413

Hybrids 1 3 0.0000 0.9065 11394.150 –22793.196
nb =2270 2 5 0.0173 0.9066 11408.580 –22832.161

3 17 0.0593 0.9072 11418.030 –22915.694
4§ 18 0.0697 0.9071 11428.480 –22941.867



Glossary of wild strains used in this study, including derivative strains. ∗Isolated in West Africa (pre-1914) by A. Guil-
liermond from bili wine from Osbeckia grandiflora (Liti et al., 2009). †Isolated in Pennsylvania (1999) by P. Sniegowski
from soil beneath Quercus alba (Sniegowski et al., 2002).

Background ID Derived from Genotype

WA DBVPG6044 Wild isolate∗

CC402 DBVPG6044 MATa, ura3::KanMX, ho::HygMX

CC406 DBVPG6044 MATα , ura3::KanMX, lys2::URA3, ho::HygMX

FS174 DBVPG6044 MATα , ura3::KanMX, ho::NatMX

YGL1001 DBVPG6044 MATa/α , ura3∆0; ura3∆0; leu2∆0; leu2∆0; lys2∆0; met15∆0

WA/WA CC426 CC402 × CC406 MATa/α , ura3::KanMX/ura3::KanMX, ho::HygMX/ho::HygMX, LYS2/lys2::URA3

NA YPS128 Wild isolate†

CC403 YPS128 MATa, ura3::KanMX, ho::HygMX

CC407 YPS128 MATα , ura3::KanMX, lys2::URA3, ho::HygMX

FS173 YPS128 MATα , ura3::KanMX, ho::NatMX

YGL1011 YPS128 MATa/α , ura3∆0; ura3∆0; leu2∆0; leu2∆0; lys2∆0; met15∆0

NA/NA CC440 CC403 × CC407 MATa/α , ura3::KanMX/ura3::KanMX, ho::HygMX/ho::HygMX, LYS2/lys2::URA3

WA/NA CC427 CC402 × CC407 MATa/α , ura3::KanMX/ura3::KanMX, ho::HygMX/ho::HygMX, LYS2/lys2::URA3

CC435 CC403 × CC406 MATa/α , ura3::KanMX/ura3::KanMX, ho::HygMX/ho::HygMX, LYS2/lys2::URA3



Glossary of strains with genetic constructs used in this study. The genetic constructs are grouped by the ‘target’ gene
of interest and are engineered in multiple genetic backgrounds. They include gene deletions, hemizygous constructs of
ancestral alleles (WA and NA) and hemizygous constructs of evolved alleles.

Gene ID Derived from Genotype

CTF8 YGL1269 DBVPG6044 MATa, ho::HygMX, ura3::KanMX, ctf8::URA3

YGL1270 YPS128 MATa, ho::HygMX, ura3::KanMX, ctf8::URA3

YGL1271 DBVPG6044 × YPS128 MATa/α , ho::HygMX, ho::NatMX, ura3::KanMX, CTF8(NA)/ctf8(wa)::URA3

YGL1272 DBVPG6044 × YPS128 MATa/α , ho::HygMX, ho::NatMX, ura3::KanMX, CTF8(WA)/ctf8(na)::URA3

DEP1 YGL1562 DBVPG6044 MATa, ho::HygMX, ura3::KanMX, dep1::URA3

YGL1563 YPS128 MATa, ho::HygMX, ura3::KanMX, dep1::URA3

YGL1570 DBVPG6044 × YPS128 MATa/α , ho::HygMX, ho::NatMX, ura3::KanMX, DEP1(NA)/dep1(wa)::URA3

YGL1571 DBVPG6044 × YPS128 MATa/α , ho::HygMX, ho::NatMX, ura3::KanMX, DEP1(WA)/dep1(na)::URA3

FPR1 YGL2166 CC402 MATa, ura3::KanMX, ho::HygMX, fpr1::URA3

YGL2167 CC403 MATa, ura3::KanMX, ho::HygMX, fpr1::URA3

YGL2181 FS174 × YGL2166 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, fpr1::URA3/FPR1

YGL2182 FS173 × YGL2167 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, fpr1::URA3/FPR1

YGL2184 FS173 × YGL2166 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, fpr1(wa)::URA3/FPR1(NA)

YGL2183 FS174 × YGL2167 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, fpr1(na)::URA3/FPR1(WA)

YGL2175 YGL2166 MATa, ura3::KanMX, ho::HygMX, fpr1::FPR1*

YGL2193 YGL2167 MATa, ura3::KANMX, ho::HYGMX, fpr1::FPR1*

INP54 YGL1564 DBVPG6044 MATa, ho::HygMX, ura3::KanMX, inp54::URA3

YGL1565 YPS128 MATa, ho::HygMX, ura3::KanMX, inp54::URA3

YGL1572 DBVPG6044 × YPS128 MATa/α , ho::HygMX, ho::NatMX, ura3::KanMX, INP54(NA)/inp54(wa)::URA3

YGL1573 DBVPG6044 × YPS128 MATa/α , ho::HygMX, ho::NatMX, ura3::KanMX, INP54(WA)/inp54(na)::URA3

KOG1 YGL1264 DBVPG6044 × YPS128 MATa/α , ho::HygMX, ho::NatMX, ura3::KanMX, KOG1(NA)/kog1(wa)::URA3

YGL1263 DBVPG6044 × YPS128 MATa/α , ho::HygMX, ho::NatMX, ura3::KanMX, KOG1(WA)/kog1(na)::URA3

RNR2 YGL2164 DBVPG6044 MATa/α , ura3∆0, ura3∆0, leu2∆0, leu2∆0, lys2∆0, met15∆0, RNR2/rnr2::URA3

YGL2165 YPS128 MATa/α , ura3∆0, ura3∆0, leu2∆0, leu2∆0, lys2∆0, met15∆0, RNR2/rnr2::URA3

YGL2391 CC427 MATa/α , ura3::KanMX/ura3::KanMX, ho::HygMX/ho::HygMX, LYS2/lys2::URA3, RNR2(NA)/rnr2(wa)::NATMX

YGL2392 CC427 MATa/α , ura3::KanMX/ura3::KanMX, ho::HygMX/ho::HygMX, LYS2/lys2::URA3, RNR2(WA)/rnr2(na)::NATMX

YGL2198 WAxNA F12 2 HU 2 T32 C2 MATa/α , ura3::KanMX/ura3::KanMX, LYS2/lys2::URA3, rnr2*::NATMX/RNR2

YGL2189 WAxNA F12 2 HU 2 T32 C2 MATa/α , ura3::KanMX/ura3::KanMX, LYS2/lys2::URA3, rnr2*/RNR2::NATMX

RNR4 YGL2174 CC402 MATa, ura3::KanMX, ho::HygMX, rnr4::URA3, aneuploidy in chr. VII (w/ RNR4)

YGL2170 CC403 MATa, ura3::KanMX, ho::HygMX, rnr4::URA3

YGL2177 FS174 × YGL2174 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, rnr4::URA3/RNR4

YGL2178 FS173 × YGL2170 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, rnr4::URA3/RNR4

YGL2180 FS173 × YGL2174 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, rnr4::URA3/RNR4

YGL2179 FS174 × YGL2170 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, rnr4::URA3/RNR4

YGL2194 YGL1001 MATa/α , ura3∆0; ura3∆0; leu2∆0; leu2∆0; lys2∆0; met15∆0; RNR4(WA)/rnr4(wa)::URA3

YGL2196 YGL1011 MATa/α , ura3∆0; ura3∆0; leu2∆0; leu2∆0; lys2∆0; met15∆0; RNR4(NA)/rnr4(na)::URA3

YGL2176 YGL2170 MATa, ura3::KanMX, ho::HygMX, rnr4::RNR4*

TOR1 YGL2168 CC402 MATa, ura3::KanMX, ho::HygMX, tor1::URA3

YGL2169 CC403 MATa, ura3::KanMX, ho::HygMX, tor1::URA3

YGL2185 FS174 × YGL2168 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, tor1::URA3/TOR1

YGL2186 FS173 × YGL2169 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, tor1::URA3/TOR1

YGL2188 FS173 × YGL2168 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, tor1(wa)::URA3/TOR1(NA)

YGL2187 FS174 × YGL2169 MATa/α , ura3::KANMX/ura3::KANMX, ho::HYGMX/ho::NATMX, tor1(na)::URA3/TOR1(WA)

YGL2201 WAxNA F12 2 RM 2 T32 C6 MATa/α , ura3::KanMX/ura3::KanMX, LYS2/lys2::URA3, tor1*::NATMX/TOR1

YGL2191 WAxNA F12 2 RM 2 T32 C6 MATa/α , ura3::KanMX/ura3::KanMX, LYS2/lys2::URA3, tor1*/TOR1::NATMX

YNR066C YGL1566 DBVPG6044 MATa, ho::HygMX, ura3::KanMX, ynr066c::URA3

YGL1567 YPS128 MATa, ho::HygMX, ura3::KanMX, ynr066c::URA3

YGL1574 DBVPG6044 × YPS128 MATa/α , ho::HygMX, ho::NatMX, ura3::KanMX, YNR066C/ynr066c::URA3

YGL1575 DBVPG6044 × YPS128 MATa/α , ho::HygMX, ho::NatMX, ura3::KanMX, YNR066C/ynr066c::URA3



Primers for amplification of putative drivers. Sequence of primers used to amplify the genes containing putative driver
mutations.

Gene Orientation Chr Target Sequence (TARGET)
Start End

DEP1 fwd I 128977 128996 CAGAGAGCTGGTCCAGTTCA

rev I 129573 129554 TGGCCTCATCTATCGCCTCT

FPR1 fwd XIV 371600 371619 CCCTCCTGCCACAAGAGTTT

rev XIV 372170 372151 TGCCACCTTCCCAAAGACAG

INP54 fwd XV 205005 205024 GCGAAAGTTGGCACTGCATA

rev XV 205624 205605 GCTACACAAGGGGATGAGCA

RNR2 fwd X 392707 392726 CGTGCCGAAGCTTCTTTCTG

rev X 393245 393226 CATGCAAAGTCGGTGTGCAA

RNR4 fwd VII 855968 855987 CAGGGTTTTGCAATTGGGCA

rev VII 856843 856824 TACGACCACCCAACACCAAG

TOR1 fwd X 565069 565088 AGCCAGATCCTACGGTGAGT

rev X 565652 565633 CCCAGGAACAGCCAATTCGA

YNR066C fwd XIV 753660 753679 TCGAATTCACTACCGTCGCC

rev XIV 754369 754348 GCCGCATATACACAATTAGCCT



Primers used to engineer genetic constructs. Sequence of primers used to engineer gene deletions (see ‘Engineered
genetic constructs’).

Gene Marker Orientation Chr Target Sequence (TARGET, ura3 /natMX )

Start End

CTF8 URA3 fwd VIII 486155 486230 TATATACACTTTACACAGAGCGTGAAGTCTGCGCCAAATAACATAAACAAACAACTC

CGAACAATAACTAAGTACTcggcatcagagcagattgtactg

URA3 rev VIII 486709 486631 CTAACCACTAATATAGCCAAAGGAGTGATAGAAAAAAGAATTATCACTATCATTCAG

CCCAATAAACAGCTGAAAAGAAacaccgcagggtaataactg

DEP1 URA3 fwd I 129210 129269 AACGGCAAAGTACAAGGGAAGGAAGCACAGAAGCAAGAGGAGGCGCATCGATCGTGG

CAGcggcatcagagcagattgtactg

URA3 rev I 130547 130488 ATAGCGTTACAACATATTTAAGAATAACAAAAAGAAGTGGTATGGGGTCCAGTGTGG

CGGacaccgcagggtaataactg

FPR1 URA3 fwd XIV 371821 371881 GATACTTACCATAAACATAAATAAAAAGCAGAAAGGCGGCTCAATTGATAGTACTTT

GCTTacaccgcagggtaataactg

URA3 rev XIV 372287 372227 TAAAGTAAGGCCTTTCACCTAAACTCGAGTATAAGCAAAAAATCAATCAAAACAAGT

AATAcggcatcagagcagattgtactg

INP54 URA3 fwd XV 204671 204730 ACTGACGTTATCTGTTTCAGACATAAATGAAAAACTTCTAGCCTGACAGCCCAGATC

ACTcggcatcagagcagattgtactg

URA3 rev XV 205945 205886 TAAGAGTAGGCTAACAAAGAAGAAAAGTGAGACAAGAAAATACAGCAGGATTCTGAC

CGAacaccgcagggtaataactg

KOG1 URA3 fwd VIII 475924 475999 TAATAGATTATATATATATATATATATATATCTCTTTTGCAGCTAAATGAAAGAAAA

AAAAAGAAATGGCACATATcggcatcagagcagattgtactg

URA3 rev VIII 480750 480672 GAATGCATTTGGTTTGTAGATTCCTTTGATTACATTTAGCGAATCCTATTGCATGCA

GAGAAGGGTAAAAGATACATAAacaccgcagggtaataactg

RNR2 URA3 fwd X 392343 392403 CTCGATTGGCTATCTACCAAAGAATCCAAACTTAATACACGTATTTATTTGTCCAAT

TACCcggcatcagagcagattgtactg

URA3 rev X 393664 393604 CGAAAGCCCACATAAAGAGATTGAAGAGACTGCGTAAAAAGAAATATATAGAGAGAT

ACTCacaccgcagggtaataactg

NatMX fwd X 392343 392403 CTCGATTGGCTATCTACCAAAGAATCCAAACTTAATACACGTATTTATTTGTCCAAT

TACCcgtacgctgcaggtcgac

NatMX rev X 393604 393664 CGAAAGCCCACATAAAGAGATTGAAGAGACTGCGTAAAAAGAAATATATAGAGAGAT

ACTCatcgatgaattcgagctcg

RNR4 URA3 fwd VII 855203 855263 TATATATAAATATATATAAATAAAAGTGGCCAAGAATAAAAGAACGCACCCCGTCGT

TGACacaccgcagggtaataactg

URA3 rev VII 856362 856302 TACAAAAACAGATCTTTTTGAGCCACACAACCCCGCGCAACGCACACAATTAGTTAT

TACAcggcatcagagcagattgtactg

TOR1 URA3 fwd X 559355 559415 TCACGAGAGAGTCATTGGTAAAGTGAAACATACATCAACCGGCTAGCAGGTTTGCAT

TGATcggcatcagagcagattgtactg

URA3 rev X 566889 566829 AATGCGTAATACAAAAAAAATAAATAGTAAACAAAGCACGAAATGAAAAATGACACC

GCAGacaccgcagggtaataactg

NatMX fwd X 559355 559415 TCACGAGAGAGTCATTGGTAAAGTGAAACATACATCAACCGGCTAGCAGGTTTGCAT

TGATcgtacgctgcaggtcgac

NatMX rev X 566829 566889 AATGCGTAATACAAAAAAAATAAATAGTAAACAAAGCACGAAATGAAAAATGACACC

GCAGatcgatgaattcgagctcg

YNR066C URA3 fwd XIV 753665 753724 TTCACTACCGTCGCCAACGGAACCTGTCATTAACATAATTCCGGCAGTAGGATTTGA

GATcggcatcagagcagattgtactg

URA3 rev XIV 755095 755036 ATAAAGTTCCGAGCTTTGAAAAAAAGCTTTGAACTAAGAAAAGGTAAGAGATCCTCA

ATTacaccgcagggtaataactg
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