SUPPLEMENTARY MATERIAL

Keeping it complicated: Mitochondrial genome plasticity across diplonemids

Matus Valach ^{1,†}, Sandrine Moreira ^{1,10,†}, Steve Hoffmann ², Peter F. Stadler ^{3,4,5,6,7,8,9}, Gertraud Burger ¹

¹ Department of biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, 2900 Edouard-Montpetit, Montreal H3T 1J4, QC, Canada

² Leipzig University, LIFE - Leipzig Research Center for Civilization Diseases, Haertelstrasse 16-18, Leipzig, D-04107, Germany

³ Bioinformatics Group, Department Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany

⁴ German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, University Leipzig, D-04107 Leipzig, Germany

⁵ Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, D-04103 Leipzig, Germany

⁶ Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, D-04103 Leipzig, Germany

⁷ Department of Theoretical Chemistry of the University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria
 ⁸ Center for RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark

9 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

¹⁰ Present address: Department of Biochemistry and Molecular Biophysics, Columbia University, Hammer Health Science Center, 701 W 168th St, New York, NY 10031, USA

[†] These authors contributed equally to this work.

* Correspondence and requests for materials should be addressed to G.B. (email: gertraud.burger@umontreal.ca) or M.V. (email: matus.a.valach@gmail.com).

Gene	Module	Module ID ^a	5' end ^b	3' end ^b	Gene module	Transcript module
					size ^c [bp]	size ^d [bp]
atp6	ml	Da atp6-m1	curated	curated	162	162
1		Dp atp6-m1	curated	unambiguous	168	168
		Ds atp6-m1	curated homology	curated	165	165
		Re ^{atp6-m1}	curated homology	curated	156	156
	m2	$Da^{-}atp6-m2$	curated	unambiguous	269	269
		Dn atn6-m2	unambiguous	curated	269	269
		Ds atn6-m2	curated	unambiguous	269	269
		$Re_{atn6-m2}$	curated	curated	269	269
	m3	$Da_{atn6-m3}$	unambiguous	ambiguous II -?	143	143
	mo	$Dn_atn6_m^3$	curated	ambiguous_U_1	140	140
		Dy apo-ms Ds atn6-m3	unambiguous	ambiguous_U1	140	143
		R_{e} at $n6-m3$	curated	curated homology	142	142
coh	m1	Da coh ml	ourated	curated	142	142
000	1111	Du_{cob-ml}	curated	unambiguous	108	198
		$Dp_{cob}ml$	curated homology	ourated	108	198
		$Ds_{cob} m1$	curated_homology	unambiguous	198	198
		Re_coo-m1	curated_nonology	unanioiguous	190	198
	m2	Da_cob-m_2	curated	curated	154	154
		Dp_cob-m2	unambiguous	curated	154	154
		Ds_cob-m2	curated	curated	154	154
	2	Re_cob-m2	curated	unambiguous	154	154
	m3	Da_cob-m3	curated	curated	138	138
		Dp_cob-m3	curated	unambiguous	138	138
		Ds_cob-m3	curated	curated	138	138
		Re_cob-m3	curated	curated	138	138
	m4	Da_cob-m4	curated	curated	198	198
		Dp_cob-m4	unambiguous	unambiguous	198	198
		Ds_cob-m4	curated	curated	198	198
		Re cob-m4	curated	unambiguous	198	198
	m5	Da_cob-m5	curated	unambiguous	279	279
		Dp cob-m5	unambiguous	unambiguous	279	279
		Ds_cob-m5	curated	curated	279	279
		Re cob-m5	curated	unambiguous	279	279
	m6	Da cob-m6	unambiguous	unambiguous	123	126
		Dp_cob-m6	unambiguous	ambiguous U -1	123	126
		Ds cob-m6	curated	ambiguous U-1	126	126
		Re cob-m6	unambiguous	unambiguous	122	126
coxl	ml	Da cox1-m1	curated	unambiguous	192	192
		Dp cox1-m1	curated	curated	195	195
		Ds cox1-m1	curated homology	curated	189	189
		Re ^c ox1-m1	curated homology	curated	189	189
	m2	$Da^{-}cox1-m2$	curated 03	curated	124	124
		Dp cox1-m2	curated	curated	124	124
		Ds cox1-m2	curated	unambiguous	124	124
		$Re cox 1-m^2$	curated	curated	124	124
	m3	Da cox1-m3	curated	curated	263	263
		Dp cox1-m3	curated	unambiguous	263	263
		Ds cox1-m3	curated	unambiguous	263	263
		Re cox1-m3	curated	curated	263	263
	m4	Da cox 1-m4	curated	unambiguous	220	226
		Dn corl-m4	unambiguous	unambiguous	220	226
		Ds cox1-m4	unambiguous	unambiguous	220	226
		Re cox 1-m4	curated	unambiguous	220	226
	m5	Da corl.m5	unambiguous	curated	170	170
	111.5	Dn cox l-m5	unambiguous	curated	179	179

Supplementary Table S1. Catalog of all detected modules in the four diplonemids.

Gene	Module	Module ID ^a	5' end ^b	3' end ^b	Gene module	Transcript module
					size ^c [bp]	size ^d [bp]
		Ds_cox1-m5	curated	unambiguous	179	179
		Re_cox1-m5	unambiguous	curated	179	179
	m6	Da_cox1-m6	curated	unambiguous	169	169
		Dp_cox1-m6	curated	unambiguous	169	169
		Ds cox1-m6	curated	unambiguous	169	169
	-	Re_cox1-m6	curated	curated	169	169
	m/	Da_cox1-m/	unambiguous	unambiguous	90	90
		$Dp_cox1-m/$	unambiguous	curated	90	90
		$Ds_cox1-m/$	curated	curated	90	90
	0	Re_cox1-m/	curated	unamolguous	90	90
	mð	$Da_cox1-m8$	unambiguous	curated	110	110
		Dp_cox1-m8	curated	curated	110	110
		Ds_cox1-m8	curated	unambiguous	110	110
		Re_cox1-m8	unambiguous	curated	110	110
	m9	Da_cox1-m9	curated	unambiguous	246	246
		$Dp_cox1-m9$	curated	unambiguous	249	250
		Ds_cox1-m9	unambiguous	ambiguous_UA4	237	237
		Re_cox1-m9	curated	curated	246	251
cox2	ml	Da_cox2-m1	curated	unambiguous	236	236
		$Dp_cox2-m1$	curated	curated	236	236
		Ds_cox2-m1	curated_homology	unambiguous	236	236
		Re_cox2-m1	curated_homology	unambiguous	236	236
	m2	Da_cox2-m2	unambiguous	curated	158	158
		Dp_cox2-m2	curated	curated	158	158
		Ds_cox2-m2	curated	unambiguous	158	158
		Re_cox2-m2	curated	unambiguous	158	158
	m3	Da_cox2-m3	curated	unambiguous	76	76
		Dp_cox2-m3	curated	unambiguous	76	76
		Ds_cox2-m3	unambiguous	curated	76	76
		Re_cox2-m3	unambiguous	curated	76	76
	m4	Da_cox2-m4	unambiguous	ambiguous_U2	126	128
		Dp_cox2-m4	unambiguous	unambiguous	125	128
		Ds_cox2-m4	curated	unambiguous	125	128
		Re_cox2-m4	curated	unambiguous	125	128
cox3	m1	Da_cox3-m1	curated	curated	338	338
		Dp cox3-m1	curated	unambiguous	344	344
		Ds cox3-m1	curated homology	unambiguous	335	335
		Re ⁻ cox3-m1	curated_homology	curated	335	335
	m2	$Da_cox3-m2$	curated	unambiguous	266	266
		Dp cox3-m2	unambiguous	curated	266	266
		Ds cox3-m2	unambiguous	unambiguous	266	266
		Re ^c ox3-m2	curated	curated	266	266
	m3	$Da^{-}cox3-m3$	unambiguous	ambiguous U -1	231	231
		Dp cox3-m3	curated	unambiguous	230	231
		Ds cox3-m3	unambiguous	ambiguous U -1	231	231
		$Re cox_3-m_3$	curated	ambiguous U -1	223	225
nad1	m1	Da nadl-ml	curated	unambiguous	189	189
		Dp nad1-m1	curated	curated	189	189
		Ds nadl-ml	curated homology	curated	189	189
		Re nad1-m1	curated homology	curated	189	189
	m2	Da nadl-m?	unambiguous	curated	114	114
		$Dn nad1-m^2$	curated	unambiguous	114	114
		D_{s} nadl_m?	curated	unamhiguous	114	114
		Re nad1-m2	curated	unambiguous	114	114

Gene	Module	Module ID ^a	5' end ^b	3' end ^b	Gene module	Transcript module
	-				size ^c [bp]	size ^d [bp]
	m3	Da_nad1-m3	curated	curated	166	166
		$Dp_nad1-m3$	unambiguous	curated	166	166
		Ds_nad1-m3	unambiguous	unambiguous	166	166
		Re_nad1-m3	unambiguous	curated	166	166
	m4	Da_nad1-m4	curated	unambiguous	233	233
		Dp_nad1-m4	curated	curated	233	233
		Ds_nad1-m4	curated	unambiguous	233	233
	_	Re_nad1-m4	curated	unambiguous	233	233
	m5	Da_nad1-m5	unambiguous	unambiguous	205	220
		Dp_nad1-m5	curated	unambiguous	204	220
		Ds_nad1-m5	unambiguous	unambiguous	200	217
		Re_nad1-m5	curated	ambiguous_U2	200	220
nad4	ml	Da_nad4-m1	curated_homology	unambiguous	247	247
		Dp_nad4-m1	curated	curated	247	247
		Ds_nad4-m1	curated_homology	unambiguous	247	247
		Re_nad4-m1	curated_homology	curated	247	247
	m2	Da_nad4-m2	unambiguous	curated	225	225
		Dp_nad4-m2	curated	curated	225	225
		Ds_nad4-m2	unambiguous	unambiguous	225	225
		Re_nad4-m2	curated	unambiguous	225	225
	m3	Da_nad4-m3	curated	curated	171	171
		Dp_nad4-m3	curated	unambiguous	168	168
		Ds_nad4-m3	unambiguous	unambiguous	168	168
		Re_nad4-m3	curated	unambiguous	168	168
	m4	Da_nad4-m4	curated	unambiguous	134	136
		Dp_nad4-m4	unambiguous	unambiguous	134	136
		Ds_nad4-m4	curated	curated	131	133
		Re_nad4-m4	unambiguous	curated	134	136
	m5	Da_nad4-m5	unambiguous	unambiguous	74	74
		Dp nad4-m5	unambiguous	unambiguous	74	74
		Ds_nad4-m5	unambiguous	unambiguous	74	74
		Re_nad4-m5	curated	curated	74	74
	m6	Da nad4-m6	unambiguous	unambiguous	165	165
		Dp nad4-m6	unambiguous	unambiguous	165	165
		Ds nad4-m6	curated	unambiguous	165	165
		Re ⁻ nad4-m6	curated	unambiguous	165	165
	m7	Da nad4-m7	unambiguous	curated	120	120
		Dp nad4-m7	unambiguous	unambiguous	120	120
		Ds nad4-m7	unambiguous	curated	120	120
		Re nad4-m7	unambiguous	unambiguous	120	120
	m8	Da nad4-m8	curated	curated	164	171
		Dp nad4-m8	unambiguous	unambiguous	170	172
		Ds nad4-m8	curated	ambiguous U -1	174	174
		Re nad4-m8	curated	curated	143	149
nad5	ml	Da nad5-m1	curated homology	unambiguous	288	288
		Dp nad5-m1	curated	curated	291	291
		Ds nad5-m1	curated homology	curated	294	294
		Re nad5-m1	curated homology	curated	288	288
	m2	Da nad5-m2	unambiguous	curated	218	218
		Dn nad5-m2	curated	unambiguous	218	218
		D_{s} nad 5-m?	curated	curated	218	218
		Re nad5-m2	curated	unambiguous	218	218
	m3	Da nad5-m3	curated	unambiguous	57	57
		Dn nad5-m3	unambiguous	unambiguous	60	60
		r				

Gene	Module	Module ID ^a	5' end ^b	3' end ^b	Gene module	Transcript module
				-	size ^c [bp]	size ^d [bp]
		Ds_nad5-m3	curated	curated	66	66
		Re_nad5-m3	curated	curated	57	57
	m4	Da_nad5-m4	unambiguous	curated	186	186
		Dp_nad5-m4	unambiguous	unambiguous	183	183
		Ds_nad5-m4	curated	unambiguous	183	183
		Re_nad5-m4	curated	unambiguous	183	183
	m5	Da_nad5-m5	curated	unambiguous	136	136
		Dp_nad5-m5	unambiguous	unambiguous	136	136
		Ds_nad5-m5	unambiguous	unambiguous	136	136
		Re_nad5-m5	curated	unambiguous	136	136
	m6	Da_nad5-m6	unambiguous	unambiguous	122	122
		Dp_nad5-m6	unambiguous	curated	122	122
		Ds_nad5-m6	unambiguous	curated	122	122
		Re_nad5-m6	unambiguous	unambiguous	122	122
	m7	Da_nad5-m7	unambiguous	unambiguous	188	195
		Dp_nad5-m7	curated	unambiguous	201	201
		Ds_nad5-m7	curated	unambiguous	194	201
		Re_nad5-m7	curated	curated	192	192
	m8	Da_nad5-m8	unambiguous	curated	84	84
		Dp_nad5-m8	unambiguous	unambiguous	90	90
		Ds_nad5-m8	curated	unambiguous	81	81
		Re nad5-m8	curated	curated	87	87
	m9	Da_nad5-m9	curated	curated	182	182
		Dp nad5-m9	unambiguous	curated	191	191
		Ds nad5-m9	curated	unambiguous	188	188
		Re nad5-m9	curated	curated	179	179
	m10	Da_nad5-m10	curated	curated	116	116
		Dp nad5-m10	curated	unambiguous	113	113
		Ds nad5-m10	unambiguous	unambiguous	125	125
		Re nad5-m10	curated	curated	104	110
	m11	Da nad5-m11	curated	ambiguous_U1	48	73
		$Dp_nad5-m11$	unambiguous	ambiguous_U1	73	73
		Ds nad5-m11	curated	curated	75	76
		Re nad5-m11	curated	unambiguous	47	73
nad7	m1	Da nad7-m1	curated	unambiguous	173	173
		Dp nad7-m1	curated	curated	173	173
		Ds nad7-m1	curated homology	curated	173	173
		Re ⁻ nad7-m1	curated_homology	curated	173	173
	m2	Da nad7-m2	unambiguous	unambiguous	75	75
		Dp nad7-m2	curated	unambiguous	75	75
		Ds nad7-m2	curated	curated	75	75
		Re nad7-m2	curated	curated	75	75
	m3	Da nad7-m3	unambiguous	unambiguous	133	133
		Dp nad7-m3	unambiguous	unambiguous	133	133
		Ds nad7-m3	curated	unambiguous	133	133
		Re nad7-m3	curated	curated	133	133
	m4	Da nad7-m4	unambiguous	unambiguous	64	64
		Dp_nad7-m4	unambiguous	unambiguous	64	64
		Ds nad7-m4	unambiguous	curated	64	64
		Re nad7-m4	curated	curated	64	64
	m5	Da nad7-m5	unambiguous	unambiguous	192	192
		Dp nad7-m5	unambiguous	curated	192	192
		Ds nad7-m5	curated	unambiguous	186	186
		Re nad7-m5	curated	unambiguous	189	189

Gene	Module	Module ID ^a	5' end ^b	3' end ^b	Gene module	Transcript module
					size ^c [bp]	size ^d [bp]
	m6	Da_nad7-m6	unambiguous	curated	66	66
		Dp_nad7-m6	curated	unambiguous	66	66
		Ds_nad7-m6	unambiguous	unambiguous	66	66
		Re_nad7-m6	curated	curated	66	66
	m7	Da_nad7-m7	curated	curated	169	169
		Dp_nad7-m7	unambiguous	unambiguous	169	169
		Ds_nad7-m7	unambiguous	unambiguous	157	157
		Re_nad7-m7	curated	unambiguous	166	166
	m8	Da_nad7-m8	curated	curated	176	176
		Dp_nad7-m8	unambiguous	curated	182	182
		Ds_nad7-m8	unambiguous	unambiguous	179	179
		Re_nad7-m8	unambiguous	curated	185	185
	m9	Da_nad7-m9	curated	ambiguous_U1	78	78
		Dp_nad7-m9	curated	ambiguous_UA2	79	79
		Ds_nad7-m9	curated	ambiguous_U1	78	78
		Re_nad7-m9	curated	ambiguous_UA2	79	79
nad8	ml	Da_nad8-m1	curated_homology	unambiguous	144	144
		Dp_nad8-m1	curated	unambiguous	144	144
		Ds_nad8-m1	curated_homology	unambiguous	150	150
		Re_nad8-m1	curated_homology	unambiguous	144	144
	m2	Da_nad8-m2	unambiguous	curated	153	153
		Dp_nad8-m2	unambiguous	curated	153	153
		Ds_nad8-m2	unambiguous	unambiguous	153	153
		Re_nad8-m2	curated	unambiguous	150	150
	m3	Da_nad8-m3	curated	curated	78	85
		Dp_nad8-m3	curated	unambiguous	72	84
		Ds_nad8-m3	unambiguous	curated	75	76
		Re_nad8-m3	unambiguous	curated	81	89
rnl	m1	Da_rnl-m1	curated	unambiguous	542	568
		Dp_rnl-m1	curated	curated	534	560
		Ds_rnl-m1	curated_homology	unambiguous	521	546
		Re_rnl-m1	curated_homology	ambiguous_U1	525	555
	m2	Da_rnl-m2	curated	curated	352	352
		Dp_rnl-m2	curated	curated	352	352
		Ds_rnl-m2	ambiguous_U_+1	curated	339	339
		Re_rnl-m2	unambiguous	curated	340	340
rns	ml	Da_rns-m1	curated	curated	372	381
		Dp_rns-m1	curated	curated	366	374
		Ds_rns-m1	curated	ambiguous_U1	386	391
		Re_rns-m1	curated_homology	unambiguous	363	372
уl	ml	Da_y1-m1	curated_homology	curated	241	241
		Dp_y1-m1	curated	unambiguous	241	241
		Ds_y1-m1	curated_homology	unambiguous	244	244
		Re_y1-m1	curated_homology	unambiguous	241	241
	m2	Da_y1-m2	curated	curated	77	97
		Dp_y1-m2	unambiguous	ambiguous_U1	101	105
		Ds_y1-m2	unambiguous	ambiguous_U3	100	102
		Re_y1-m2	curated	curated	83	94
y2	ml	Da_y2-m1	curated_homology	curated	241	241
		Dp_y2-m1	curated_homology	unambiguous	235	235
		Ds_y2-m1	curated_homology	curated	244	244
		Re_y2-m1	curated_homology	curated	242	242
	m2	Da_y2-m2	curated	curated	97	97
		Dp_y2-m2	unambiguous	curated	94	94

Gene	Module	Module ID ^a	5' end ^b	3' end ^b	Gene module size ^c [bp]	Transcript module size ^d [bp]
		Ds_y2-m2	curated	unambiguous	73	73
		$Re^{-}y2-m2$	curated	unambiguous	78	78
	m3	Da y2-m3	curated	unambiguous	93	111
		$Dp^{-}y2-m3$	curated	ambiguous U -1	97	115
		Ds y2-m3	curated	unambiguous	96	115
		$Re^{-}y2-m3$	unambiguous	ambiguous U -1	97	115
	m4	Da y2-m4	curated	ambiguous U-1	68	68
		$Dp^{-}y2-m4$	unambiguous	unambiguous	53	64
		Ds y2-m4	curated	unambiguous	62	67
		Re_y^2-m4	unambiguous	curated	58	64
у3	ml	Da_y3-m1	curated_homology	unambiguous	179	179
		Dp_y3-m1	curated	unambiguous	194	194
		Re y3-m1	curated homology	curated	170	170
	m1m2	$Ds_y3-m1m2$	curated_homology	unambiguous	285	285
	m2	Da y3-m2	unambiguous	unambiguous	109	109
		Dp_y3-m2	unambiguous	curated	109	109
		<i>Re y3-m2</i>	curated	unambiguous	106	106
		Da y3-m3	unambiguous	unambiguous	141	168
	m3	$Dp^{-}y3-m3$	curated	unambiguous	141	168
		Ds y3-m3	unambiguous	unambiguous	140	168
		Re_y3-m3	unambiguous	ambiguous_U1	144	171
	m4	Da y3-m4	curated	ambiguous_U1	360	375
		Dp_y3-m4	unambiguous	ambiguous_U1	368	384
		Ds y3-m4	unambiguous	curated	368	384
		Re_y3-m4	unambiguous	ambiguous_U1	367	381
	m5	Da y3-m5	curated	unambiguous	133	136
		$Dp^{-}y3-m5$	unambiguous	unambiguous	126	127
		Ds y3-m5	unambiguous	ambiguous U -1	129	136
		Re y3-m5	unambiguous	ambiguous U-1	128	130
y5	m1	Da y5-m1	curated homology	ambiguous U -1	186	236
		Dp y5-m1	curated	unambiguous	195	245
		Ds_y5-m1	curated_homology	ambiguous_U1	198	248
		Re_y5-m1	curated_homology	unambiguous	194	242
	m2	Da_y5-m2	unambiguous	curated	109	109
		Dp y5-m2	unambiguous	unambiguous	109	109
		Ds_y5-m2	curated	unambiguous	121	121
		<i>Re y5-m2</i>	ambiguous U +1	unambiguous	109	109
	m3	Da_y5-m3	curated	curated	39	55
		Dp y5-m3	unambiguous	ambiguous A -1	57	62
		Ds y5-m3	unambiguous	curated	36	56
		Re_y5-m3	unambiguous	ambiguous_U1	56	58
у6	m1	Da y6-m1	curated	unambiguous	192	192
-		Dp_y6-m1	curated	unambiguous	192	192
		Ds y6-m1	curated homology	curated	192	192
		Re_y6-m1	curated_homology	unambiguous	188	188
	m2	Da y6-m2	unambiguous	curated	45	45
		Dp_y6-m2	unambiguous	unambiguous	43	49
		Ds y6-m2	curated	curated homology	45	45
		Re y6-m2	curated	curated homology	46	46

^a Module ID consists of species abbreviation, gene name, and module number. Da, *D. ambulator*; Dp, *D. papillatum*; Ds, *D. sp.* 2; Re, *R. euleeides*.
^b Terminal nucleotide of a module was inferred: i) from sequence alone ('unambiguous'); ii) experimentally ('curated'); iii) based on the homology to other species ('curated_homology'). Remaining, ambiguous termini

('ambiguous') are labelled according to the nucleotide residue, whose origin (genome-encoded or posttranscriptionally added) could not be determined (U, uridine; A, adenosine). The number and its sign indicate the maximum distance and orientation, respectively, of the shift. For example, in the case of $Da_atp6-m3$, 'ambiguous_U_-2' means that the last two Us could be either genome-encoded, or appended, with the indicated size (e.g. 143 bp) corresponding to the default situation where the two Us are genome-encoded; when the two Us are appended by RNA editing, the true size of the module would be 141 bp (=143-2). ° Size of the module's coding portion (excluding 5' UTR and 3' UTR).

^d Size of the mature module transcript, including the appended Us (all modules) and 3' UTR (only last modules). Adenosine residues added by polyadenylation and 5' UTR of the first modules are not counted. UTR length has been precisely determined for all genes from *D. papillatum* except for *y2*, but only for a few genes from the other species (for details, compare 'curated' and 'curated_homology' in the column '5' end' of m1).

Species	Chromosome	Module(s)	Cassette	Mean	GenBank
	name ^a		subclass ^b	coverage ^c	Acc. Nr.
D. ambulator	A01 (4,875)	cox1-m9	al	10150.2	JF698651,
					MF436754
(Da)	A02	rnl-m2	a2	10401.8	MF436783
	A02	nad1-m5, y2-m3	a2*	11061.4	MF436783
	A03	cox1-m1	al	4727.7	JF698675,
					MF436748
	A04	cox1-m3	a2	8900.1	JF698677,
					MF436750
	A05	rns-m1	a2	28480.9	MF436784
	A06	rnl-m1	a2	25131.6	MF436782
	A07	y6-m1	al	1819.7	MF436789
	A08	y3-m4	al	11564.6	MF436787
	A09	yl-ml	al	18087.5	MF436785
	A10	<i>cob-m2</i> , <i>y2-m4</i>	al	14939.2	MF436745
	All	nad7-m3, y2-m2, y5-m3	al	5815.7	MF436773
	A12	cox2-m4	a2	2875.7	MF436758
	A13	nad4-m8	a2	587.7	MF436765
	A14	nad/-m4	al	10807.6	MF436774
	B01 (4,959)	cox1-m4	D	5631.0	JF098055,
	D01		1	11250.0	MF430/31
	B02	cox2-m1, $cox1-m8$	D	11250.9	JF098080,
	D02		1	15026.9	MF430/33
	B03	naa5-m9	D 1	15020.8	MF436769
	B04	cod-m1	D	0/85.1	MF436/44
	B05 P06	naao-mi	D h	1/15.4	MF430/00 ME426742
	B00 B07	appo-m2	b	0900.0	IE608670
	D07	<i>cox1-m</i> /	U	5550.2	MF436753
	C01	nad8-m1 $nad4-m2$ cor3-m2	c1	2681.6	MF436779
	C02	$cor_{3-m_{3}}^{2}$	cl	4234.8	MF436759
	C03	nad8-m3 $nad5-m4$ $atn6-m1$ $v2-m1$	c1	2978.1	MF436781
	C04	nad5-m3, nad5-m10	cl	2243.6	MF436767
	C04	nad5-m11	c2	2488.4	MF436770
	C05	nad7-m2. nad5-m2. nad4-m5. cox1-m6.	c1	4973.1	JF698678.
		v1-m2			MF436772
	C05	X5	c2	3263.8	MF436794
	C06	nad8-m2, nad5-m7	c1	2130.0	MF436780
	C07	y3-m5	c1	4891.0	MF436788
	C07	nad1-m2	c2	4544.3	MF436760
	C08	y3-m1	c1	2981.2	MF436786
	C09	<i>cox2-m2</i> , <i>y3-m2</i>	c1	2334.7	MF436756
	C10	nad7-m7	c 1	5777.7	MF436776
	C11	nad7-m8	c 1	1744.4	MF436777
	C12	nad4-m4, y5-m2, y6-m2	cl	2975.4	MF436764
	C12	atp6-m3	c2	2637.2	MF436743
	C13	nad1-m4	cl	4983.7	MF436762
	C14	cod-m4, cob-m5	c1	5246.4	MF436747
	C*	cob-m3	c2	2446.7	MF436/46
	C.	COX1-1112	62	2709.1	JF098070,
	C*	201 2 m2	ີ	1071.1	NIF430/49
	C*	cox2-m5	2	19/1.1	NE426769
	C*	nad7 ml	2	JU09.2	ME426771
	C.	nuu / -m1	02	4601.5	IVIT430//1

Supplementary Table S2. Characterization of diplonemid mitochondrial chromosomes.

Species	Chromosome	Module(s)	Cassette	Mean	GenBank
	name ^a		subclass ^b	coverage ^c	Acc. Nr.
	C*	XI	c2	3709.9	MF436790
	C*	X2	c2	4296.8	MF436791
	C*	X3	c2	1649.6	MF436792
	C*	X4	c2	5072.4	MF436793
	C*	X6	c2	726.4	MF436795
	U01	nad1-m3, nad7-m6		6003.7	MF436761
	U01	nad5-m8, nad5-m5, nad4-m7, nad1-m1,		6387.3	MF436761
		cox3-m1, cob-m6			
	U02 (4,593)	<i>cox1-m5</i> , <i>nad4-m3</i>		12456.2	JF698652,
					MF436752
	U02 (4,593)	<i>v3-m3</i> , <i>v5-m1</i>		11874.2	JF698652,
					MF436752
	U03	nad7-m9. nad4-m6		5542.5	MF436778
	U04	nad7-m5		4818.0	MF436775
	U05	nad4-m1		1973.7	MF436763
D. sp. 2	A01 (5,184)	cox1-m9, nad5-m3	a4	479.5	JF698654,
1					MF436810
(Ds)	A02 (5,163)	cox1-m5	a3	347.1	JF698655,
< _/					MF436808
	A03	nad7-m2	a4*	1489.1	MF436839
	A04	cox3-m2	al*	2408.6	MF436816
	A05	v6-m2	a2*	4657.6	MF436864
	A06	nad7-m1	al*	1503	MF436838
	A07	nad5-m7	a2	2627.2	MF436834
	A08	cob-m1	a3	8631.3	MF436799
	A09	nad4-m2	al	3705.6	MF436824
	A10	nad4-m1	al	768.7	MF436823
	A11	nad5-m5	a2	2047.5	MF436832
	A12	nad1-m4	a2	2697.4	MF436821
	A13	cob-m5	al	1055.9	MF436803
	A14	y1-m1	al	155.4	MF436854
	A15	cob-m2	al	831.8	MF436800
	A16	atp6-m3	a4*	7254.9	MF436798
	A17	nad1-m1	al	392.1	MF436818
	A18	nad1-m5	al	1094.8	MF436822
	A19	nad7-m8	a3	988.8	MF436843
	A20	cox2-m1	al	1139.7	MF436811
	A21	nad7-m4	a4*	1941.4	MF436840
	A22	nad8-m2	al*	414.2	MF436846
	A23	nad5-m4	al	712.8	MF436831
	A24	<i>y2-m1</i>	al	7811.6	MF436856
	A25	cox3-m3	al	464.8	MF436817
	A26	cox1-m1	a2	202.4	JF698658,
	4.07	10 1	2	1011.1	MF436804
	A27	nad8-m1	a3	1211.1	MF436845
	A28	nad4-m8	al	1396.7	MF436828
	A29	nad5-m9	al	/425.5	MF436836
	A30	nad1-m3	al	1124.1	MF436820
	A31	naa4-mo	a2	8/3/./	MF436827
	A32	$y^2 - m^4$	al	19898.9	MF436858
	AJJ	cox2-m3, $cox1-m/$	dI	4163.9	JE078002,
	A 2 4		- 1	222	ME426802
	A34 A25	COD-M4 V2	a4	1272.1	MF436802
	A33 A26		a4 '	12/3.1	IVIF430832
	A30	ys-mi nad7 m7	a1	2060	ME426942
	A5/	naa/-m/	a5	/55.6	MF436842
	A30	$mua_1 - m_2$	a1	019.2	ME426962
	A39	y0-m1	a4	1084.6	IVIF430803

Species	Chromosome	Module(s)	Cassette	Mean	GenBank
	name ^a		subclass ^b	coverage ^c	Acc. Nr.
	A40	nad8-m3	a2	8364.5	MF436847
	A41	nad5-m8	a4	2288.7	MF436835
	A42	atp6-m1	a3	10697.6	MF436796
	A43	X4	a4*	1140.2	MF436853
	B01	v3-m4	b	7715.6	MF436860
	B02	nad7-m5	b	9931.5	MF436841
	B03	cox3-m1	b	7185.3	MF436815
	B04	cox1-m3	h	9401.9	IF698660
	201		Ũ		MF436806
	B05	cox1-m6	b	10342.8	IF698661
	200		0	105 12:0	MF436809
	B06	$cor^2 - m^2$	h	10024 3	MF436812
	B07	nad4-m5 cox1-m8	h	7159.1	IF698663
	D07	<i>hau+ m5</i> , <i>cox1 m6</i>	0	/15/.1	ME436826
	BU8	nad5 m2	h	6114.4	ME436830
	B00	mau - m2 $y_{3} - m3$ $y_{5} - m3$	b	0114.4 9795	ME436850
	D07	y5-m5, y5-m5	b	6786.0	ME426927
	D10 D11	maa - m 10	0 b	6210.6	ME426955
	DII DI2	$y_1 - m_2$	U b	0310.0	ME426944
	D12 C01	naa/-m9	U	0000.9	ME426901
	C01 C02	cod-ms	c	4030.9	MF430801
	C02	COX1-m2	C	5001.9	JF098039,
	C02	14 2		5710.0	MF430803
	C03	naa4-m3	С	5/10.9	MF436825
	C04 C05	X2 X1	С	1202.3	MF436851
	C05	XI	c	311.0	MF436850
	D01	rns-m1	d	30/6.4	MF436849
	D02	cox2-m4	d	4288.2	MF436814
	D03	rnl-ml	d	4857.4	MF436848
	001	cox1-m4, $nad4-m4$, $y3-m1m2$		1081.3	JF698656,
					MF436807
	U01	rnl-m2		1132.5	JF698656,
					MF436807
	U02 (7,130)	y2-m2, cob-m6		838.6	MF436857
	U03 (6,059)	y5-m2		731.8	MF436862
	U04 (5,770)	nad5-m1		911.7	MF436829
	U05 (5,388)	atp6-m2, nad7-m6, y2-m3		1105.6	MF436797
	U05 (5,388)	y3-m5		1048.8	MF436797
	U06	nad5-m6, nad7-m3, nad5-m11		2129.8	MF436833
	U06	nad4-m7		1872.6	MF436833
R. euleeides	A01	rnl-m1	a3*	8091.7	MF436917
(<i>Re</i>)	A02	nad5-m1	a3	4102.5	MF436897
	A03	nad5-m9	a2	5043.4	MF436904
	A04	cox1-m2	al	1115.8	JF698670,
					MF436874
	A05	nad5-m11	a3	1898.2	MF436906
	A06	cob-m3	a2	577.8	MF436869
	A07	nad1-m2	a2	6472.0	MF436887
	A08	rns-m1	a3	8738.5	MF436919
	A09	v5-m1	al	3839.8	MF436928
	A10	y3-m4	a3	262.1	MF436926
	A11	nad1-m3	a3	11530.7	MF436888
	A12	cox2-m2	a1	932.6	MF436881
	A13	cox3-m1	a3	1895.2	MF436883
	A14	nad8-m2	al	5529.7	MF436915
	A15	nad7-m1	al	899.9	MF436907
	A16	<i>v3-m3</i>	a3	4073.1	MF436925
	A17	<i>y3-m1</i>	a3	4270.5	MF436924
	A18	nad5-m8, nad4-m2	a3	2767.0	MF436903

Species	Chromosome	Module(s)	Cassette	Mean	GenBank
-	name ^a		subclass ^b	coverage ^c	Acc. Nr.
	A19	nad7-m8	al	21966.9	MF436913
	A20	cob-m4	al	1269.4	MF436870
	A21	v_{2} -m3, v_{2} -m4	al	355.1	MF436923
	A22	nad5-m6	al	16173.2	MF436901
	A23	v3-m5	al	1041 5	MF436927
	A24	nad1-m5	a3	9795.8	MF436890
	A25	cob-m5 $v5-m3$	a3	978.2	MF436871
	A26	25 m ²	23	717.6	MF/36020
	A20 A27	cob-m6	a3 a3	555.6	MF436872
	A28	atn6-m3	a2 22	675.7	ME436866
	A20 A29	$cor3-m^2$	a2 a3	536.4	MF436884
	A 20	corl m3	a3 23	542.8	IE608671
	A30	<i>COX1-m5</i>	as	542.0	ME426975
	A 3 1	corl m1	o1	ד דדר	IE608667
	AJI	C0X1-m4	aı	211.1	JF098007,
	A 2 2		- 2	5200.0	ME426901
	A32	naa4-m1, y1-m2	as	3322.2	MF430891
	A33	cox1-m9	a3	868.0	JF698664,
				4000	MF436879
	A34	yl-ml	a3	4980.2	MF436920
	A35	cox2-m1	a3	1158.4	MF436880
	A36	nad1-m4	a3	1659.6	MF436889
	A37	y2-m1	a3	772.8	MF436921
	A38	cox3-m3	a3	2539.1	MF436885
	A39	nad7-m5	al	497.8	MF436910
	A40	nad5-m2	a3	2232.5	MF436898
	A41	nad7-m7	a3	308.9	MF436912
	A42	cox1-m1	a3	4975.5	JF698669,
					MF436873
	A43	y6-m1	a3	1051.9	MF436930
	A44	nad5-m7	a3	755.8	MF436902
	A45	nad5-m4	a3	4132.5	MF436900
	A46	cox1-m5	a3	7731.6	JF698666.
					MF436877
	A47	nad4-m8	a3	1347 7	MF436896
	A48	cob-m1	a3	6201.6	MF436867
	A49	nad4-m4	al	191.9	MF436893
	A50	nad4-m3	a3	1830.9	MF436892
	A51	cob-m?	a3	578.9	MF436868
	A52	nad7-m6	a3 a3	1418 1	MF436911
	R01	nad_{m1} nad_{m5} cor_{m3}	h	15151	MF/3601/
	D01 D02	$nad5 m^2$ $nad4 m^5$ $y_6 m^2$ $atp6 m^1$	0 h*	1315.1	ME426800
	B02	nads-ms, $nad4-ms$, $y0-m2$, $aip0-m1nad8 m3$ $nad7 m4$	b.	1200.1	MF430699
	D03	muo-mJ, $mu/-m4$	0 b	1290.1	ME426904
	B04 D05	naa4-mo	D h	440.0	MF430894
	B03	<i>COX1-m</i> /	0	1340.3	JF090075,
	DOC	15 10	1	012.0	MF4308/8
	B06	nado-m10	b	813.0	MF436905
	B0/	nad/-m2	b	841.6	MF436908
	C01	nad4-m/	c	15616.5	MF436895
	C02	atp6-m2	c*	4222.5	MF436865
	03	rnl-m2	c	3165.0	MF436918
	C04	<i>y</i> 2- <i>m</i> 2, <i>y</i> 3- <i>m</i> 2	с	1337.0	MF436922
	D01	nad1-m1	d	1246.9	MF436886
	D02	<i>nad7-m3, cox1-m8</i>	d	1259.2	JF698674,
					MF436909
	U01	cox2-m4, cox1-m6, nad7-m9		1292.3	JF698672,
					MF436882
D. papillatum	A01	atp6-m1	a	2939.2	KU356490
(<i>Dp</i> _)	A02	atp6-m2	а	686.4	KU356491

Species	Chromosome	Module(s)	Cassette	Mean	GenBank
	name ^a		subclass ^b	coverage ^c	Acc. Nr.
	A03	atp6-m3	a	8730.5	KU356492
	A04	cob-m1	а	724.4	KU356493
	A05	cob-m2	а	5114.5	KU356494
	A06	cob-m3	а	6277.4	KU356495
	A07	cob-m4	а	2562.3	KU356496
	A08	cob-m5	а	2276.0	KU356497
	A09	cox1-m2	а	4928.6	KU356500
	A10	cox1-m3	а	21655.6	KU356501
	A11	cox1-m5	а	1790.7	KU356503
	A12	cox1-m6	а	1202.9	KU356504
	A13	cox1-m7	а	549.2	KU356505
	A14	cox1-m8	а	2060.5	KU356506
	A15 (5,802;	cox1-m9	а	10148.0	KU356507,
	5,852) †				HO288823,
	, , , ,				EU123536
	A16	cox2-m1	а	9229.5	KU356508
	A17	$cox^2 - m^3$	2	994.3	KU356510
	A18	$cox^2 - m^4$	a	723.9	KU356511
	A19	cor3-m1	2	5418.4	KU356512
	A20	$cox^3 - m^2$	a	2359.6	KU356513
	A21	cor3-m3	2	7666.8	KU356514
	A22	nad1-m1	a	7552.8	KU356515
	A23	nad1-m?	2	12429.3	KU356516
	A24	nad1-m3	и а	4863.8	KU356517
	A25	nad1-m4	a	4640.3	KU356518
	A26	nadl-m5	и а	7701.2	KU356519
	A27	nad4-m1	a	14167.1	KU356520
	A28	nad4-m3	а а	5146.9	KU356522
	A29	nad4-m4	a	4945.9	KU356523
	A30	nad4-m6	a	8085.8	KU356525
	A31	nad4-m8	а а	4331.2	KU356527
	A32	$nad_{5}-m_{10} v_{5}-m_{3}$	a	4856.4	KU356537
	A33	nad5-m11 v2-m2	а а	8446.4	KU356538
	A34	nad5-m2	a	6914.4	KU356529
	A35	nad5-m3	a	1445.1	KU356530
	A36	nad5-m4	a	1030 1	KU356531
	A37	nad5-m5	a	868.2	KU356532
	A38	nad5-m6	2	1514.6	KU356533
	A39	nad5-m7	a	4044.9	KU356534
	A40	nad5-m8	2	8618.5	KU356535
	A41	nad5-m9	a	4039.5	KU356536
	A42	nad7-m1	а	2336.1	KU356539
	A43	nad7-m2	a	7340.5	KU356540
	A44	nad7-m3	а	1773 4	KU356541
	A45	nad7-m5	a	8342.8	KU356543
	A46 (5 794)	nad7-m6, $v2-m3$	a	5970.0	KU356544
	1110 (0,751)		ü	0,7,0.0	HO288824
	A47 (5 763)	nad7-m8	а	826.1	KU356546
	1117 (0,700)	nuu, mo	u	020.1	10302962
	A48	nad7-m9	а	843 1	KU356547
	A49	nad8-m1	ч я	5728 1	KU356548
	A 50	nad8-m3	u 9	8262.4	KU356550
	A51	v1-m1	a	4954 4	KU356554
	A52	v1-m?	2	22343.9	KU356555
	A53	v2-m4	a	2798.8	KU356557
	A54	v3-m1	а а	6392.6	KU356558
	A55	v3-m5	a	10054.6	KU356562
	A56	v4-m1	a	2222 5	KU356563
		J · ····	u		110000000

Species	Chromosome	Module(s)	Cassette	Mean	GenBank
-	name ^a		subclass ^b	coverage ^c	Acc. Nr.
	A57	y4-m2	a	2322.4	KU356564
	A58	y5-m1	а	8032.7	KU356565
	A59	y6-m2	а	1146.5	KU356568
	A60	X12-m	а	1219.2	KU356569
	A61	X18-m	а	4213.1	KU356570
	B01	cob-m6	b	3069.1	KU356498
	B02	cox1-m1	b*	2977.4	KU356499
	B03 (7,182)	cox1-m4	b	10329.8	KU356502,
					EU123537
	B04	cox2-m2	b	1573.9	KU356509
	B05	nad4-m2	b*	6250.0	KU356521
	B06	nad4-m5	b*	1649.1	KU356524
	B07	nad4-m7	b	6485.5	KU356526
	B08	nad5-m1	b	1582.5	KU356528
	B09	nad7-m4	b*	5688.5	KU356542
	B10	nad7-m7	b	14312.6	KU356545
	B11	nad8-m2	b	1878.6	KU356549
	B12	rnl-m1	b*	29748.1	KU356551
	B13	rnl-m2	b	10837.6	KU356552
	B14	rns-m1	b	8776.9	KU356553
	B15	y2-m1	b*	953.5	KU356556
	B16	v3-m2	b	689.4	KU356559
	B17	v3-m3	b	17358.5	KU356560
	B18	y3-m4	b	597.6	KU356561
	B19	v5-m2	b	1318.0	KU356566
	B20	y6-m1	b	5169.8	KU356567

^a Chromosome name consists of a letter referring to the class (A-D, U) and an ordinal number. For a chromosome that was completely sequenced the length is indicated in parentheses. The c2 cassettes labeled with an asterisk most likely associate with one of the c1 cassettes to form a bi-cassette C-class chromosome (i.e., $Da_C01-C03$, C06, C08-C11, C13-C14), but the exact partners have not been determined. Note that for chromosomes with two cassettes (or module arrays), the chromosome name is listed twice to separately show modules belonging to each cassette (or array). The dagger symbol indicates the chromosome, whose two alleles were completely sequenced (Dp_A15). ^b Cassettes are categorized according to their class (A-D, U) with a lowercase letter referring to the class and the number referring to a subclass, which is based on the variant cassette-framing motifs. The asterisk indicates a derived cassette (e.g., identity below 90% compared to the usual recurrent framing motif for that class either upstream, or downstream of the cassette).

^c Mean coverage by sequencing reads was calculated for the entire length of a cassette or for a module array plus 50 bp upstream and downstream (see Methods for details). *D. papillatum* data were taken from ¹.

Gene	Species	Nr. of U-	U-tract	Nr. of substitution	Nr. of A-to-I	Nr. of C-to-U
		appendage sites ^a	length [nt]	clusters (Total edits)	sites	sites
atp6	D. ambulator	0	0			
	D. papillatum	0	0			
	D. sp. 2	l	3			
ach	R. euleeldes	<u> </u>	<u> </u>			
<i>COD</i>	D. amoulaior D. papillatum	1	3			
	D spapilialian D sp 2	0	0			
	D. sp. 2 R euleeides	1	4			
coxl	D ambulator	1	6			
00.01	D. papillatum	1	ő			
	D. sp. 2	1	6			
	R. euleeides	1	6			
cox2	D. ambulator	1	2			
	D. papillatum	1	3			
	D. sp. 2	1	3			
	R. euleeides	1	3			
cox3	D. ambulator	0	0			
	D. papillatum	1	1			
	D. sp. 2	0	0			
	R. euleeides	1	2			
nad1	D. ambulator	1	15			
	D. papillatum	1	16			
	D. sp. 2	1	17			
	R. euleeides	1	20			
nad4	D. ambulator	1	2	1 (15)	0	15
	D. papillatum	1	2	1 (29)	7	22
	D. sp. 2	1	2	1 (14)	0	14
	R. euleeides	1	2	1 (14)	1	13
nad5	D. ambulator	2	7 + 25			
	D. papillatum	0	0			
	D. sp. 2	2	7 + 1			
	R. euleeides	2	6+26			
nad7	D. ambulator			1 (4)	2	2
	D. papillatum			$\frac{1}{2}$	1	0
	D. sp. 2			2 (4)	1+2	1 + 0
10	<i>R. euleeides</i>			2 (5)	2 + 0	2+1
nad8	D. ambulator					
	D. papillatum					
	D. sp. 2					
1	R. euleeides	1	2(
rni	D. ambulator	1	26			
	D. papilialum	1	20			
	D. sp. 2	1	25			
	R. euleelaes	l	30	1 (1()		24
rns	D. ambulator	1	9	1(46) 1(45)	22	24
	D. papilialum	1	0	1(43)	13	30 12
	D. sp. 2	1 1	5	1(24) 1(47)	11	13
1	n. euleelaes	1	9	1 (47)	33	14
y1	D. amoulator	1	8	U 1 (11)	0	0
	D papillatum D sp 2	1	4	1(11) 1(12)	4	/ 0
	D. sp. 2	1	2	1 (15)	5	0
2	n. euleeides	1	10	0	0	1
<i>Y</i> 2	D. amoulator	1	18	1 (3)	4	1

Supplementary Table S3. Editing sites in the mitochondrial genes of *D/R* diplonemids.

Gene	Species	Nr. of U-	U-tract	Nr. of substitution	Nr. of A-to-I	Nr. of C-to-U
	-	appendage sites ^a	length [nt]	clusters (Total edits)	sites	sites
	D. papillatum	2	18 + 11	1 (3)	1	2
	D. sp. 2	2	19 + 5	1 (9)	8	1
	R. euleeides	2	18 + 6	1 (3)	2	1
у3	D. ambulator	3	27 + 15 + 3	0	0	0
	D. papillatum	3	27 + 16 + 1	1 (7)	1	6
	D. sp. 2	3	28 + 16 + 7	0	0	0
	R. euleeides	3	27 + 14 + 2	1 (7)	1	6
y5	D. ambulator	1	50	1 (14)	0	14
-	D. papillatum	1	50	1 (18)	0	18
	D. sp. 2	1	50	1 (14)	4	10
	R. euleeides	2	48 + 2	1 (22)	0	22
у <i>б</i>	D. ambulator	n.d.	n.d.			
	D. papillatum	1	6			
	D. sp. 2	n.d.	n.d.			
	R. euleeides	n.d.	n.d.			
Total	D. ambulator	15	216	5 (84)	28	56
	D. papillatum	16*	198*	7 (114)	29	85
	D. sp. 2	16	196	7 (78)	31	47
	R. euleeides	17	225	7 (98)	39	59

^a Asterisks indicate that U-appendage sites in the *y4* gene of *D. papillatum* (two sites; 28 nt and 12 nt long) were not taken into account, because the gene was not found in the other three species. n.d., not determined

Oligonucleotide	Sequence $(5' \rightarrow 3')$	Target	Application
CDS-III	ATTCTAGAGGCCGAGGCGGCCGACATG (T) 30VN	poly-(A) RNAs	RT
CDS-III-ter	ATTCTAGAGGCCGAGGCG	poly-(A) RNAs	PCR
dp123	GGCTTATCGGCGAAATTCACTTTCTG	dp124 (RNA)	5'-RACE
dp124 (RNA)	rGrGrCrUrUrArUrCrGrGrCrGrArArArUrU	5' phosphorylated RNAs	5'-RACE
	rCrArCrUrUrUrCrUrG		
dp301	TGTGGTGTACTGCTGGTATCAG	Dp_y5-m1	PCR
dp302	CATAGCGTAGGTGCTCCGTAG	Dp_y5-m3	PCR
dp303	GTTGTGGGTGCGTTAGTAGCA	Dp_y5-m1	PCR
dp304	CATGGGATGTATGTACCGGG	Dp_y5-m2	PCR
da25	GGCATAGAACTGCAGCTACCTAT	<i>Da</i> _C05 chromosome	PCR
da26	ATACATGGTAGCACACATGC	<i>Da</i> _C05 chromosome	PCR
da39	GTGTAGAGGATAGCCATACATGCATT	Da_rns-m1	primer extension
da42	TCGTAGCGATACATGCTCCTGT	Da_y5-m2	PCR
da43	CTACTGCTAGTACGCTGTCTGCTA	Da_nad5-m9	PCR
da44	GTAGTAGTAGAGGACAGCATAGCG	Da_y5-m3	PCR
da45	ACTACAGCTACTGCCATGTGTG	Da_y5-m1	PCR
da46	CCACAGCGTATATGCACTGCT	<i>Da</i> _A02 chromosome	PCR
da47	TGGTAGGTGATGCCTGTGCT	<i>Da</i> _A02 chromosome	PCR
da48	CCAACAGAGGCTAGACGTGTG	Da_nad7-m5	PCR
da49	TCTAGTGCTAGGCATACAGGGAC	Da_nad7-m5	PCR
da50	GTAGCACAGACAGCAGGGCT	Da_y3-m4	PCR
da51	CATTGCTCTCCCGACATCCA	Da_cox1-m5	PCR
da52	GTGAGCCGAATCTTTGGAGG	Da_U04 chromosome	PCR
da53	TAAGGGTTGGTGTATGCCTAGTG	Da_y3-m3	PCR
da54	TGCTTCTGTGAGTCATGCCTGT	Da_nad4-m3	PCR
da55	GCGTTTATGCAGCAGTAG	Da_y3-m5	PCR
da56	ACGCAGCACACGCTCTCC	Da_nad5-m10	PCR
da59	TGGAGCCATCATGTGTGCC	Da_c2-cassette	PCR
da60	CCACACCCTCTCCCT	$D_a \ nad5 \ m10$	DCD
da61		$Da_nuu_2 - mito$ $Da_n2 - cassette$	PCR
uaor	616166616166166166666	upstream	ICK
de52	GAAGCATGTCGGACAGTAAGGA	$D_{s} v_{3-m}^{2}$	RT-PCR
ds53	TGCGGACTGTGCTATGATAGTGT	$Ds_y 5-m^2$	PCR
ds54	TGGACAGGAGCAAGACATCAGT	$D_{S_y} = -m^2$	PCR
de55	GACTTAGGCAGCGTTGTCTTC	$Ds_y - mz$ $Ds_n adl_m A$	PCR
re51		$Re v_{3-m4}$	PCR
re52	CCCAATCATCCAACCCACACTA	$Re_{y3}m^{2}$	RT-PCR
re54		Re_{y} - m_{z}	PCR
re55	ссастсствататеставсасстате	$Re_{y2}ms$	PCR
re56		Re nad5-m9	PCR
re57		Re_v^2-m4	sequencing
re58	ССТССТСАТСТСТСТСТСТСТСТС	Re_{y5-m3}	PCR
re59		Re_{v5-m2}	PCR
re60	СТСТСАТССТАТСАССТСОССОСА	Re nadl-m4	PCR
re61		Re nad4-m6/m7	PCR
re63		Re nad7-m8	PCR
1005	CAIGCIGIAGAGGCACCAAAGG	<u>ne_nuu/-mo</u>	ICK

Supplementary Table S4. Oligonucleotides used in this study.

Supplementary	Table S5.	Sequencing	libraries	used in thi	s study.

Library	Material	Library prep kit	Sequencing	Nr. of raw	Read	SRA ID
name		(approx. insert size)	technology ^a	read pairs	length [nt]	
Da	D. ambulator total DNA	TruSeq DNA (0.5 kb)	MiSeq PE	4,712,258	300	SRR5998381
Ds	D. sp. 2 total DNA	TruSeq DNA (0.5 kb)	MiSeq PE	4,207,560	300	SRR5998377
Re	R. euleeides total DNA	TruSeq DNA (0.5 kb)	MiSeq PE	4,990,130	300	SRR5998374
DaTs	D. ambulator total RNA	TruSeq small RNA	HiSeq PE	24,051,949	150	SRR5998380
		(0.02-0.5 kb)				
DaT	D. ambulator total RNA	TruSeq RNA (0.2 kb)	MiSeq PE SS	3,038,621	250	SRR5998379
DaT-Hi	D. ambulator total RNA	TruSeq RNA (0.2 kb)	HiSeq PE SS	15,789,289	150	SRR5998378
DsT	D. sp. 2 total RNA	TruSeq RNA (0.2 kb)	MiSeq PE SS	3,150,711	250	SRR5998376
DsT-Hi	D. sp. 2 total RNA	TruSeq RNA (0.2 kb)	HiSeq PE SS	17,017,840	150	SRR5998375
ReT	R. euleeides total RNA	TruSeq RNA (0.2 kb)	MiSeq PE SS	3,385,789	250	SRR5998383
ReT-Hi	R. euleeides total RNA	TruSeq RNA (0.2 kb)	HiSeq PE SS	15,613,531	150	SRR5998382

^a PE, paired-end; SS, strand-specific.

	Junction			Le	Length of identical sequence ^a		
Gene	Upstream	Downstream	Ambiguous in	Da	Dp	Ds	Re
	module	module	[nr. of species]				
atp6	ml	m2	2	0 nt	0 nt	1 nt	2 nt
atp6	m2	m3	1	0 nt	1 nt	0 nt	0 nt
cob	m1	m2	2	1 nt	0 nt	2 nt	0 nt
cob	m2	m3	2	1 nt	1 nt	0 nt	0 nt
cob	m3	m4	3	2 nt	0 nt	1 nt	2 nt
cob	m4	m5	2	1 nt	0 nt	1 nt	0 nt
cob	m5	m6	1	0 nt	0 nt	1 nt	0 nt
coxl	m1	m2	3	0 nt	1 nt	2 nt	1 nt
coxl	m2	m3	3	2 nt	1 nt	0 nt	1 nt
coxl	m3	m4	2	2 nt	0 nt	0 nt	1 nt
coxl	m4	m5	1	0 nt	0 nt	3 nt	0 nt
coxl	m5	m6	3	3 nt	2 nt	0 nt	2 nt
coxI	m6	m/	0	0 nt	0 nt	0 nt	0 nt
coxl	m7	m8	2	0 nt	l nt	l nt	0 nt
$\frac{coxI}{2}$	<u>m8</u>	<u>m9</u>	3	2 nt	<u>2 nt</u>	<u>0 nt</u>	<u>3 nt</u>
cox_2	m1	m2	1	0 nt	4 nt	0 nt	0 nt
cox_2	m2 m2	m3	2 1	1 III	1 nt	0 nt	0 nt
<i>cox2</i>	1	1114 2	2	2 nt	0 mt	0 mt	$\frac{1 \text{ Int}}{2 \text{ nt}}$
cox_3	m1 m2	m2 m3	$\frac{2}{2}$	2 nt 0 nt	0 nt 3 nt	0 nt	$\frac{5 \text{ fit}}{4 \text{ nt}}$
nadl	m1		2	0 m	2 nt	<u>3 nt</u>	
nad1	m?	m3	1	$\frac{0}{2}$ nt	$\frac{2}{0}$ nt	0 nt	0 nt
nadl	m2 m3	m4	3	$\frac{2}{1}$ nt	5 nt	0 nt	1 nt
nadl	m4	m5	1	0 nt	1 nt	0 nt	0 nt
nad4	m1	m2	2	0 nt	1 nt	0 nt	6 nt
nad4	m2	m3	$\frac{1}{2}$	1 nt	1 nt	0 nt	0 nt
nad4	m3	m4	1	2 nt	0 nt	0 nt	0 nt
nad4	m4	m5	1	0 nt	0 nt	0 nt	2 nt
nad4	m5	m6	1	0 nt	0 nt	0 nt	1 nt
nad4	m6	m7	0	0 nt	0 nt	0 nt	0 nt
nad4	m7	m8	2	1 nt	0 nt	1 nt	0 nt
nad5	m1	m2	3	0 nt	1 nt	2 nt	1 nt
nad5	m2	m3	2	1 nt	0 nt	4 nt	0 nt
nad5	m3	m4	2	0 nt	0 nt	1 nt	1 nt
nad5	m4	m5	1	4 nt	0 nt	0 nt	0 nt
nad5	m5	m6	0	0 nt	0 nt	0 nt	0 nt
nad5	m6	m7	$\frac{2}{2}$	0 nt	l nt	l nt	0 nt
nad5	m /	m8	2	0 nt	0 nt	2 nt	1 nt
naas	m8 m0	m9	$\frac{2}{2}$	$\frac{3 \text{ nt}}{1 \text{ nt}}$	0 nt	0 nt	$\frac{3 \text{ nt}}{2 \text{ nt}}$
nad5	m10	m10 m11	5	1 III 0 nt	5 III 0 nt	0 m	$\frac{2}{2}$ mt
nad7	m1		2	0 m	<u> </u>		
naa7 nad7	m2	m3	5	0 m	1 Int	1 III 0 nt	$\frac{1}{3}$ nt
nad7	m3	m4	1	0 m	0 m	0 m	$\frac{5 \text{ m}}{1 \text{ nt}}$
nad7	m4	m5	2	0 nt	0 nt	2 nt	1 nt
nad7	m5	m6	1	0 nt	1 nt	0 nt	0 nt
nad7	m6	m7	2	1 nt	0 nt	0 nt	1 nt
nad7	m7	m8	1	1 nt	0 nt	0 nt	0 nt
nad7	m8	m9	3	2 nt	3 nt	0 nt	1 nt
nad8	m1	m2	0	0 nt	0 nt	0 nt	0 nt
nad8	m2	m3	2	2 nt	1 nt	0 nt	0 nt
rnl	m1	m2	4	1 nt	2 nt	2 nt *	1 nt *

Supplementary Table S6. Ambiguity of junction positions in D/R diplonemids due to the presence of identical nucleotides at the 3' end of the upstream module and the 5' end of the downstream module.

	Junction Length of identical seque					ence ^a	
Gene	Upstream	Downstream	Ambiguous in	Da	Dp	Ds	Re
	module	module	[nr. of species]		-		
yl	m1	m2	0	0 nt	0 nt	0 nt	0 nt
y2	m1	m2	3	1 nt	0 nt	2 nt	3 nt
y2	m2	m3	2	1 nt	1 nt	0 nt	0 nt
y2	m3	m4	4	1 nt	1 nt *	1 nt	1 nt *
y3	m1	m2	1	0 nt	0 nt	n.a.	2 nt
y3	m2	m3	1	0 nt	1 nt	0 nt	0 nt
y3	m3	m4	2	1 nt	0 nt	0 nt	1 nt *
y3	m4	m5	4	3 nt *	1 nt *	1 nt	1 nt *
y5	m1	m2	3	1 nt *	0 nt	2 nt *	1 nt *
y5	m2	m3	1	1 nt	0 nt	0 nt	0 nt
<u>уб</u>	m1	m2	1	0 nt	0 nt	2 nt	0 nt
Summary —	· Number of ju	nctions	All four species	Da	Dp	Ds	Re
Unambiguous	5		136	32	36	39	29
Initially ambiguous due to overlaps			115	31	27	23	34
Remain ambi	guous		11	2	2	2	5
All			251	63	63	62	63

^a Asterisks indicate junctions that remained unresolved after RNA-Seq-based curation. n.a., not applicable (junction absent)

Organism	RNA	GenBank Acc. Nr.	Reference
D. ambulator	atp6	MF436931	This report
	cob	MF436932	This report
	coxl	MF436933	This report
	cox2	MF436934	This report
	cox3	MF436935	This report
	nad1	MF436936	This report
	nad4	MF436937, KU341385	This report. Moreira <i>et al.</i> , 2016
	nad5	MF436938	This report
	nad7	MF436939	This report
	nad8	MF436940	This report
	rnl	MF436941	This report
	rns	MF436942	This report
	vl	MF436943	This report
	v^2	MF436944	This report
	v3	MF436945	This report
	v_5	MF436946	This report
	<i>v</i> 6	MF436947	This report
D. sp. 2	atp6	MF436948	This report
· - I ·	cob	MF436949	This report
	coxl	MF436950	This report
	cox2	MF436951	This report
	cox3	MF436952	This report
	nad1	MF436953	This report
	nad4	MF436954, KU341387	This report, Moreira et al., 2016
	nad5	MF436955	This report
	nad7	MF436956	This report
	nad8	MF436957	This report
	rnl	MF436964	This report
	rns	MF436963	This report
	уl	MF436958	This report
	y2	MF436959	This report
	y3	MF436960	This report
	y5	MF436961	This report
	y6	MF436962	This report
R. euleeides	atp6	MF436965	This report
	cob	MF436978	This report
	coxl	MF436979	This report
	cox2	MF436966	This report
	cox3	MF436967	This report
	nad1	MF436968	This report
	nad4	MF436969, KU341389	This report, Moreira et al., 2016
	nad5	MF436970	This report
	nad7	MF436971	This report
	nad8	MF436972	This report
	rnl	MF436981	This report
	rns	MF436980	This report
	уl	MF436973	This report
	y^2	MF436974	This report
	y3	MF436975	This report
	y5	MF436976	This report
	<i>y</i> 6	MF436977	This report
D. papillatum	atp6	KU341361	Moreira et al., 2016
	cob	KU341362	Moreira et al., 2016

Supplementary Table S7. GenBank accession numbers of edited mitochondrial RNAs of *D/R*-clade diplonemids.

Organism	RNA	GenBank Acc. Nr.	Reference
	coxl	KU341363	Moreira et al., 2016
	cox2	KU341364	Moreira et al., 2016
	cox3	KU341365	Moreira et al., 2016
	nad1	KU341366	Moreira et al., 2016
	nad4	KU341367	Moreira et al., 2016
	nad5	KU341368	Moreira et al., 2016
	nad7	KU341369	Moreira et al., 2016
	nad8	KU341370	Moreira et al., 2016
	rnl	KU341371	Moreira et al., 2016
	rns	KU341372	Moreira et al., 2016
	vl	KU341373	Moreira et al., 2016
	y2	KU341374	Moreira et al., 2016
	y3	KU341375	Moreira et al., 2016
	v4	KU341376	Moreira et al., 2016
	y5	KU341377	Moreira et al., 2016
	уб	KU341378	Moreira et al., 2016

Supplementary Fig. S1. Schematic representation of the coding content of diplonemid mtDNAs. Transcripts and their module composition are listed in the left panel. Module transcripts edited by substitution are coloured in blue, and appendage of uridines is represented by a green box. Multi-module

chromosomes are listed in the top-right panel. The bottom-right panel shows the genomic and the corresponding fully edited cDNA of module regions that undergo substitution editing, together with codon assignments. Editing sites are highlighted in grey in the genomic, and in blue in the cDNA sequence. (a) *Diplonema ambulator*, (b) *Diplonema papillatum*, (c) *Diplonema* sp. 2, (d) *Rhynchopus euleeides*.

Supplementary Fig. S2. Variations in mitochondrial gene breakpoints across D/R-clade diplonemids. (a) Overview of gene fragmentation and positions of RNA editing sites. Inset, the colour-shading key and the feature key: black rectangles, modules; green triangles, U-appendage RNA editing sites at 3' ends of modules; blue triangles, substitution clusters; the magnification glass symbol and letter refer to the sequence-level close-up in **b-h**. (**b-h**) Sections of multiple alignments of cDNA sequences with focus on a particular junction. The upper track indicates by shading and bar height the extent of DNA sequence similarity (see Methods for details). The inferred protein sequence is shown below in the one-letter code. *Da*, *D. ambulator*; *Dp*, *D. papillatum*; *Ds*, *D.* sp. 2; *Re*, *R. euleeides*. (**b**) Detail of *nad1*-m2 and -m3. (**c**) *nad5*-m3 and -m4. (**d**) *nad7*-m5 and -m6. (**e**) *y2*-m1 and -m2. (**f**) U-tract appended to *y2*-m3 followed by - m4. (**g**) U-tract appended to *y5*-m1 followed by -m2. (**h**) *y6*-m1 and -m2. Note that the module junctions $Re_y2-m1/m2$ (**e**), *Da_y2-m3/m4* (**f**), and $Re_y6-m1/m2$ (**h**) are shifted by 1 nt. These are the only instances, where the size differences between homologous modules are not a multiple of three.

Supplementary Fig. S3. Multiple protein-sequence alignments of nested modules. The embedded modules code for more divergent protein regions than the enclosing modules. Blue-boxed sequences derive from the same nucleotide sequence. The arrow points towards the embedded module. Note that for the enclosing module, only the region that overlaps the embedded module is shown. (a) Part of *nad5*-m10 and *cox1*-m9 is reused as *nad5*-m3 in *D. ambulator* and *D.* sp. 2, respectively. (**b**, **c**) In *R. euleeides*, part of *y2*-m3 is reused as *y2*-m4 and part of *cob*-m5 as *y3*-m5. (**d**) In *D*. sp. 2, *y5*-m3 is encoded by the reverse complementary strand inside *y3*-m3. (**e**) In *R. euleeides*, *y1*-m2 is located on the reverse complementary strand inside *nad4*-m1. Inset, genomic arrangement of the nested modules (to scale with the grey bar representing 300 bp). *Da*, *Diplonema ambulator*; *Dp*, *Diplonema papillatum*; *Ds*, *Diplonema* sp. 2; *Re*, *Rhynchopus euleeides*.

Supplementary Fig. S4. Experimental confirmation of deamination RNA editing of mt-SSU rRNA from *D. ambulator*. (a) The experimental approach involving glyoxal/borate- and RNase T1-treatment of transcripts. The inset shows the symbols that indicate editing sites and products of reverse transcription (RT). (b) Primer extension of mt-SSU rRNA to map RNase T1 cleavage sites at inosines using total RNA as a template. Lanes: –, untreated template; +, ++, digestion with 10 U and 50 U RNase T1, respectively, allowing detection of cleavage intermediates. Bands represent RT-stops one nucleotide prior to an I. The expected product sizes are indicated on the right. (c) The sequence schema of pre-edited and edited Da_rns illustrates the positions of predicted Is, as well as the expected sizes of RT products.

Supplementary Fig. S5. Numerous massive substitution editing clusters in cox1 of *Hemistasia phaeocysticola* hinder identification of modules in the mtDNA sequence. (a) Overview of a segment of the multiple alignment of cox1 transcripts from *Diplonema ambulator* (*Da*), *D. papillatum* (*Dp*), *D.* sp. 2 (*Ds*), *Rhynchopus euleeides* (*Re*), and *Hemistasia phaeocysticola* (*Hp*). The upper track indicates the similarity among the five sequences by bar shading and height. The region corresponds to modules 6 and 7 in *D/R* diplonemids and to modules 13, 14, and 15 (numbering according to our re-annotation) of *H. phaeocysticola*. In the original report ², this region was referred to as m15 to m19, with "m16" and "m18" corresponding to modules "missing" in the mtDNA sequence (see the highlighting by black and grey horizontal bars below the alignment). The blue vertical bars indicate the substitution RNA editing sites inferred from the comparison of the genomic and transcript data as detailed below. The magnification glass symbols and letters refer to sequence-level close-ups of mtDNA and cDNA comparisons from *H. phaeocysticola* in **b-d**. (**b**) Detailed view of *Hp_cox1-m13* from mtDNA and four representative cDNAs (GenBank Acc. LC120368, LC120377, LC120375, LC120380). Flanking non-coding sequence is indicated in light grey. (**c**) Detailed view of the four alleles of *Hp_cox1-m14* from mtDNA and four representative cDNAs (same as above), each corresponding to one of the genomic variants. Diagnostic positions are indicated by red arrows above the alignment. Note that substitution RNA editing also makes the various mitochondrial genomic alleles of modules more similar to each other. (**d**) Detailed view of the two alleles of *Hp_cox1-m15* from mtDNA and four representative cDNAs (same as above). Inset, the colour-shading key for feature highlighting.

Supplementary Fig. S6. The average module size in *Hemistasia* is half their size of those in *D/R* diplonemids. Size distributions were compared for gene modules of *cob*, *cox1*, *cox2*, and *nad7* from *Diplonema ambulator* (*Da*), *D. papillatum* (*Dp*), *D.* sp. 2 (*Ds*), *Rhynchopus euleeides* (*Re*), and *Hemistasia phaeocysticola* (*Hp*). In the latter species, values correspond to our data re-analysis (see main text and **Supplementary Fig. S5**, S7).

Supplementary Fig. S7. Additional substitution RNA editing clusters and U-appendage sites occur near additional modules junctions in *Hemistasia phaeocysticola*. Comparison of gene fragmentation and editing sites in the mature transcripts of the genes *cob* (**a**), *cox2* (**b**), *cox1* (**c**), and *nad7* (**d**) from *Diplonema ambulator* (*Da*), *D. papillatum* (*Dp*), *D.* sp. 2 (*Ds*), *Rhynchopus euleeides* (*Re*), and *H. phaeocysticola* (*Hp*). The track above the multiple sequence alignment indicates the similarity among the five sequences by bar shading and height. Inset, the feature key.

Supplementary Fig. S8. Fluctuation of mitochondrial chromosome abundance in *D/R*-group diplonemids. (a-d) Distribution of read mean coverage of individual cassettes or module arrays binned by class (A-D, U, and all combined). (a) Distribution for *D. ambulator* (*Da*). Note that C1 and C2 classes, which constitute bi-cassette chromosomes, are plotted separately to show similar coverage, further indicating their association. (b) Distribution for *D. papillatum* (*Dp*); (c) for *D.* sp. 2 (*Ds*); and (d) for *R. euleeides* (*Re*). (e) Distribution of read mean coverage of cassettes depending on the gene, whose modules they code for in *D. papillatum* (*Dp*). (For details, see also Supplementary Table S2 and Methods; *D. papillatum* data are from ¹.)

Supplementary Fig. S9. Dual-use segments of diplonemid mitochondrial proteins are predicted to specify peripheral loops and short α -helices that connect trans-membrane helices. Segments originating from the enclosing and embedded module are shown in blue and orange, respectively. The C-terminus of the three-dimensional protein models is on the right side. (a) Nad5 protein from *D. ambulator (nad5-m3)* is embedded in *nad5-m10*. (b) Cob protein from *R. euleeides (y5-m3)* is embedded in *cob-m5*. Note that only the segment of the enclosing module is highlighted, since the *y5* gene is unassigned. (c, d) Nad5 and Cox1 proteins from *D.* sp. 2, respectively (*nad5-m3* is embedded in *cox1-m9*). (For details, see also **Supplementary Fig. S3** and Methods.)

SUPPLEMENTARY REFERENCES

- 1. Moreira, S., Valach, M., Aoulad-Aissa, M., Otto, C. & Burger, G. Novel modes of RNA editing in mitochondria. *Nucleic Acids Res.* 44, 4907–4919 (2016).
- 2. Yabuki, A., Tanifuji, G., Kusaka, C., Takishita, K. & Fujikura, K. Hyper-eccentric structural genes in the mitochondrial genome of the algal parasite *Hemistasia phaeocysticola*. *Genome Biol. Evol.* **8**, 2870–2878 (2016).