Calculation of plasma levels of bioavailable 25-hydroxyvitamin D

Definitions:

 $[D_{total}]$ = measured total 25-hydroxyvitamin D levels in nmol/L × 10⁻⁹ = total 25hydroxyvitamin D levels in mol/L [Alb] = measured albumin levels in g/dL ÷ 6,643g/mol = albumin levels in mol/L $[VDBP_{total}] =$ measured vitamin D binding protein levels in mg/L × 10⁻³ ÷ 58,000g/mol = VDBP levels in mol/L $[D_{Alb}]$ = albumin-bound 25-hydroxyvitamin D levels in mol/L [D_{VDBP}] = vitamin D binding protein-bound 25-hydroxyvitamin D levels in mol/L [D_{free}] = free (unbound) 25-hydroxyvitamin D levels in mol/L $[D_{bioavailable}] = bioavailable 25-hydroxyvitamin D levels in mol/L = [D_{free}] + [D_{Alb}]$ K_{Alb} = affinity constant between 25-hydroxyvitamin D and albumin = 6 x 10⁵ mol⁻¹ K_{VDBP} = affinity constant between 25-hydroxyvitamin D and vitamin D binding protein = 7 × 10⁸mol⁻¹ Equations: $[D_{VDBP}] = [D_{total}] - [D_{Alb}] - [D_{free}]$ (1) $[D_{Alb}] = K_{Alb} \times [Alb] \times [D_{free}]$ (2) $[D_{VDBP}] = K_{VDBP} \times [D_{free}] \times ([VDBP_{total}] - [D_{VDBP}])$ (3) From equations (1) and (2) $[D_{VDBP}] = [D_{total}] - (K_{Alb} \times [Alb] + 1) \times [D_{free}]$ (4) From equations (3) and (4) $[D_{\text{free}}] = \{[D_{\text{total}}] - (K_{\text{Alb}} \times [\text{Alb}] + 1) \times [D_{\text{free}}]\} \div K_{\text{VDBP}} \div ([\text{VDBP}_{\text{total}}] - \{[D_{\text{total}}] - (K_{\text{Alb}} \times [D_{\text{ID}}])\}$ (5) $[Alb] + 1) \times [D_{free}]\})$ This can be simplified to fit a second-degree polynomial $(ax^2 + bx + c = 0)$ where $x = [D_{free}]$: $a = K_{VDBP} \times K_{Alb} \times [Alb] + K_{VDBP}$ $b = K_{VDBP} \times [VDBP_{total}] - K_{VDBP} \times [D_{total}] + K_{Alb} \times [Alb] + 1$ $c = - [D_{total}]$ $\begin{bmatrix} D_{\text{free}} \end{bmatrix} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $\begin{bmatrix} D_{\text{bioavailable}} \end{bmatrix} = \begin{bmatrix} D_{\text{free}} \end{bmatrix} + \begin{bmatrix} D_{\text{Alb}} \end{bmatrix} = (K_{\text{Alb}} \times [\text{Alb}] + 1) \times [D_{\text{free}}]$