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A Theoretical background

A.1 Theoretical basis near critical transition point

For a complex dynamical system with multiple variables or network, assume that we measure

the variables at different time points. In this section, we theoretically introduce several generic

properties of such a dynamical network when the system approaches a critical transition point.

Specifically, we derive the conditions to obtain dynamical network biomaker (DNB) in a bio-

logical system, which can characterize the generic properties and predict the critical transition,

based on bifurcation theory and center manifold theory (6, 7).

We consider the following discrete-time dynamical system that represents the dynamical

evolution of a network:

Z(t+ 1) = f(Z(t);P ), (S1)

where Z(t) = (z1(t), ..., zn(t)) is an n-dimensional state vector or variables at time instant t,

while P = (p1, ..., ps) is a parameter vector or driving factors that represent slowly changing

factors, e.g., genetic factors (SNP, CNV, etc.) and epigenetic factors (methylation, acetylation,

etc.). f : Rn ×Rs → Rn are generally nonlinear functions.

Furthermore, we assume that the following conditions hold for Eq.(S1).

1. Z̄ is a fixed point in system (S1) such that Z̄ = f(Z̄;P ).

2. There is a value Pc such that one or a pair of the eigenvalues of the Jacobian matrix

∂f(Z;Pc)
∂Z

∣∣∣
Z=Z̄

is equal to 1 in the modulus.

3. When P 6= Pc, the eigenvalues of (S1) are not always equal to 1 in the modulus.

These three assumptions with other transverse conditions imply that the system undergoes

a phase change at Z̄ or a codimension-one bifurcation when P reaches the threshold Pc (1).
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From a mathematical perspective, the bifurcation is generic, i.e. almost all of the bifurcations

in a general system satisfy these conditions. It is notable that most of the systems described

by differential equations can be generally discretized and transformed into Eq.(S1), e.g., using

methods such as the Euler scheme and the Poincaré section. Thus, we focus on difference

equations (S1) during our theoretical analysis in this section.

It is known that the dynamics of a nonlinear system is highly complex far before or after

a sudden transition; therefore, the state equations of systems are generally constructed in a

very high-dimensional space using a large number of variables and parameters (1–4, 12, 14).

However, if a system driven by known or unknown parameters approaches a critical point,

which is a very special phase during its dynamical evolution, it is theoretically guaranteed that

the system will eventually be constrained to one- or two-dimensional space (i.e., the center

manifold), which can be expressed in a simple form around a codimension-one bifurcation

point (5,6,12,14). This is generally guaranteed by the bifurcation theory and the center manifold

theory (5–8). Thus, we can detect the signal of any dynamical system only during this special

phase and not during other periods (i.e., neither the before-transition state nor the after-transition

state), which is part of the theoretical foundation of this study (12, 14).

For system (S1) near Z̄ and before P reaches Pc, we assume that the system is at a stable

fixed point Z̄, so all of the eigenvalues are within (0, 1) in the modulus. The parameter value

Pc at which the state shift of the system occurs, is known as a bifurcation parameter value or a

critical transition value.

This theoretical result was derived based on consideration of the linearized system or equa-

tions for Eq.(S1) and the small noise perturbations near Z̄. Specifically, by introducing the new

variables Y (t) = (y1(t), ..., yn(t)) and a transformation matrix S, i.e.

Y (t) = S−1(Z(t)− Z̄),
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or

zi(k) = si1y1(k) + · · ·+ sinyn(k) + z̄i, k, i = 1, 2, ..., n, (S2)

we have

Y (t+ 1) = ΛY (t) + ζ(t). (S3)

where Λ(P ) is the diagonalized matrix of ∂f(Z;P )
∂Z

∣∣∣
Z=Z̄

. ζ(t) = (ζ1(t), ..., ζn(t)) are smal-

l Gaussian noises with zero means. Without any loss of generality, the diagonalized matrix

Λ(P ) = diag(λ1(P ), ..., λn(P )) for each |λi| is between 0 and 1. Denote the dominant eigen-

value as the largest eigenvalue or eigenvalues (the case of multiple roots) in modulus. Here, the

largest eigenvalue (in the sense of modulus) characterizes the system’s rate of change around a

fixed point and is known as the dominant eigenvalue. The before-transition state corresponds to

a period when the dominant eigenvalue is smaller than 1 in modulus, whereas the pre-transition

stage corresponds to the period with the dominant eigenvalue approaching to 1 in modulus.

Actually, in view of the dominant eigenvalue, there are two typical cases during the diago-

nalization process (12), i.e., the dominant eigenvalue is real (including multiple real dominant

eigenvalues), and the dominant eigenvalues are a pair of complex conjugate values.

When the modulus of the largest eigenvalue or eigenvalue pairs approaches 1, there are

three generic codimension-one bifurcations of the system, corresponding to these cases, that

is the saddle-node bifurcation, period-doubling bifurcation and Neimark-Sacker bifurcation.

Specifically, when the dominant eigenvalue is real, the critical point is the saddle-node bifurca-

tion (transcritical and pitchfork bifurcation) if the dominant eigenvalue approaches 1, while the

critical point is the period-doubling (or flip) bifurcation if the dominant eigenvalue approach-

es -1. When the dominant eigenvalues are a pair of complex conjugate eigenvalues (including

several pairs with the same modulus), for such a case, the critical point is the Neimark-Sacker

bifurcation point (1).

According to our previous works (12, 14), we have the following results.
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1. When the dominant eigenvalues are real, then there is only one dominant group related to

the first variable y1 in Eq.(S3), which is with standard deviation

SD(zi) =

√√√√s2
i1

κ11

1− λ2
1

+
n∑
k=2

s2
ik

κkk
1− λ2

k

+
n∑

k,m=1,k 6=m

siksim
κkm

1− λkλm
,

and Pearson’s coefficient correlation

PCC(zi, zj) =

=

si1sj1
κ11

1−λ21
+

n∑
k=2

siksjk
κkk

1−λ2k
+

n∑
k,m=1,k 6=m

siksjm
κkm

1−λkλm√√√√( s2i1κ11
1−λ21

+
n∑
k=2

s2ikκkk
1−λ2k

+
n∑

k,m=1,k 6=m

siksimκkm
1−λkλm

)(
s2j1κ11

1−λ21
+

n∑
k=2

s2jkκkk

1−λ2k
+

n∑
k,m=1,k 6=m

sjksjmκkm
1−λkλm

) ,

where λ1 represents the dominant eigenvalue while λk is other eigenvalue with |λk| ≤

|λ1|, the constant sjk is the coefficient in Eq.(S2), and κij is the covariances between

Gaussian noises ζi and ζj in Eq.(S2).

2. When the dominant eigenvalues are a pair of complex conjugate eigenvalues, then there

are two dominant groups respectively related to y1 and y2 in Eq.(S3). The standard devi-

ation for the variables zi is

SD(zi) =

√
2b2(s2

i1 + s2
i2)(κ11 + κ22)

(1− a2 − b2)((a− 1)2 + b2)((a+ 1)2 + b2)
+Ki

where Ki are bounded values, and Pearson’s coefficient correlation

PCC(zi, zj) =

=

(
2b2(si1sj1+si2sj2)(κ11+κ22)

(1−a2−b2)((a−1)2+b2)((a+1)2+b2)

)
+ Cij√(

2b2(s2i1+s2i2)(κ11+κ22)

(1−a2−b2)((a−1)2+b2)((a+1)2+b2)
+Ki

)(
2b2(s2j1+s2j2)(κ11+κ22)

(1−a2−b2)((a−1)2+b2)((a+1)2+b2)
+Kj

) .
where Cij , Ki and Kj are bounded values.
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Theorem 1 We consider a stochastically perturbed linearized system for Eq.(S1). When P

approaches the saddle-node or period-doubling bifurcation point, there is a dominant group,

and the following results hold.

• If both zi and zj are in the dominant group, then

|PCC(zi, zj)| → 1,

while SD(zi)→∞ and SD(zj)→∞;

• if zi is in the dominant group but zj is not, then

PCC(zi, zj)→ 0,

while SD(zi)→∞, and SD(zj) approaches a bounded value;

• if neither zi nor zj is in the dominant group, then PCC(zi, zj) approaches a constant,

while both SD(zi) and SD(zj) approach bounded values,

where PCC is the Pearson’s correlation coefficient and SD is the standard deviation.

This dominant group of variables or elements is DNB. This theorem is the part of the the-

oretical basis of detecting the pre-transition state for multi-variable systems with small noise.

The three conditions in the theorem are actually the criteria to detect the DNB (12). For a non-

linear system Eq.(S1) approaching the bifurcation point (the saddle-node or period-doubling

bifurcation point) or tipping point, we can observe directly obtain the properties of DNB based

on Theorem 1 as the following remark.

Remark 1 For nonlinear case Eq.(S1) near a bifurcation point (the saddle-node or period-

doubling bifurcation point), the dynamical behavior has the same tendency as that of the lin-

earized case, that is, when the system is approaching to the bifurcation point, both indices
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SD and |PCC| in the DNB increase sharply, while |PCC| between DNB and other non-DNB

molecules decreases rapidly, i.e.,

1. If both zi and zj are in the DNB, then PCC(zi, zj) increases, while SD(zi) and SD(zj)

drastically increase;

2. if zi is in the DNB but zj is not, then PCC(zi, zj) decreases, while SD(zi) drastically

increases, and there is no significant change for SD(zj);

3. if neither zi nor zj is in the DNB, then there are no significant changes on PCC(zi, zj),

SD(zi) and SD(zj).

Theorem 2 We consider a stochastically perturbed linearized system for Eq.(S1). When P

approaches the Neimark-Sacker bifurcation point, the following results hold.

• If both zi and zj are in the same dominant group 1 or 2, then

|PCC(zi, zj)| → 1,

while SD(zi)→∞ and SD(zj)→∞;

• if zi is in dominant group 1 and zj in dominant group 2, then

PCC(zi, zj)→ 0,

while SD(zi)→∞, and SD(zj)→∞;

• if zi is in a dominant group (including dominant 1 or 2, common-dominant group) and zj

is in the non-dominant group, then

PCC(zi, zj)→ 0,

while SD(zi)→∞ and SD(zj) approaches a bounded value;
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• if zi is in the common dominant group, and zj is in dominant group k (k = 1, 2) or the

common dominant group, then |PCC(zi, zj)| approaches a constant less than 1, while

SD(zi)→∞, and SD(zj)→∞;

• if neither zi nor zj is in the dominant group, then |PCC(zi, zj)| approaches a constant

less than 1, while both SD(zi) and SD(zj) approach bounded values;

where PCC is the Pearson’s correlation coefficient and SD is the standard deviation.

Remark 2 When both zi and zj are in the common dominant group, if their relations to y1 are

much more stronger than that to y2, then generally zi and zj are considered in dominant group

1. Contrarily, if the relations of zi and zj to y2 are much more stronger than that to y1, then

generally zi and zj are considered in dominant group 2.

A.2 Three states during a critical transition

During a state transition, the dynamics of the system can be divided as three stages. Before-

transition state corresponds to a stable equilibrium. In bio-medical systems, it generally cor-

responds to a “normal state” or a stable period that the disease is under control. Pre-transition

state is the limit of Before-transition state. In bio-medical systems, it represents a “pre-disease

state” just before the critical transition to the disease state. After-transition state corresponds to

another stable equilibrium. In bio-medical systems, it represents a badly ill stage or “disease

state”, and is usually difficult to return to the before-transition state even by big perturbations.

A.3 Identifying the switching point of stationary Markov process based
on inconsistency score

In our assumption, the stage before the transition point is quite different from that after the

transition point. Therefore, we regard that the progression of a biological system in the before-

transition stage is a stationary Markov process, since during this stage the system is stable and
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insensitive to parameter changes (stationary feature). However, the progression of a biological

system in the pre-transition stage is modelled as a time-varying Markov process, due to the

strong fluctuated dynamics during this stage, i.e., the system is unstable and so sensitive to the

parameter changes that even a small change in the parameters may suffice to drive the system

into collapse (time-varying feature) (24). Therefore, to detect the onset of the pre-transition

stage is equivalent to identify the changing period or the switching point from a stationary

Markov process to a time-varying Markov process.

On the basis of above settings and hypothesis, we propose an inconsistency score (I-score)

to measure the probability of a candidate time point as the changing or switching point from

the stationary Markov process to the time-varying Markov process. Specifically, we test each

candidate time point based on an HMM derived from an unsupervised learning procedure.

A.3.1 Algorithm

There are two steps to detect the switching period in our algorithm, i.e.,

• Training step: In the training step, obtain the HMM ΘT−1 = (A,B, π) based on the

preceding T − 2 differential network series {DN2, DN3, ..., DNT−1}, which are con-

structed based on observed samples from preceding T − 1 sampling time points. Here

A = (aij(T − 1))2×2 with

aij(T − 1) = P (sT−1 = Wi | sT−2 = Wj), i, j ∈ {0, 1}, (S4)

B = (bjk(T − 1))2×(n+1) with bjk(T − 1) representing the probability of the kth possible

observation under the assumption that the system state is Wj, j ∈ {0, 1} at time T − 1

i.e.,

bjk(t− 1) = P (#1(T − 1) = k | sT−1 = Wj), j ∈ {0, 1}, k ∈ {0, 1, ..., n}. (S5)
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where case #1(T − 1) = k represents that there are k distinct edges between the cor-

relation network NT−1 and its preceding NT−2, or equivalently, there are k edges in the

differential network DNT−1.

• Testing step: In the testing step, calculate I-score of the testing sample, i.e., the differ-

ential network oT = {DNT} at a candidate transition point t = T by Eq.(S16) based on

both the HMM ΘT−1 and the additional observation oT = {DNT}. If there is a drastic

increase of I-score, then T is the switching point, at which system is in the pre-disease

stage. Otherwise go to Step-1 for next time point.

The detailed algorithm including the training of HMM and the testing of candidate time

point for the I-score is presented as following A.3.2 and A.3.3.

A.3.2 Deriving the HMM based on an unsupervised learning procedure

In order to simplify the derivation of the HMM for of an n-variable system (n-node network)

during its progression, a few notations are presented as follows .

• Denote the time variable as t. The progression of a system is along the time series

{1, 2, ..., T − 1, T, ...}.

• Denote the correlation network at time point t = T as NT .

• Denote the differential network at time point t = T as DNT .

• Denote the temporal-ordering differential network sequence as {DN2, DN3, ..., DNT , ...}.

Note that this sequence starts from t = 2, since each differential networkDNT is obtained

by comparing adjacent correlation networks NT−1 and NT .

• Denote the observed sequence up to time point T as O = {o1, o2, ..., oT−1, oT}, where oT

represents the sample set derived at time point t = T . Obviously, the temporal-ordering
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differential network sequence is obtained based on the observed sequence. Thus we also

denote O = {o1, o2, ..., oT−1, oT} = {DN2, DN3, ..., DNT−1, DNT , ...}.

• Denote the state sequence up to time point t as {s1, s2, ..., st−1, st}, i.e., the state of the

system is st at time point t, or equivalently, st = State(ot).

• Denote the unobserved (hidden) states as W0 and W1, where W0 represents the system

state before the transition point, and W1 stands for any system state that is not identical

with W0, i.e., the state not in the before-transition stage. Therefore, each si from the state

sequence could be either st = W0 if the system is at the before-transition stage at time t,

or st = W1 if the system is not any more at the before-transition stage at time t.

• For given HMM Θ and observation O, denote γt(i) as the probability of the system being

at state Wi at time t, i.e.,

γt(i) = P (st = Wi |O, Θ) =
P (st = Wi, O |Θ)

P (O |Θ)
(S6)

where i ∈ {0, 1}.

• For given HMM Θ and observation O, denote ξt(i, j) as the probability of the system

being at state Wi at time t− 1 and being at state Wj at time t, i.e.,

ξt(i, j) = P (st−1 = Wi, st = Wj |O, Θ) =
P (st−1 = Wi, st = Wj, O |Θ)

P (O |Θ)
(S7)

where i, j ∈ {0, 1}.

Following an unsupervised learning scheme, we train a hidden Markov model (HMM)

ΘT−1 = (A,B, π) based on an observed sequence or differential network series {o1, o2, ..., oT−1} =

{DN2, DN3, ..., DNT−1, ...}, i.e., the first T −1 sets of samples from time points 1, 2, ..., T −1,

or equivalently, the preceding T − 2 differential networks, where the subscript T − 1 of Θ rep-

resents that the HMM is derived from the training samples up to time point T − 1, A is a state
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transition matrix, B is an emission matrix, and π is a probability vector for the initial state. The

training process based on an unsupervised learning procedure, namely, Baum-Welch algorithm,

is provided as the following four steps.

Step 1. Construct the differential network at (T − 1).

Based on the observed time-course dataO = {o1, o2, ..., oT−1, oT}, we construct the temporal-

ordering differential network series for training. The construction of the differential network is

as follows (Fig. 1 in the main text).

First we build the correlation network. The correlation network NT was constructed at

each sampling time point t = T (Fig. 1). Each edge connecting two nodes represents the

correlation/association between two biomolecules, while each edge connecting only one node

represents the self-regulation or variation of the biomolecule. Subsequently, there is a parameter

α such that only those edges with high Pearson’s correlation coefficients (PCC) (|PCC| ≥ α)

or high standard deviation (SD) ( SD−min(SD)
max(SD)−mean(SD)

≥ α) were reserved, where α is a to-be-

determined parameter based on specific real data. Generally, the selection of parameter α is

mainly from the computational consideration, that is, α is set such that there are few edges (i.e.,

significantly changed associations) in the differential networks during the normal stage, thus

highlighting the pre-disease stage when many edges arising in a differential network. Specifi-

cally, when applied to real data, we choose the cutoff parameter α so that there are only 10%

edges in the first differential network (generated from the first and second sampling time points,

both of which are assumed to belongs to the normal stage) comparing with original STRING

network, that is, over 90% edges disappear comparing with the original STRING network due

to the generic property that the network structure would remain stable during the normal stage,

and thus there are few edges in a differential network based on samples generated from normal

stage.
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Second we building the specific network. Comparing the correlation networks NT and

NT−1, and the edges which differed between NT and NT−1 were then identified and employed

to illustrate the dynamic changes in associations between the adjacent time points T and T − 1.

Then we obtained the specific networks SNT = {NT} \ {NT−1} and SNT−1 = {NT−1} \

{NT} respectively by removing the common edges (see Fig. 1d), where the common edges

are presented in both correlation networks NT and NT−1 and thus were regarded as interactions

without significant change in dynamics.

Third we build the differential network. Combining the two specific networks SNT and

SNT−1, i.e., {SNT} ∪ {SNT−1}, we obtained the differential network DNT at time point T ,

in which the edge connecting two nodes records temporal differential correlation, and the edge

connecting only one node records temporal differential variance.

Step 2. Determine the indicator vector for each variable at t = T − 1.

For an n-nodeww s differential network DN(t), there could be maximumly M = n(n+1)
2

differential edges, including n(n−1)
2

differential regulations between two molecules and n self-

regulations. We employ anM dimensional vectorE(T−1) = {e1(T−1), e2(T−1), ..., eM(T−

1)} with each variable ei is an indicator denoting the existence of one certain edge, that is,

ei(T − 1) =

{
0, if differential edge does not exist at t = T− 1
1, if differential edge exist at t = T− 1

. (S8)

Therefore, vector E(T − 1) records the distribution of the differential edges in a differential

network at time t = T − 1. Obviously, ei(T − 1) = 1 represents that an edge is significantly

expressed in a differential network DNT−1.

According to above settings, we actually transform the differential networkDN(T −1) into

the corresponding indicator vector ET−1 = {e1(T − 1), e2(T − 1), ..., eM(T − 1)}.

Let #0(T − 1) and #1(T − 1) respectively denote the number of value 0 and that of value

1 in the indicator vector E(T − 1) at T − 1. Obviously, #0(t − 1) + #1(t − 1) = M ,
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where M is the number of all possible edges in a differential network, among which there are

#0(t−1) edges without significant expressions (correlations) inDNT−1, while #1(T−1) edges

with significant expressions (correlations) in DNT−1. Reminding that the differential network

DNT−1 is from the comparison ofNT−1 andNT−2, #1(T−1) represents the number of distinct

edges comparing NT−1 with NT−2, while #0(T − 1) represents the number of identical edges

comparing NT−1 with NT−2.

Step 3. Training the HMM at t = T − 1 based on Baum-Welch algorithm.

In this step, we need to identify the state transition matrix A and the emission matrix

B at (T − 1), that is, training the HMM ΘT−1 = (A(T − 1), B(T − 1), π) on the basis

of an observed sequence {o1, o2, ..., oT−1}, or equivalently, a differential network sequence

{DN2, DN3, ..., DNT−1, ...}.

There are two possible states W0 and W1 in time point t− 1. Then, we calculate the possi-

bilities for each possible state transition and thus obtain the state A(t − 1) = (aij(t − 1))2×2,

where

aij(T − 1) = P (sT−1 = Wi | sT−2 = Wj), (S9)

with i, j ∈ {0, 1}.

Besides, for the emission matrix B(T − 1) = (bjk(T − 1))2×(n+1) where bjk(T − 1) is the

probability of the kth possible observation under the assumption that the system state is Wj at

time t = T − 1, i.e.,

bjk(T − 1) = P (#1(T − 1) = k | sT−1 = Wj), (S10)

where j ∈ {0, 1} and k ∈ {0, 1, 2, ...,M}, M stands for the number of possible edges in

a differential network DN(T − 1). Obviously, there are M possible observable cases for any

sample at T−1, i.e., case #1(T−1) = 0, case #1(T−1) = 1, ... , case #1(T−1) = M . In the

case of an n-molecules biological network system with M possible edges, case #1(T − 1) = k
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reflects that there are k edges differentially expressed (i.e., with significant correlations) in one

observation DNT−1, or equivalently, #1(T − 1) = k distinct edges between NT−1 at t = T − 1

and its former correlation network NT−2 at t = T − 2.

The initial state distribution π = {π1, π2} is defined at time T − 2, where

πi = P (sT−2 = Wi), (S11)

with i ∈ {0, 1}.

According to Baum-Welch algorithm, we build A, B, and π based on the training set

{DN2, DN3, ..., DNT−1}, i.e., differential networks up to time T − 1. The training process

at time t = T − 1 includes the following three steps.

• Initialization

For h = 0, set initial values for a0
ij , b

0
jk, and π0

i , we have the HMM Θ0 = (A0, B0, π0).

• Update

For h = 1, 2, ..., we have the update for ahij , b
h
jk, and πhi by recursion

ahij =

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)

, (S12)

bhjk =

T−1∑
t=1,#1(t−1)=k

γt(k)

T−1∑
t=1

γt(k)

, (S13)

πhi = γ1(i), (S14)

where γt(i) and ξt(i, j) are respectively of form Eq.(S6) and Eq.(S7). For γt(i) and

ξt(i, j), the HMM used in the prior knowledge is that updated from the preceding step.
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The observation sequence used in the prior knowledge is O = {o1, o2, ..., oT−1} =

{DN2, DN3, ..., DNT−1, ...}.

• Ending

When h = H , i.e., the Hth-updating step, the recursion is terminated. Then

ΘH
i = (AH , BH , πH). (S15)

The HMM used in the testing process is represented as ΘT−1 = ΘH
i .

A.3.3 Calculating the inconsistency score at a testing time point t = T

Under the assumption that the transition point is at t = T , or in other word, time point t = T is

hypothesized as the end point of a stationary Markov process of the before-transition stage. The

onset of a pre-transition stage is the end of the stationary Markov process in a before-transition

stage.

At each time point t = T , we are in a position to test if time t = T is not any more in the

before-transition stage, that is, the time point t = T is the switching point for the stationary

Markov process described as HMM ΘT−1.

Therefore, at the testing time point t = T , we calculate the I-index, or HMM-based prob-

ability PT measuring the inconsistence between sample {oT} derived at time point t = T and

the HMM ΘT−1, is given as follows:

I(T ) = PT (sT = W1 | s1 = W0, s2 = W0, ..., sT−1 = W0, ΘT−1, O), (S16)

where the observation sequence OT = {DN2, ..., DNt−1, DNT} is the temporal differential

networks. Obviously,

Pt(sT = W1 | s1 = W0, s2 = W0, ..., sT−1 = W0, ΘT−1, O)

= 1−Qt(sT = W0 | s1 = W0, s2 = W0, ..., sT−1 = W0, ΘT−1, O).
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where QT actually represents the probability of consistence between the system state of sample

{oT} derived at time point T and the HMM ΘT−1. At each time point t, we first calculate the

consistence probability based on HMM ΘT−1 and observed sequence O = {oT−1, oT}

QT (sT = W0 | sT−1 = W0, ΘT−1, O) =
P (sT−1 = W0, sT = W0 |ΘT−1, O)

P (sT−1 = W0 |ΘT−1, O)
. (S17)

The numerator

P (sT−1 = W0, sT = W0 |ΘT−1, O) =
βT−1(sT−1 = W0)a00b0k

1∑
i=0

βT−1(sT−1 = Wi)aijbjk

, (S18)

and the denominator

P (sT−1 = W0 |ΘT−1, O) =
βT−1(sT−1 = W0)

1∑
j=0

βT−1(sT−1 = Wj)

, (S19)

where a00 and aij is from the state transition matrix A = (aij)2×2 in Eq.(S4), b0k and bjk

is from the emission matrix B = (bjk)2×(n+1) in Eq.(S5) while k = #1(T ) represents that

for the differential network DNT there are k edges differentially expressed, β is the forward

probability provided as below Eq.(S20). It should be noticed that in Eqs.(S18) and (S19) the

backward probability is set to be 1, since differential networks DNT+1, · · · are not available

when t = T is the testing time point.

According to above settings, given the HMM ΘT−1, the calculation of HMM probability

QT (the consistency probability) at a time point t = T only relies on the samples from T − 1

and T . Obtaining the HMM probability QT for every candidate time point, the time point

argt[min(Qt)]t=1,2,...,T , or equivalently argt[max(Pt)]t=1,2,...,T , is the transition point.

The HMM-based forward probability.

For given observation sequence {o1, o2, ..., oT} or equivalently a differential network se-

quence {DN2, DN3, ..., DNT−1, DNT}, two possible states {W0,W1}, and HMM Θ = (A,B, π)
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with A = (aij)2×2, B = (bjk)2×(n+1) with bjk related to observation oT = DNT , and π =

(πi)i∈{0,1}, we calculate the HMM-based forward probability

βT (i) = βT (sT = Wi) = P (DN2, DN3, ..., DNT−1, DNT , sT = Wi |Θ), i ∈ {0, 1}. (S20)

as follows.

Initialization: For t = 1,

β1(i) = πibik1 , i = 0, 1, (S21)

where k1 is given in {1, 2, ...,M + 1}.

Recursion: For t = 2, 3, ..., T − 1

βt(i) =

[
1∑
j=0

βt−1(j)aji

]
bikt , i = 0, 1. (S22)

where kt = #1(t− 1) with kt ∈ {1, 2, ..., n+ 1}.

Ending: When t = T ,

βT (0) = βt(st = W0) =

[
1∑
j=0

βT−1(j)aj0

]
b0kT ,

βT (1) = βt(st = W1) =

[
1∑
j=0

βT−1(j)aj1

]
b1kT ,

and

P (O |Θ) = P (DN2, DN3, ..., DNT−1, DNT |Θ) =
1∑
i=0

βT (i). (S23)

B Numerical validation of I-score

In this section, we use a eight-gene network (see Fig. S24 or Fig. 3a in the main text) to

conduct a numerical simulation and theoretically demonstrate the detection of early-warning

signals through I-score scheme. These types of gene regulatory networks are often used to

study transcription, translation, diffusion, and translocation processes that affect gene regulatory
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Figure S1: | A model of an eight-molecular network. In this sketch of a molecular network,
there are eight nodes whose dynamical regulatory relationships are given as stochastic system
S24. The edges represent positive or negative regulations among nodes.

activities (1,4,19–21). The following six differential equations represent the gene regulation of

six genes in a network where gene regulation is represented in a Michaelis-Menten form, with

the exception of the degradation rates, which are linearly proportional to the concentrations of

the corresponding genes.

dz1(t)
dt

= (8−4 |q|)z2(t)
15 (1+z2(t))

− 4+4 |q|
15

z1(t) + ζ1(t),
dz2(t)

dt
= (4−2 |q|)z1(t)

15 (1+z1(t))
− 8+2 |q|

15
z2(t) + ζ2(t),

dz3(t)
dt

= 4 |q|−10
15

+ 5−2 |q|
15(1+z1(t))

+ 5−2 |q|
15(1+z2(t))

− z3(t) + ζ3(t),
dz4(t)

dt
= 4 |q|−12

15
+ (6−2 |q|)z1(t)

15(1+z1(t))
+ (6−2 |q|)z2(t)

15(1+z2(t))
− 6

5
z4(t) + ζ4(t),

dz5(t)
dt

= 4 |q|−14
15

+ (7−2 |q|)z1(t)
15(1+z1(t))

+ (7−2 |q|)z2(t)
15(1+z2(t))

− 7
5
z5(t) + ζ5(t),

dz6(t)
dt

= −11
15

+ 1
15(1+z1(t))

+ 1
15(1+z2(t))

+ z3(t)
5(1+z3(t))

+ 1
5(1+z5(t))

+ 1
5(1+z7(t))

+ 1
5(1+z8(t))

− 8
5
z6(t) + ζ6(t),

dz7(t)
dt

= z8(t)
10(1+z8(t))

− 19
10
z7(t) + ζ7(t),

dz8(t)
dt

= z7(t)
10(1+z7(t))

− 19
10
z8(t) + ζ8(t),

(S24)
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where P is a scalar control parameter and ζi(t) (i = 1, 2, ..., 10) are Gaussian noises with

zero means and covariances κij = Cov(ζi, ζj). zi (i = 1, ..., 8) represent the concentrations

of mRNA-i. In Eq.(S24), the degradation rates of mRNAs are (4+4|q|
15

, 8+2|q|
15

, 1, 6
5
, 7

5
, 8

5
, 19

10
, 19

10
).

There is a stable equilibrium point Z̄ = (z̄1, z̄2, ..., z̄8) = (0, 0, 0, 0, 0, 0, 0, 0). The differential

equations Eq.(S24) can be transformed into the difference equations Z(k + 1) = f(Z(k), P )

using the Euler scheme (22), i.e.,

z1(k + 1) = z1(k) +
[

(8−4 |q|)z2(k)
15 (1+z2(k))

− 4+4 |q|
15

z1(k) + ζ1(k)
]

∆t,

z2(k + 1) = z2(k) +
[

(4−2 |q|)z1(t)
15 (1+z1(k))

− 8+2 |q|
15

z2(k) + ζ2(t)
]

∆t,

z3(k + 1) = z3(k) +
[

4 |q|−10
15

+ 5−2 |q|
15(1+z1(k))

+ 5−2 |q|
15(1+z2(k))

− z3(t) + ζ3(k)
]

∆t,

z4(k + 1) = z4(k) +
[

4 |q|−12
15

+ (6−2 |q|)z1(k)
15(1+z1(k))

+ (6−2 |q|)z2(k)
15(1+z2(k))

− 6
5
z4(k) + ζ4(k)

]
∆t,

z5(k + 1) = z5(k) +
[

4 |q|−14
15

+ (7−2 |q|)z1(k)
15(1+z1(k))

+ (7−2 |q|)z2(k)
15(1+z2(k))

− 7
5
z5(k) + ζ5(k)

]
∆t,

z6(k + 1) = z6(k) +
[
−11

15
+ 1

15(1+z1(k))
+ 1

15(1+z2(k))
+ z3(k)

5(1+z3(k))
+ 1

5(1+z5(k))
+ 1

5(1+z7(k))

+ 1
5(1+z8(k))

− 8
5
z6(k) + ζ6(k)

]
∆t,

z7(k + 1) = z7(k) +
[

z8(k)
10(1+z8(k))

− 19
10
z7(k) + ζ7(k)

]
∆t,

z8(k + 1) = z8(k) +
[

z7(k)
10(1+z7(k))

− 19
10
z8(k) + ζ8(k),

]
∆t,

(S25)

with a small time interval ∆t. Note that Z(k) is the vector of Z(t) at the time instant k∆t.

We denote the Jacobian matrix of Eq.(S25) as J = ∂f(Z(k);p)
∂Z

∣∣∣
Z=Z̄

, where

J = e∆t·A (S26)

with A is the coefficient matrix of the linearized system of Eq.(S24).

From Eq.(S26), we obtain eight distinct eigenvalues (0.67|P |, 0.45, 0.37, 0.30, 0.25, 0.20, 0.17, 0.14)

by taking ∆t = 1. It is obvious that the largest eigenvalue 0.67|P | → 1 when P → 0. Thus

there is a bifurcation for the diffence system Eq.(S25). Thus, the equilibrium point Z̄ is stable

when P ∈ (−1, 0]. Obviously, there is a critical value Pc = 0, where the system loses stability

and undergoes a critical transition. We aimed to detect early warning signals that indicate the

critical transition as a control parameter P approaches a critical value 0 from P < 0.
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Based on the simulated model, we collected time-course data of the eight-node expression-

s. Then, based on these simulated data we calculated the inconsistency score curves for the

network, as shown in Fig. 3 in the main text.

Figure S2: | Comparison of the performance between current and former approaches. To
compare the performance between current method and former approach proposed in (24), these
two methods are respectively applied to a simulation dataset generated by the 8-nodes artificial
network in Fig. S1 under different noises. Aiming to signal the tipping point at q = 0, it can be
seen that under small noise (σ = 0.1), there is no significant difference. However, when under
large noise (σ = 0.5, or σ = 1), the current method is more robust and stable. This is because
that in current method, not only the nodes but the associations among nodes are considered
while in the former approach, only nodes are taken into consideration.

It is worth noting that the proposed algorithm is much more robust in detecting the tipping

point during the biological processes than the former one proposed in (24). Actually, the d-

ifferential network based algorithm is an effective and robust aggregate method for exploiting

the dynamical information from the longitudinal measurements of molecular factors involved

in a disease, and better describe the abrupt dynamical change. An illustrative figure shows the
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different performance between the proposed algorithm and that in the former published paper

as Fig. S2. To compare the performance between current method and former approach pro-

posed in (24), the two methods are respectively applied to a simulation dataset generated by the

8-nodes artificial network (Fig. S1) under different noises. Aiming to signal the tipping point

at q = 0, it can be seen that under small noise (σ = 0.1), there is no significant difference.

However, when under large noise (σ = 0.5, or σ = 1), the current method is more robust and

stable. This is because that in current method, not only the nodes but the associations among

nodes are considered while in the former approach, only nodes are taken into consideration.

C Application to three real datasets

For the three datasets, that is, gene expression profiling dataset of acute lung injury induced

by phosgene gas (access ID: GSE2565), the microarray dataset of stimulating-stress production

caused by acute corneal trauma (access ID: GSE1393), and genomic data of MCF-7 cell line hu-

man breast cancer caused by heregulin (access ID: GSE13009), we identified the pre-transition

states through I-score.

The gene expression profiling dataset of the three diseases was downloaded from the NCBI

GEO database (www.ncbi.nlm.nih.gov/geo). In these datasets, probe sets without correspond-

ing gene symbols were ignored during our analysis. The expression values of probe sets that

are mapped to the same gene were averaged. The three datasets are described in Table S1. Be-

sides, we described the data processing in details and conducted the functional analysis results

(g:profiler: http://biit.cs.ut.ee/gprofiler/ and NOA: http://app.aporc.org/NOA/) (25,26) for some

important molecules.
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Table S1: Descriptions of the three datasets

Experimental data Description
Genomic data of lung injury due to carbonyl
chloride inhalation exposure (GSE2565) (29)
Sampling points 9 sampling points

0, 0.5, 1, 4, 8, 12, 24, 48, and 72 (hours)
Number of observed objects 22690 genes
Groups control group and case group
Case data 6 subjects
Control data 6 control samples
Genomic data of MCF-7 human breast cancer
caused by heregulin (HRG) (GSE13009) (31)
Sampling points 16 sampling points

1/4, 1/3, 1/2, 3/4, 1,
3/2, 2, 3, 4, 6, 8, 12,
24, 36, 48, 72 (hours)

Number of observations 13785 genes
Groups control group and case group
Case data 2 subjects
Control data 3 control samples
Genomic data on stimulating-stress production
by acute corneal trauma (GSE1393) (32)
Sampling points 8 sampling periods

0.5, 1, 3, 8, 24, 72, 120, and 360 (hours)
Number of observations 15,065 genes
Groups control group and case group
Case data 5-6 replicates
Control data 5-6 replicates

C.1 Dataset 1. Genomic data of the lung injury with carbonyl chloride
inhalation exposure (i.e., acute lung injury)

This dataset was obtained in an experiment on toxic gas-induced lung injury effects, i.e., pul-

monary edema (29), and was downloaded from the NCBI GEO database (ID: GSE2565)

(www.ncbi.nlm.nih.gov/geo). In this dataset, probe sets without corresponding gene symbols

were not considered during our analysis. The expression values of probe sets mapped to the

same gene were averaged. Genes for the this disease have been linked and correlated by the

combined functional couplings among them from various databases of protein-protein interac-
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tions of STRING and BioGrid. In the disease dataset, the expression profiling information was

mapped to the integrated networks individually for constructing the correlation networks. We

downloaded the biomolecular interaction networks from various databases, including STRING

(http://string-db.org/), BioGrid (www.thebiogrid.org), KEGG (www.genome.jp/kegg), and H-

PRD (www.hprd.org). First, the available functional linkage information for Mus musculus was

downloaded from these databases and combined. For instance, after removing the redundan-

cy, we obtained 37950 linkages in 6683 mouse proteins/genes for acute lung injury. Next, the

genes evaluated in these microarray datasets were mapped individually to these integrated func-

tional linkage networks. The network information are employed in the post processing step for

visualizing results (Figs.3a, 4a,4b in the main text) and functional analysis.

To study acute lung injury, a genomic approach was used to investigate the molecular mech-

anism of phosgene-induced lung injury. The experiments were conducted to determine the

temporal effects of phosgene exposure on lung tissue antioxidant enzyme concentrations and

the gene expression level, and these results were compared with those from air-exposed mice

treated in a similar manner to assess the role of the GSH redox cycle in this oxidative lung in-

jury model. To produce two groups of data, i.e., the control group data and case group data, two

groups of CD-1 male mice were exposed to air or phosgene, respectively. Lung tissues were

collected from air- or phosgene-exposed mice at 0.5, 1, 4, 8, 12, 24, 48, and 72 hours (h) after

exposure. The details of the experiment are available in the original paper (29). We introduce

some key background as well as our functional analysis as follows.

Phosgene gas is one of the most important and common chemical industry gases (28). Some

pathogenic mechanisms of the acute lung injury induced by phosgene have been identified (29).

Dysfunctions of glutathione metabolism and the chemokine signaling pathway related to in-

flammatory immune response were activated in vivo, which also reflected protection against

the oxidant-like activity of phosgene. Pathways affected by the oxidant reaction became dis-
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ordered, especially signal transduction via protein-modified activation, such as the MAPK sig-

naling pathway and Wnt signaling pathway. The decrease in pH induced by the HCl-release

reaction affected some pathways that were sensitive to intracellular conditions and related to

communication or transport channels, e.g., gap junctions. Some signaling pathways may also

be relevant to repair, survival, apoptosis, and reproduction, such as the GnRH signaling path-

way, MAPK signaling pathway, and TGF-beta signaling pathway (29, 30). At the GO function

level, some biological processes were also highly related to acute lung injury. For example,

the expression profiles of some genes were related to abnormal changes in primary metabol-

ic processes. This indicated the denaturation of lipoids, proteins, and nucleic acids that may

have been oxidized by phosgene (29, 30). Some well-known genes that regulate or are directly

involved in apoptosis were also included in the local networks with significant I-scores, such

as JUN, NOTCH2, and MYC. Some genes in the 10% top differential genes selected from the

local networks with significant I-scores were also related to inflammatory response, wounding

induced by oxidant damage, and irritation, such as IL1B, PTGS2, CCL2, and MYD88. Some

local networks are presented in the Fig. 4 in the main text.

Briefly, investigators found that the main physiological effects occurred within the first 8

hours after exposure, resulting in common observations of enhanced BALF protein levels, in-

creased pulmonary edema, and ultimately decreased survival rates (29). At the concentration

delivered, 50%-60% mortality was routinely observed at 12 hours while 60%-70% mortality

was observed at 24 hours (29). The detailed results are also available in the original paper (29).

Early warning signals of lung injury based on the I-score are shown in Fig. 3 of the main text,

which showed that the pre-transition state may start around 4 h, while the system may enter

the after-transition state after 12 h. Our prediction based on the I-scores agreed with the actual

disease development.

To explain the how the I-score scheme applied in real dataset more clearly, we used acute
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lung injury as a concrete example to describe our computational procedure step by step. In

GSE2565 data set, there are 22,690 original probe sets. We mapped them to the corresponding

NCBI Entrez gene symbols by using the GEO annotation. Meanwhile, we screened out all

probe sets with incorrect corresponding gene symbols while probe sets that detected the same

genes were combined using the averaging method. After this procedure, there were 12,871

genes left.

Step 1 Choose differential expression genes from the high-throughput gene data for acute lung

injury. Then construct the temporal-ordering differential network sequence. At each

sampling point (or period), there are 12,871 genes. Each gene has 6 case samples and

6 control samples. At the 0 h sampling point, the case samples are identical to the

control samples. Each sampling time point is supposed as a candidate tipping point of

the critical transition, based on which we apply the I-score algorithm and calculate the

inconsistency score representing the probability of a candidate point being the end point

of the stationary Markov process of the before-transition state.

At each sampling point, by the student t-test with statistical significance (p < 0.05)

and fold change, the genes are filtered. The numbers of differentially-expressed gene

are {503, 840, 1635, 1892, 1393, 1337, 1620, 1399} respectively at 0.5, 1, 4, 8, 12, 24,

48 and 72 hours (h).

According to the scheme of inconsistency score, except the first sampling time point

(0 h) which is always supposed as in the before-transition stage, we regard that each

time point is a candidate critical point, i.e., the end point of the stationary Markov

process in a before-transition stage. For each candidate critical point t = T , the

differentially-expressed genes selected at this time point are mapped to STRING net-

work (http://string-db.org/), based on which the correlation network NT is constructed
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by a threshold scheme, that is, for edges connecting with two nodes (the correlation

between two biomolecules), only those with high correlation coefficients are reserved;

while for edges connecting with only one node (the self-regulation or the variation of a

biomolecule), only those with high standard variation are reserved. Subsequently, com-

paring the adjacent correlation networks, i.e., NT and NT−1, we obtain the differential

network DNT = NT −NT−1 by removing the common edges.

Step 2 As the training step, we carried out the I-score scheme and the Baum-Welch algorithm.

We conducted the data normalization for all the variables.

A =
Dcase −mean(Ncontrol)

SD(Ncontrol)
, (S27)

where A denotes the normalized expression data for each variable in each case sample,

Dcase is the data for each variable in every case sample, while the mean(Ncontrol) and

SD(Ncontrol) are the mean and standard deviation for each variable in all the control

samples, respectively.

Regard the differential networks {DNt(t)}, (t = 0.5, 1, ..., 72) (where samples in

t = 0 are set as reference) as the observation sequence. From the second sampling time

point, at a candidate critical time point T , we trained the HMM at T − 1 following the

above algorithm.

Step 3 As the testing process, we calculated the I-score via the forwarding algorithm.

Step 4 The sharp increase of the I-score indicates the impending critical transition and the peak

of the I-score demonstrates the most possible tipping point of the critical transition.

The obtained inconsistency score curve is consistent with the real experimental phenomenon,

and the inconsistency score start increasing sharply from the 4th time period (4 h) and reach
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peaks in the 5th time period (8 h, i.e., the pre-transition, see Fig. 3a in the main text). This

indices show that the pre-transition state starts near the 4th time period (4 h), and the system

transitions to another state after the 5th time period (8 h). Our early-warning signals are coin-

cident with the actual disease development that the most prominent physiological effects occur

within the first 8 h after exposure, resulting in pulmonary edema and ultimately reducing sur-

vival rates (see the original paper (29)). Based on the dynamical information of the network,

we have graphically illustrated the dynamical changes in the overall mouse PPI network (see

Fig. 4b in the main text), from which it can be seen that a critical transition occurs around 8 h

sampling point (during 4-8 h period).

For the specific algorithm for this real dataset, we have the following three notations.

Note 1 During the progression of the disease, each time point is supposed as a candidate transi-

tion point. To validate a candidate point, we tested whether some genes show significant

changes and behave dynamically in a strongly collective manner, i.e., the distribution of

these genes change drastically comparing with their previous distribution. Therefore,

we respectively investigate the set of genes differentially expressed at each candidate

point, rather than the whole set of differential genes identified from all the time points.

Note 2 To compare the I-score, it is required that the number of the nodes in the testing differ-

ential networks is equal at all candidate time points. Specifically, in the HMM-training

step at a candidate time point, the emission matrix B is 2 × (n + 1) dimension, where

n denotes the number of variables. To unify the scale of the I-score, so that the incon-

sistency indices from different candidate time points are comparable, we only consider

the same number of genes in the testing differential network at each candidate point.

Note 3 Generally, it is a heavy burden of computation to calculate the I-score by employing

the whole differential network, since if there are n nodes in a network, there could be
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at most n(n+1)
2

differential edges, including n(n−1)
2

differential regulations between two

molecules and n self-regulations. Thus there could be up to 2
n(n+1)

2 cases in the emission

matrix. To reduce the computational complexity, the differential network is partitioned

into many local networks. Each local network contains a center node (a differentially-

expressed gene) and all of its first-order neighbours based on the network structure, such

as a integrated STRING network. The I-score for each local network is then calculated

piece by piece and thus generate an weighted average score. Specifically, suppose there

are k subnetworks partitioned from a differential network,

I =
n1I1 + n2I2 + · · ·+ nkIk
n1 + n2 + · · ·+ nk

, (S28)

where ni denotes the number of nodes in the i-th local network and Ii stands for the

local I-score of this subnetwork.

Note 4 Clearly, for different testing curve based on distinct candidate critical point, the testing

differential network contains distinct genes and structure. For example, in Fig. 3a of

main text, the red curve (the testing curve for the candidate critical point 8 h) is calcu-

lated based on the testing differential network obtained at 8 h, which is distinct to the

testing network of any blue curve (one of the testing curves for other candidate critical

points). However, for one testing curve, say, the red curve, the I-score is calculated by

using the identical testing differential network, i.e., the differential network obtained at

8 h.

To better show the significance and consistence of our results, we have plotted the incon-

sistency scores generated from bootstrap as in Fig. S3. Carrying out leave-one-out scheme, we

obtain 6 sets of samples at each time point, based on which we respectively calculated the in-

consistency scores. From Fig. S3, it can be seen that the I-score curves based on the re-sampled

datasets all show significant signals to the critical transition at or around 8 h.
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Figure S3: | The inconsistence indices generated from leave-one-out bootstrap. To illus-
trate the significance of the results, the inconsistency score is calculated respectively based on
6 sets of datasets generated from leave-one-out bootstrap. It can be seen that the I-score curves
based on the re-sampled datasets show significant signal to the critical transition around 8 h.

We screened genes in the top significant differential local networks at the identified critical

time point (8 h), among which some well-known genes that regulate or are directly involved in

apoptosis were also included in the most significant group, such as JUN, NOTCH2, and MY-

C. Some genes in the most significant group were also related to the inflammatory response,

wounding induced by oxidant damage, and irritation, such as IL1B, PTGS2, CCL2, and MY-

D88, and presented the dynamical changes in the network including the selected genes during

the progression in the Fig. 3c of the main text.

Twelve local networks are identified with most significant changes in I-score around the

critical point, which are showed in Fig. 4 of the main text. To analyze and illustrate the dynam-

ical difference before and after the critical transition, graph-related information is shown in the

Table 1 in the main text. It can be seen that the structures of these networks changes drastically

between normal and disease states. The ratios of the overturn neighbors and edges overwhelm
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those of the background 28.6% (overturn neighbors) and 11.7% (overturn edges), i.e., the ratio

of the overturn nodes/edges in the whole STRING molecular network.

C.2 Dataset 2: Genomic data on acute corneal trauma

Corneal injury, or overstimulation, is known to alter gene expression in the lacrimal gland.

Earlier experiments identified several growth factors and other genes that were differentially

expressed in the lacrimal gland after creation of a corneal epithelial defect. Damage to cornea

sensory nerve terminals that creates partial denervation is hypothesized to be the main cause

of dry eye syndrome after refractive surgery and normal aging (33). Corneal injury, or over-

stimulation, is known to alter gene expression in the lacrimal gland. The chemical burn not

only damages the cornea and its nerves, but also creates an indirect, yet predictable overstimu-

lation of the lacrimal gland through the neuronal circuit between the two organs (32). To study

the overstimulation and the related gene regulation, a mouse model with acute corneal trauma

was created with a chemical burn to the cornea with silver nitrate, based on which the dataset

GSE1393 was obtained and studied. In the experiment, sixty-four female BALB/c mice at 12

weeks of age were randomly divided into eight groups, eight mice per group. The corneas of

four mice in each group were bilaterally cauterized with silver nitrate, and another four time-

matched mice were used as the control. The total RNA of the lacrimal gland was then extracted,

at eight time points (0.5, 1, 3, 8, 24, 72, 120, and 360 hours after the corneal burn), and gene

expression was examined with using cDNA microarray technology (32).

According to our algorithm, the critical transition of the overstimulation after acute corneal

trauma occurred around 1-8 h period, due to the drastic increase of I-score.

Interestingly, we found that many of genes in the local differential networks with significant

I-score were consistent with the response to stress response in vivo, particularly the activation

of the immune system and dysfunctions associated with basic cell metabolism in the hosts.
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Some enriched pathways were related to dysfunctions of a combination of neuronal and hor-

monal pathways. Some pathways shared common characteristics with cancer, especially the

signaling pathways involved in cell growth, such as transcriptional misregulation in cancer,

purine metabolism, Wnt signaling pathway, TGF-beta signaling pathway, and others. These

dysfunctional pathways indicated the cell status.

In the acute corneal trauma dataset GSE1393, there were 16,928 original probesets, which

we mapped to the PPI network. We screened out all probesets with incorrect corresponding

gene symbols while probeset that detected the same genes were combined using the averaging

method, leaving 10,354 genes. Using the algorithm in Section E, we conducted the computation

of I-score and get the application result, which suggests that the critical transition is around the

8 h time point.

C.3 Dataset 3: Genomic data of MCF-7 human breast cancer caused by
heregulin (HRG)

Great attention has been paid to the study of breast cancer because it is one of the highest

fatal-ratio diseases and increasing numbers of female patients are suffering from breast cancer

worldwide. The main cause of breast cancer is far from clear, but some of the mechanisms and

phenomena that occur during the disease progression of HRG-induced breast cancer have been

identified based on studies of its molecular mechanisms (31, 34) and pathogenesis (35).

Heregulin (HRG) induces dose-dependent transient and sustained intracellular signaling,

proliferation, and differentiation of MCF-7 breast cancer cells. This dataset was obtained in an

experiment on MCF-7 cell line with HRG stimulation (GSE13009).

In the infected host, some metabolic pathways respond to these interruptions and become

increasingly disordered. The following results show that some reported phenomena were con-

sistent with our investigations, which also provided some novel insights. In order to analysis
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the biological function of the genes with significant I-score (in the sense of the I-score of the

local network centered with a gene), we screened some local network and their centers.

The identified local network is related to regulation of apoptotic process (GO:0042981),

regulation of programmed cell death (GO:0043067) and regulation of cell death (GO:0010941)

with significant P-value of gene enrichment by website tools of DAVID Bioinformatics Re-

source (36). By the pathway analysis in KEGG database, we found that 7 genes (CEBPA,

SMAD3, GSK3B, LAMC2, MMP1, PIK3R3, RXRA) in these local networks participate in the

pathways in cancer, and many genes of this module also take part in the other cancer related

pathways, e.g. Wnt signaling pathway, p53 signaling pathway, ECM-receptor interaction. Many

genes in these local networks with significant I-scores have been proved to associate with can-

cer or tumor process, and some of these genes are associated with breast cancer. For example,

BCAS4 is an important gene for breast tumor development and progression (37), ARID3B is

one of genes to regulate cell motility and actin cytoskeleton organization (38), and is found to

associate with the onset of breast cancer (39). TNFRSF21 encodes tumor necrosis factor recep-

tor which can regulate the NF-kappaB and mediate apoptosis process (40). LAMC2 encodes

the gamma chain isoform laminin, which is involved in many biological process, and LAMC2

also is proved to be related to breast cancer process (41, 42). Therefore, local networks with

significant I-scores for HRG-induced breast cancer can mainly induce cancer by affecting the

processes of regulation of apoptosis, regulation of programmed cell death and regulation of cell

death.

Figure S4 presents the second application of inconsistency score for MCF-7 human breast

cancer caused by heregulin (HRG). Based on Fig. S4a, each probability curve is calculated

based on a testing differential network at the corresponding candidate critical time point. The

red curve in Fig. S4a shows the most significant increase of inconsistency probability at the

90-minutes time point, which indicates that the most possible critical transition point is around
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90 minutes. Fig. S4b shows the dynamical evolution in the whole feature network based on the

case data of breast cancer. It can be seen that the network structure also changes significantly at

the 90-minutes time point. In fact, the original assay showed that the AP-1 complex in HRG-

treated MCF-7 cells contains c-JUN, c-FOS and FRA-1, although the association of c-JUN in

the complex is transient (31). Besides, the stimulation of MCF-7 breast cancer cells with EGF

and HRG resulted in very similar early transcription profiles up to 90 min; however, subsequent

cellular phenotypes differed after 3 h (31), which suggests that the differentiation is around

3 h (the 9th sampling time point). Therefore, our application results are in coincidence with

the experimental observation and successfully detect the early-warning signal of the impending

critical transition.
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Figure S4: | The application of I-score scheme on the dataset of HRG-induced breast
cancer. By applying I-score scheme to the microarray data of HRG-induced breast cancer,
we show the I-scores from each candidate transition time points. The red curve represents the
I-score calculated from the testing differential network which is obtained at the 6th sampling
point (1.5 h), while the blue curves are that from other time points. It is can be seen that the most
significant signal appear around the 1.5 h, which agrees with the experimental observation, that
is, the stimulation of MCF-7 breast cancer cells with EGF and HRG resulted in very similar
early transcription profiles up to 1.5 h. However, subsequent cellular phenotypes differed after
3 h, which suggests that the differentiation is around 3 h (the 9th sampling time point).
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