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SUPPLEMENTARY MATERIAL 
 
Research participants  
The DIAGRAM stage 1 analyses comprised a total of 26,676 T2D cases and 132,532 control participants from 18 
GWAS. The Metabochip stage 2 follow up comprised 16 studies (D2D2007, DANISH, DIAGEN, DILGOM, 
DRsEXTRA, EMIL-Ulm, FUSION2, NHR, IMPROVE, InterACT-CMC, Leipzig, METSIM, HUNT/TROMSO, 
SCARFSHEEP, STR, Warren2/58BC) with Metabochip data (1), in which the participants did not overlap those 
included in stage 1. Stage 1 study sizes ranged between 80 and 7,249 T2D cases and from 455 to 83,049 controls. 
The study characteristics are described in detail in Supplementary Table 1. The Metabochip follow-up study 
sizes ranged from 101 and 3,553 T2D cases and from 586 to 6,603 controls. Details of Metabochip replication 
cohorts have been described in detail previously (1,2). For SNVs not captured on Metabochip directly or by 
proxy, we performed follow-up in 2,796 individuals with T2D and 4,601 controls from the EPIC-InterAct study 
(3). In addition, we used 9,747 T2D cases and 61,857 controls from the GERA study (4) to follow-up six low 
frequency variants not captured on Metabochip. All study participants were of European ancestry and were from 
the United States and Europe. All studies were approved by local research ethic committees, and all participants 
gave written informed consent. 
Overview of Study Design and Analysis Strategy 
We performed inverse-variance weighted fixed-effect meta-analyses of 18 stage 1 GWAS (Supplementary Table 
1). Following imputation to the 1000G multi-ethnic reference panel, each study performed T2D association 
analysis using logistic regression, adjusting for age, sex, and study-specific covariates, under an additive genetic 
model. Fifteen of the 18 studies repeated analyses also adjusting for body mass index (BMI). A total of 40 loci 
reached genome-wide significance (p=5x10-8) in the stage 1 meta-analysis, of which four mapped >500kb from 
previously-known T2D-associated loci, and were therefore considered likely to represent novel signals. At a 
lesser level of significance (p<10-5), we identified 48 additional putative novel signals. In stage 1, we identified 
fifty-two regions in which the most strongly associated SNP had a p<10-5, was greater than 500kb distant from the 
nearest known T2D associated variant and was in r2 <.02 with all known T2D associated variants. Of the 
combined set of 52 putative novel signals, 46 featured a lead SNV with MAF >5%. From each of these 52 
regions, we selected the most strongly-associated variant for follow-up in stage 2. As the stage 1 meta-analysis 
had exhausted most European-ancestry studies with available GWAS data, stage 2 was primarily based on 16 
independent European-ancestry studies (2) genotyped on the Metabochip custom array (5). Of the 52 putative lead 
variants from stage 1, 29 variants or their LD proxies (r2≥0.6) were present in MetaboChip. Specifically, four 
SNVs were themselves present on the Metabochip, 20 were represented by a proxy (r2>0.8) and an additional 5 by 
a proxy in lower linkage disequilibrium (LD) (0.8>r2>0.6) (Table 1, Supplementary Table 6, Supplementary 
Figure 1A-C). Novel loci were defined using the threshold for genome-wide significance in the combined stage 1 
and stage 2 meta-analysis or in stage 1 alone, when no suitable proxy was available. The remaining 23 variants 
were followed-up in EPIC-InterAct study. We neither observed any additional signals attaining genome-wide 
significance threshold, nor detected any nominally significant effects in this follow-up stage alone. Six low-
frequency variants were followed-up additionally in the GERA study (Supplementary Table 6). 
Genotyping, imputation and quality control 
Genotyping of individual stage 1 studies was carried out using commercial genome-wide single-nucleotide variant 
(SNV) arrays as detailed in Supplementary Table 1. We excluded samples and SNPs as described in 
Supplementary Table 1. We imputed autosomal and X chromosome SNVs using the all ancestries 1000 
Genomes Project (1000G) reference panel (1,092 individuals from Africa, Asia, Europe, and the Americas, 
(March, 2012 release)) using miniMAC (6) or IMPUTE2 (7). EPIC-InterAct was genotyped on the Illumina 
HumanCoreExome chip and imputed using the 1000G reference panel (March, 2012 release). The imputation 
parameters are given in Supplementary Table 1. Insertion/deletion variants were not analysed due to the lower 
quality of their calls in the 1000G reference panel release used as compared to later panel releases. After 
imputation, from each study we removed monomorphic imputed variants or those with study-specific imputation 
quality r2-hat<0.3 (miniMAC) or proper-info<0.4 (IMPUTE2, SNPTEST). Metabochip studies were imputed 
using with the same 1000G panel (1,2) as used in Stage 1. 
To compare the variant imputation quality and distribution of minor allele frequency (MAF) for variants imputed 
using the 1000G March 2012 reference panel to those imputed using the HapMap2 reference panel European 
individuals, we also imputed into the WTCCC sample using HapMap2 reference panel European individuals. We 
independently binned the SNVs from the two imputation panels by allele frequency and computed the per-bin 



SUPPLEMENTARY DATA 

©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1253/-/DC1 

SNP number and the average proper_info score. 
Statistical analyses 
In stage 1, in each study we performed logistic regression association analysis of T2D with genotype dosage using 
an additive genetic model including as covariates age, sex and principal components derived from the genetic data 
to account for population stratification. We further applied genomic control (GC) correction to study-level 
association summary statistics to correct for residual population structure not accounted for by principal 
components adjustment. We combined the association results using inverse variance-weighted fixed effect meta-
analysis using both GWAMA (8) and METAL (9) , and observed identical results. The stage 1 meta-analysis had 
11.7M autosomal and 260k chromosome X SNVs that 1) had a total minor allele count >5 and 2) were present in 
≥3 studies. The lambda (GC) value was 1.08, while inflation estimates from LDscore regression (10) showed no 
evidence of population stratification suggesting lambda (GC)=1. We performed inverse variance weighted fixed-
effects meta-analysis of the 16 stage 2 Metabochip studies (lambda GC correction applied based on QT-interval 
variant set (1)) and the 18 stage 1 studies using GWAMA (8) and METAL (9) software. Heterogeneity was 
assessed using the I2 index from the complete study-level meta-analysis. We combined stage 1 and stage 2 results 
by inverse variance-weighted fixed-effect meta-analysis. 
We performed a secondary T2D association analysis by modelling body mass index (BMI) as covariate in 15 
studies (not including DGDG, GoDARTS and WTCCC). The total sample size for this analysis was 21,440 T2D 
cases and 97,052 controls, (Neff=70,242). The lambda (GC) was 1.05. Genetic effect sizes (beta coefficients) 
estimated from models with and without BMI adjustments were compared using a matched analysis within the 

same subset of 15 studies:   , where  and 
 are the estimated genetic effect from models with and without BMI adjustment,  is the estimated 

standard error of the estimates, and ρ is the estimated correlation between  and  obtained from all 
genetic variants (ρ =0.90). 
Comparison between HapMap and 1000G reference variant sets  
We made LocusZoom(11) regional plots of the Stage 1 meta-analysis results indexed by lead SNV for the 13 
novel loci, and estimated LD using the EUR 1000G March 2012 variant set (Supplementary Figure 2). We also 
made regional plots indexed by the lead 1000G SNV, but otherwise only including SNVs present in the previous 
HapMap2-imputed analyses(1,12). 
Power calculations  
We performed power calculations10 over a range of odds ratios (ORs), using the corresponding genotype relative 
risk (GRR) in the power calculation, to (i) determine the effect size that would yield 80% power based on a grid 
search and (ii) to provide power estimates for pre-specified ORs, for specified risk allele frequency (RAF). The 
RAF is defined as the frequency of the allele that increases T2D risk in the stage 1 meta-analysis. We determined 
power as a function of the GRR, RAF, alpha=5×10-8, and the average weighted effective case sample size, 
assuming a 1:1 ratio of cases and controls. For each variant, we defined weighted effective case sample size as the 
product of the variant-specific effective case sample size and the average variant-specific imputation quality 
(based on r2 hat or info measures available from each included study). To calculate the average weighted effective 
case sample size, for each RAF we selected the 10,000 stage 1 meta-analysis variants with RAF closest to the 
target RAF (taking equal proportions of variants above and below the RAF), and took the average of the 10,000 
weighted effective case sample sizes. 
Approximate conditional analysis with GCTA  
To identify if multiple statistically independent signals were present in known and novel T2D associated regions, 
we performed approximate conditional analysis in the stage 1 sample using GCTA (v1.24) (13). Among 70 
established T2D-associated and 13 novel loci (p<5×10-4), we analysed SNVs in the 1Mb-window around each 
lead variant, conditioning on the lead SNV at each locus. We ran the GCTA analysis using three separate 
genotype reference panels for estimation of LD between variants (14): UK10K project (N=3,621), Genetics of 
Diabetes Audit and Research in Tayside Scotland (GoDARTS (15)) study (3,298 T2D cases and 3,708 controls) 
and Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS (16)) study (n=949). We considered 
loci as containing distinct signals (in the initial and further rounds of analysis) if a SNV reached locus-wide 
significance after accounting for region-specific multiple testing (p<10-5) in all three reference panels. Where we 
observed distinct signals, we then conditioned on the original lead SNV, and the newly observed distinct SNV(s) 
to detect further signals, until no additional signal was identified at p<10-5. We identified six regions with more 
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than one independent signal (18 distinct signals). In each region with multiple signals, for each independent 
variant we conditioned on all other independent variants in the region and used these results were used for 
finemapping (below). At KCNQ1, we performed conditioning using GCTA model selection which better handles 
the large number of independent signals (using the UK10K reference panel).  
Finemapping analyses using credible set mapping 
The goal of finemapping was to identify sets of 99% credible causal variants for the lead independent variants at 
known and novel loci. We used credible set fine-mapping (17) within 95 distinct signals (at 82 loci) with T2D-
association signals p<5x10-4 in the present stage 1 to investigate whether 1000G-imputation allowed us to better 
resolve the specific variants driving these associations (Supplementary Tables 3 and 9). We included in the 
credible set analysis all signals where the lead independent SNV reached p<5x10-4 in the stage 1 meta-analysis, as 
SNVs with weak association, mostly those identified in non-European GWASs, generally yield very large 
credible SNP sets. In regions with multiple independent variants, we used the signal remaining following 
approximate conditional analysis on all other independent variants in the region (see above). To define the locus 
boundaries, for each lead SNV we identified the outermost variants from the set of variants in r2 ≥ .2 with the lead 
SNV and added an additional flanking region of .02 cM to each side. To perform credible set mapping, the T2D 
stage 1 meta-analysis results were converted to Bayes’ factors (BF) for each variant within the variant/locus 
boundary (17). The posterior probability that SNVj was causal was defined by:  

 
where, BFj denotes the BF for the jth SNV, and the denominator is the sum of all included BFs. A 99% credible 
set of variants was created by ranking the posterior probabilities from highest to lowest and summing them until 
the cumulative posterior probability exceeded 0.99. To estimate the credible set sizes we would have observed 
with HapMap imputation-based meta-analysis results, we recomputed the posterior probabilities after first 
restricting to variants observed in previous HapMap-imputed analyses.  
T1D/T2D discrimination analysis 
Given the overlap between loci previously associated with T1D and the newly associated T2D loci, we used an 
inverse variance weighted Mendelian randomisation approach (18) to test whether this was likely to reflect 
misclassification of T1D cases as individuals with T2D in the current study. Briefly, using 50 SNVs associated 
with T1D at genome-wide significance (19), we tested the association of genetic predisposition to T1D with T2D 
in the present analysis. If some proportion of T2D cases in the current study actually are T1D, we would expect 
that the T1D risk variants to consistently predict T2D risk. We performed analysis with and without the lead 
SNVs showing associations with both T1D and T2D (p<0.05 for T2D).  
 
 
Expression quantitative trait loci (eQTL) analysis 
Lead SNVs at all 13 novel loci mapped to non-coding sequence, leaving uncertain the identities of the effector 
transcripts through which the T2D-risk effects are mediated. To highlight potential effectors, we first considered 
RNA expression data, focusing on data from pancreatic islets, adipose, muscle, liver, and whole blood, and 
seeking coincidence (r2>0.8) between the lead T2D-associated SNVs and drivers of regional cis-eQTLs (p<5x10-

6) (Supplementary Table 10). To look for potential biological overlap of T2D lead variants and eQTL variants, 
we extracted the lead (most significantly associated) eQTL for each tested gene from existing datasets for 
pancreatic islets (20), skeletal muscle (21,22), adipose tissue(22–26), liver (22,24,27–30) and whole blood (which 
has the largest sample size of available eQTL studies) (22,23,26,31–47) . Additional eQTL data was integrated 
from online sources including ScanDB (http://www.scandb.org/newinterface/about.html), the Broad Institute 
GTEx Portal (http://www.gtexportal.org/home/), and the Pritchard Lab (eqtl.uchicago.edu). Additional liver 
eQTL data was downloaded from ScanDB and cis-eQTLs were limited to those with p<10-6.We considered that a 
lead T2D SNV showed potential evidence of influencing gene expression if it was in high LD (r2>0.8) with the 
lead eQTL SNP, and if the lead eQTL SNP had p< 5 x 10-6   
Hierarchical clustering of T2D-related metabolic phenotypes 
Starting with the T2D associated SNV variants in the finemapping set, we identified sets of variants with similar 
patterns of T2D related quantitative trait association. For the T2D associated SNVs, we obtained T2D-related 
quantitative trait z scores from published HapMap-based GWAS meta-analysis for: fasting glucose (FG (48)), 
fasting insulin adjusted for BMI (FIadjBMI (48)), homeostasis model assessment for beta-cell function (HOMA-

http://www.scandb.org/newinterface/about.html
http://www.gtexportal.org/home/
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B (48)), homeostasis model assessment for insulin resistance (HOMA-IR (48)), 2-h glucose adjusted for BMI 
(2hGluadjBMI (49)), proinsulin (PR (50)), corrected insulin response (CIR (51)), body mass index (52), high 
density lipoprotein (HDL-C), low density lipoprotein (LDL-C), total cholesterol (TC), triglycerides (TG), all from 
the Global Lipids Genetics Consortium (53). When the result for a SNV was not available, we used the results 
from the variant in highest r2 (r2>0.6). We coded the z-scores such that a positive sign indicated that the trait value 
was higher for the T2D risk allele, a negative sign that the trait value was lower for the T2D risk allele. We 
performed complete linkage hierarchical clustering and used the Euclidian distance dissimilarity measure L2=15% 
as a threshold to define the loci clusters. We tested the validity of groups through multi-scale bootstrap 
resampling with 50,000 bootstrap replicates, as described previously(54). All distances, clustering analyses and 
statistical calculations were done using stats, gplots, pvclust, fpc and vegan packages in the R programming 
language (R Core Team (2013) R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. URL http://www.R-project.org/).  
Functional annotation and enrichment analysis  
We tested for enrichment of genomic and epigenomic annotations obtained from two sources. First, we obtained 
chromatin states for 93 cell types (after excluding cancer cell lines) from the NIH Epigenome Roadmap project. 
For each cell type, we collapsed active enhancer (EnhA) and promoter (TssA) states into one annotation for that 
cell type. Secondly, we obtained binding sites for 165 transcription factors (TF) from ENCODE (55) and Pasquali 
et al. (56). We first sought to extend these analyses to the denser variant coverage and expanded number of 
GWAS signals in the present meta-analysis (Supplementary Table 9). Across credible sets for the 95 distinct 
signals with p<5x10-4 in the present stage 1 European analysis (Supplementary Tables 3 and 9), we used a 
fractional logistic regression model to compare a binary indicator of variants overlapping a total of 261 functional 
annotations to the posterior probabilities for association derived from the fine-mapping analysis (πc) 
(Supplementary Table 12). For each TF, we collapsed all binding sites into one annotation. We then tested for 
the effect of variants with each cell type and TF annotation on the variant posterior probabilities (πc) using all 
variants in the 95 credible regions (ie 100% credible sets). We used a generalized linear model where the 
dependent variable is πc value for each variant and the predictor variable is a binary indicator of overlap of the 
variant and the annotation, a (1 if yes, 0 if no). We included several additional binary indicators for generic gene-
based annotations in the model for each annotation - 3UTR (u), 5UTR (v), coding exon (c), and within 1kb 
upstream of GENCODE Tss (t) - as well as a categorical variable for locus membership (l). 

 
For each annotation, we obtained the estimated effect size and standard error from this model. We then re-
calculated the standard error using the sandwich variance estimator (R package sandwich). We calculated a z-
score by dividing the effect size by the re-estimated standard error, and calculated a two-sided p-value from the z-
score. We also applied this model to the three subsets of loci visually identified from the hierarchical clustering as 
having similar T2D-related trait association patterns. In each analysis, we considered an annotation significant if it 
reached a Bonferroni-corrected p-value threshold of 2x10-4 (.05/256 annotations).  
Pathway analyses with DEPICT 
We used the Data-driven Expression Prioritized Integration for Complex Traits (DEPICT) tool (57) to i) prioritize 
genes that may represent promising candidates for T2D pathophysiology, and (ii) identify reconstituted gene sets 
that are enriched in genes from associated regions and might be related to T2D biological pathways. As input we 
used independent SNVs (LD-pruning parameters: r2<0.05 in the 1000 Genomes project phase 1 reference panel 
including 268 unrelated individuals from CEU, GBR and TSI populations; release date 2011-05-21; physical 
distance threshold=500kb) selected from the set including stage1 meta-analysis SNVs with p<10-5 and lead 
variants at established loci. We then used the DEPICT method (57) to construct associated regions by mapping 
genes to independently associated SNVs, if they overlapped or resided within LD window (r2 >.0.5) with the 
independently associated SNV. Variants within the major histocompatibility complex region (chromosome 6, 
base pairs 25,000,000 through 35,000,000) were excluded. This gave 206 independent regions covering 328 genes 
for the analysis with DEPICT.  For the calculation of empirical enrichment p values, we used 200 sets of SNVs 
randomly drawn from entire genome within regions matching by gene density; we performed 20 replications for 
FDR estimation. For each significantly enriched reconstituted gene set, we plotted the five genes that most 
strongly mapped to the given gene sets and resided within an associated T2D locus. The mapping strength 
between a gene and a reconstituted gene set was denoted by a Z-score shown in parenthesis after the gene 

http://www.r-project.org/
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identifier in Supplementary Table 10. After the gene set enrichment analysis, we omitted reconstituted gene sets 
for which genes in the original gene set were not nominally enriched (Wilcoxon rank-sum test). By design, genes 
in the original gene set are expected to be enriched in the reconstituted gene set; lack of enrichment complicates 
interpretation of the reconstituted gene set because the label of the reconstituted gene set will be inaccurate. Using 
this procedure the “Megacephaly” reconstituted gene set was removed from the results. To visualize the 20 
reconstituted gene sets with p<10-5 in Cytoscape (58) (Supplementary Figure 10), we estimated their overlap by 
computing the pairwise Pearson correlation coefficient r between each pair of gene sets followed by discretization 
into one of three bins; 0.3≤ρ<0.5 as low overlap, 0.5≤ρ<0.7 as medium overlap, and ρ≥0.7 as high overlap. 
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Supplementary Figure 1. QQ- and Manhattan plots of the discovery association meta-analysis results. A) 
QQ-plot of all the signals. B) QQ-plot of previously established signals. C) QQ-plot of novel signals. D) 
Manhattan plot. Signals of association reaching genome-wide significance for the first time in the present study 
(p<5x10-8) are colored in red; blue dots represent previously established loci (Supplementary Table 3). The Y-
axis was trimmed at –log10(p-value)=40 for easier visualisation; the TCF7L2 association signal (p=1.35×10-81) 
falls far beyond this range (Supplementary Table 3).  
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Supplementary Figure 2. Regional plots for the thirteen novel T2D loci. In the left panel, the plot is based 
using all 1000 Genomes March 2012 multi-ethnic SNV set, whereas in the right panel the plot is restricted to 
SNVs present in HapMap CEU reference set. 
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Supplementary Figure 3. QQ-plot of the expected vs. observed P-values for heterogeneity between BMI-
adjusted and unadjusted association analysis models for established and novel T2D loci. The FTO, TCF7L2, 
MC4R and SLC30A8 loci show large differences between models (pheterogeneity=5.70x10-29 3.51x10-13,  5.54x10-6 and 
6.94x10-5, respectively). 
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Supplementary Figure 4. Regional plots for T2D loci showing additional distinct signals (p<10-5) in the 
approximate conditional analysis. First, unconditional analysis results are shown, followed by results 
conditioned on the lead SNV and other distinct signals. In the last plot for each locus the results for lead SNV 
conditional on the distinct signal(s) are shown. 
 

 
 



SUPPLEMENTARY DATA 

©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1253/-/DC1 

 
 



SUPPLEMENTARY DATA 

©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1253/-/DC1 

 
 



SUPPLEMENTARY DATA 

©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1253/-/DC1 

 
 



SUPPLEMENTARY DATA 

©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1253/-/DC1 

 
 

 
 



SUPPLEMENTARY DATA 

©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1253/-/DC1 

Supplementary Figure 5. Forest plots of the A) putative low frequency distinct signal (rs188827514) and B) 
previously established (Steinthorsdottir et al.) low-frequency variant (rs76895963) at CCND2 for their 
associations with T2D. Odds ratios (OR) with their 95% confidence intervals (CI) are shown from unconditioned 
models. 
 

 
Supplementary Figure6. Regional architecture of TP53INP1 locus. In the right panel the figure is plotted 
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using all 1000 Genomes SNVs and highlights the new lead SNV (rs11786613) independent from the previous 
lead variant, signal visible in the left panel the plot is restricted to SNVs present in HapMap. 
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Supplementary Figure 7. Association of variation in GLP2R with T2D after approximate conditional 
analyses on either A) the lead SNV (rs78761021), or B) D470N.  
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Supplementary Figure 8. Effects on T2D of 50 established T1D variants. All effects are aligned to T1D risk-
raising allele. Loci are sorted from top to bottom by the magnitude of association with T1D.  
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Supplementary Figure 9. Significantly enriched reconstituted gene sets by DEPICT. We report 20 
significantly enriched reconstituted gene sets (FDR<0.05, Supplementary Table 11). Reconstituted gene sets are 
represented by nodes and their overlap by edges. Reconstituted gene sets are colour-coded based on their degree 
of enrichment in genes at the associated T2D loci (darker means more significant). DEPICT identified 21 
significantly enriched reconstituted gene sets; one gene set was omitted due to a potential mismatch between the 
reconstituted gene set identifier and the reconstituted gene set (see Methods). For each gene set, the three genes 
exhibiting the highest likelihood within the given gene set and being within associated T2D loci are shown. 
Pairwise overlap between reconstituted gene sets were estimated by computing the Pearson correlation coefficient 
r between two reconstituted gene sets followed by discretization into one of three bins; 0.3≤ r <0.5 denotes low 
overlap, 0.5≤ r <0.7 denotes medium overlap, and r≥0.7 denotes high overlap. Edges representing overlap 
corresponding to r <0.3 are not shown. 
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Supplementary Figure 10. Type 2 diabetes credible sets are enriched for genomic annotations. We 
calculated the posterior probability of causality for all variants at 95 established T2D loci. We then tested the 
effect of variants annotated with protein-coding genes, cell type chromatin state, and transcription factor binding 
on the posterior probabilities across all loci. We identified significant effects among coding exons and pancreatic 
islet chromatin, and for binding sites of the FOXA2, NKX2.2, PDX1, and EZH2 transcription factors.  
 

 
 



SUPPLEMENTARY DATA 

©2017 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db16-1253/-/DC1 

Supplementary Figure 11. Genomic annotation at credible sets of novel loci. A) The T2D signal at the BCAR1 
locus contains a variant rs8056814 with a 57% probability of being causal for the signal. This variant overlaps an 
enhancer active in pancreatic islets proximal to the CTRB1 gene. B) The novel T2D signal at the CMIP locus is 
also associated with BMI and lipid phenotypes. The variant rs2925979 has a 91% probability of being causal for 
the CMIP signal and overlaps an enhancer active in liver, which is the most enriched cell type in the BMI/lipid 
physiology group.  
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BIOLOGY BOX  
 
ACSL1: chr4:185708807 (rs60780116) is an intronic variant in acyl-CoA synthetase long chain family member 1 
coding gene (ACSL1), an isozyme that converts free long-chain fatty acids into fatty acyl-CoA esters, playing a 
key role in lipid biosynthesis and fatty acid degradation. ACSL1 is highly expressed in adipose, liver, skeletal 
muscle tissue and in whole blood, but expressed at lower levels in pancreas(1). Recent reports have implicated 
ACSL1 in regulating systemic glucose homeostasis(2), potentially via an effect on metabolic flexibility and 
capacity to switch between fatty acid and glucose metabolism. Variants in ACSL1 have previously been 
associated with Kawasaki disease(3) (r2=0.12).    
HLA-DQA1:  Variation in the HLA region has been strongly associated with T1D(4) (r2=0.08) and other 
autoimmune diseases, including multiple sclerosis(5) (r2=0.47) and inflammatory bowel disease(6) (r2=0.13). 
Associations with total cholesterol and LDL cholesterol have also been reported(7) (r2=0.06). The lead SNV for 
T2D association in the HLA region (chr6:32594309; rs9271774) lies ~2kb upstream of HLA-DQA1. It is in high 
LD (r2=0.82) with a SNV strongly associated with expression of HLA-DRB5 in pancreatic islets(8). Analyses (see 
main text) suggest that the T2D association is not the result of misclassification of individuals with T1D as T2D 
cases in the present study.  
SLC35D3: Index variant chr6:137287702 (rs6918311) is located ~20kb downstream of the RNA gene NHEG1 
(neuroblastoma highly expressed 1), which has no well characterized function. Also proximal to the lead SNV 
are: (1) SLC35D3, which is a member of the solute carrier family 35 and a regulator of the biosynthesis of 
platelet-dense granules with possible role in carbohydrate transport; (2) PEX7,  (peroxisomal biogenesis factor 7) 
encoding for the cytosolic receptor for the set of peroxisomal matrix enzymes, which is involved in cell 
metabolism and is associated with peroxisome biogenesis disorders and implicated in autism; and (3) IL20RA, 
which encodes for a subunit of the receptor for interleukin 20, and is a cytokine suggested to be involved in 
epidermal function. 
MNX1: chr7:157027753 (rs1182436) is an intronic variant in UBE3C, which encodes for a ubiquitin protein 
ligase. The lead SNV in the locus lies ~100kb upstream of MNX1, which is highly expressed in pancreas(1)  
containing coding mutations recently implicated in neonatal diabetes(9).  
ABO: chr9:136155000 (rs635634) variant lies ~5kb upstream of ABO gene, which determines blood group by 
modifying the oligosaccharides on cell surface glycoproteins. Variation in or near ABO has been associated with a 
very wide range of phenotypes, including glycaemic(10), lipid traits (7) (r2=1), coronary artery disease(11) and 
stroke(12) (r2=0.83). The lead variant at this locus is in low LD (r2<0.05) with blood group-defining markers(13).  
PLEKHA1: chr10:124186714 (rs2292626) is an intronic variant in PLEKHA1 (pleckstrin homology domain 
containing, family A member 1). The encoded protein localises to the plasma membrane where it specifically 
binds phosphatidylinositol 3,4-bisphosphate. This protein may be involved in the formation of signalling 
complexes in the plasma membrane. Variants in modest LD (rs10490924; r2=0.27) have been associated with age-
related macular degeneration(14). 
 
HSD17B12: chr11:43877934 is a 3’UTR variant of HSD17B12 encoding the enzyme 17-beta hydroxysteroid 
dehydrogenase-12.  HSD17B12 encodes 17beta-hydroxysteroid dehydrogenase, involved in fatty acid 
metabolism(15) and estrogen sex steroid hormone formation. HSD17B12 has been identified as central to 
adipocyte differentiation(16), and a correlated variant (rs2176598; r2=0.68) was recently associated with BMI(17). 
However, rs1061810 remained associated with T2D after adjustment for BMI, and we found only a nominal 
difference in the association of rs1061810 with T2D in meta-analyses with or without adjustment for BMI 
(Supplementary Table 4), potentially indicating a role for HSD17B12 in risk of diabetes independently of 
associations with adiposity. Other associations from this locus have been reported with forced vital capacity(18) 
(r2=0.59) and neuroblastoma(19) (r2=0.24).  
MAP3K11: chr11:65364385 (rs111669836) is located next to KCNK7 (potassium channel, subfamily K, member 
7) gene, a member of the superfamily of potassium channel proteins. MAP3K11 encodes the Mitogen-activated 
protein kinase 11, part of the serine/threonine kinase family. MAP3K11 has been implicated in regulation  of 
pancreatic beta-cell death(20). Variation at this locus has previously been associated with e.g. height(21) (r2=0.02)  
and lipid levels(7) (r2=0.08). 
NRXN3: chr14:79945162 (rs10146997) is an established variant associated with waist circumference(22), 
BMI(23)  and obesity(24). It is an intronic variant in the NRXN3 (Homo sapiens neurexin 3) gene, which is part 
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of a family of central nervous adhesion molecules It is expressed in the same sub-cortical regions where reward 
training neuronal pathways are expressed. 
CMIP: chr16:81534790 (rs2925979). This gene encodes a c-Maf inducing protein that plays a role in the T-cell 
signalling pathway. C-mip down-regulates NF-κB activity and promotes apoptosis in podocytes(25)  in cases of 
idiopathic nephrotic syndrome (INS). Associations with WHR(26), adiponectin(27)  and HDL cholesterol(7) 
levels have been reported for this same variant. 
ZZEF1: chr17:4014384 (rs7224685) is an intronic variant in the ZZEF1 (zinc finger, ZZ-type with EF-hand 
domain 1) gene related to calcium ion binding. This locus was previously implicated in functional impairment in 
major depressive disorder, bipolar disorder and schizophrenia(28).  
GLP2R: chr17:9780387 (rs78761021) is an intronic variant in the glucagon-like peptide 2 receptor (GLP2R) gene 
belonging to a G protein-coupled receptor superfamily. It is closely related to the glucagon receptor (GCGR) and 
GLP1R. Glucagon-like peptide-2 (GLP2) is a 33-amino acid proglucagon-derived peptide produced by intestinal 
enteroendocrine cells.  
GIP: the nearest gene to the detected signal (chr17:46967038, rs12941263) in this region is ATP5G1, coding for a 
subunit of mitochondrial ATP synthase and involved in “energy production”, in lipid transports and in cellular 
metabolism. Another gene within locus, GIP encodes an incretin hormone that belongs to the glucagon 
superfamily and is gastric inhibitory polypeptide. GIP is a potent stimulator of insulin secretion from pancreatic 
beta-cells following food ingestion and nutrient absorption via its G protein-coupled receptor activation of 
adenylyl cyclase and other signal transduction pathways(29). Variants (rs46522, rs318095) in high LD (r2=0.97) 
with our identified SNV at GIP have been associated with susceptibility to coronary heart disease(11) and  
height(30). Variation in the receptor for GIP (GIPR) have previously been associated with glycemic traits and 
T2D(31,32). 
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