Supporting Information

General.

Agents and chemicals were purchased from Sigma-Aldrich or TCI (shanghai). Dried dichloride methane (CH₂Cl₂) was obtained by distilling from calcium hydride and stored under argon atmosphere. Reagents were purchased commercially and used without further purification. All reactions were monitored by thin layer chromatography (TLC) with silica gel coated plates, UV light as visualizing agent or basic aqueous potassium permanganate as developing agent. NMR spectra were recorded on Agilent 500/54/ASP instrument and calibrated using residual protonated solvent ($\delta_{\rm H} = 7.26$ and $\delta_{\rm C} = 77.16$ for CDCl₃, $\delta_{\rm H} = 3.31$ and $\delta_{\rm C} = 49.15$ for CD₃OD, $\delta_{\rm H} = 2.50$ and $\delta_{\rm C} = 39.51$ for DMSO-d6) as an internal reference. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved. Coupling constants (J) are reported in Hertz. Mass spectra were recorded by ESI-MS.

A TXN producer, *Streptomyces bottropensis* NRRL 12051 was purchased from American Agricultural Research Service (ARS). *Escherichia coli* DH5α competent cells were used for routine subcloning and plasmid preparations and it were grown in LB medium with appropriate antibiotics. pCC1FOSTM Vector (Epicentre) was used for fosmid library preparations. PCR amplification was carried out using either *Taq* DNA polymerase or PfuUltraTM DNA polymerase with genomic DNA or fosmid pTG5001, pTG5002, or pTG5003 as a template, degenerate or specific primers were listed in Table S1/S2. Primer synthesis was performed at Invitrogen Shanghai Center. DNA sequencing was performed at the Shanghai Majorbio Pharm Technology Co., Ltd. The general genetic manipulations of *S. bottropensis*, production and analysis of TXN were performed as following described methods.

Sequence Analysis.

The open reading frames (ORFs) were deduced from the sequence by performing Frame Plot 4.0 beta program (http://nocardia.nih.go.jp/fp4) and BLAST methods. Amino acid sequence alignments were performed by the CLUSTALW method from BIOLOGYWORKBENCH 3.2 software (http://workbench.sdsc.edu).

Production and Analysis of Trioxacarcin (TXN).

S. bottropensis NRRL 12051 WT and recombinant strains were grown in a seed culture of TSB (tryptic soy broth) (3%) at 30 °C for 36 hr, then 5 mL of seeding culture suspension was transferred into a 500-mL flask containing 100 mL fermentation broth (soluble starch 6%, glucose 1%, yeast extract 1%, NaCl 0.3%, MgSO4.7H2O 0.1%, KH2PO4 0.1%, CuSO4.5H2O 7 mg, FeSO₄.7H₂O 1 mg, MnCl₂.4H₂O 0.8 mg, ZnSO₄.7H₂O 0.2 mg, CoCl₂.7H₂O 0.0006 mg, HP20, 5%) and incubated at 30 °C for 5d. The culture broth was centrifugalized (5000 rpm for 10 min), the culture filtrates were removed, and all the mycelia were collected including macro resin HP20 followed by acetone soaking and ultrasonic broking. The organic layer was evaporated under reduced pressure, and the water layer was extracted thrice with equal volume of ethyl acetate. Combined extract was finally concentrated to 2 mL. HPLC analysis was carried out on a Kromasil 100-C18 column (5 μ , 4.6 \times 250 mm). The column was equilibrated with 50% solvents A (H₂O and 0.1% HCOOH) and B (CH₃CN and 0.1% HCOOH) and developed with the following program: 0-5 min, 10% B; 5-25 min, a linear gradient from 10% B to 90% B; 25-27 min constant 90% B; 27-29 min with a linear gradient from 90% B to 10% B; 29-30min constant 10% B. This process was carried out at a flow rate of 1 mL/min and UV detection at 271 nm using an Agilent 1100 HPLC system. The identity of compound was confirmed by liquid chromatography/MS (LC-MS) analysis performed on a Thermo Scientific LCQ FLEET system under the same conditions. TXN-A showed $[M+Na]^+$ ion at m/z = 899.2, consistent with the molecular formula $C_{42}H_{52}O_{20}$, and HRMS (m/z): [M+Na]⁺ calcd. 899.2944, found 899.2945.

Precursors Feeding and Isolation of TXN-A.

The fermentation was carried out as mentioned above, equal portions of ¹³C-labeled precursor (a total of 0.7 g/L) was added to a fermentation culture by pulse feeding after 48, 56, 64, 72, 80, 88 hr of incubation. The crude extract was subjected to flash chromatography on silica gel with MeOH/CH₂Cl₂ gradient (0-10% MeOH in CH₂Cl₂). The eluent washed with MeOH/CH₂Cl₂ (2:100, and 3:100, v/v) was collected, and it was further analyzed by gel filtration chromatography (MeOH/CHCl₃, 1:1 v/v). The residues with green fluorescent fraction was collected and detected with TLC (MeOH/CHCl₃, 1:15, R_f = 0.6), collected and evaporated to give a yellow compound

TXN-A, this yellow compound in ¹H-NMR (500 MHz, CDCl₃) and ¹³C-NMR (125 MHz, CDCl₃) was the same as that reported in ref.1. The cultures feeding with each isotope-labeled precursor were extracted and treated as described above, and the pure labeled TXN was isolated and spectral-analyzed by ¹³C-NMR (125 MHz, CDCl₃) (Fig. S1, Table S3). ¹³C₆-L-Ile (a total of 0.35 g/L) was fed in to the fermentation cultures in the same way, and the labeled product was also analyzed by LC-MS and ¹³C NMR (125 MHz, CDCl₃).

Construction of Gene Replacement and Complementation Mutants.

The gene replacement mutants of orf-3, orf-1, orf+3, orf+11, $txnA_1$, $txnA_4$, $txnRg_1$, $txnRg_6$, $txnC_2$, $txnC_3$, $txnO_4$, $txnO_5$, $txnO_6$, $txnO_{12}$, and $txnB_4$, were constructed using REDIRECT Technology similar to those previously published². The internal region of each target gene was replaced by a apramycin resistance gene *aac(3)IV*, oriT (RK2) and was amplified with the following primers respectively: Orf-3-F/R, Orf-1-F/R, Orf+3-F/R, Orf+11-F/R, TxnA1-F/R, TxnA4-F/R, TxnRg₁-F/R, TxnRg₆-F/R, TxnC2-F/R, TxnC3-F/R, TxnC4-F/R, TxnO2-F/R, TxnO5-F/R, TxnO6-F/R, TxnO12-F/R, and TxnB4-F/R (Table S3), the PCR template were fosmids of pTG5001, pTG5002 and pTG5003. Mutant fosmids Δorf -3, Δorf -1, Δorf +3, Δorf +11, $\Delta txnA_1$, $\Delta txnA_4$, $\Delta txnRg_1$, $\Delta txnRg_6$, $\Delta txnC_2$, $\Delta txnC_3$, $\Delta txnC_4$, $\Delta txnO_2$, $\Delta txnO_5$, $\Delta txnO_6$, $\Delta txnO_{12}$, and $\Delta txnB_4$ for gene replacement were constructed and introduced into S.bottropensis NRRL 12051 by conjugation from E. coli S17-1. The double crossover mutants (TG5002, TG5003, TG5006, TG5005, TG5001, TG5008, TG5004, TG5007, TG5009, TG5011, TG5010, TG5012, TG5013, TG5014, TG5015, and TG5016 (Table S2) were screened and selected with apramycin-resistant colonies whose genotype were tested by PCR (Yz--3-F/R, Yz--1-F/R, Yz-+3-F/R, Yz-+11-F/R, Yz-A1-F/R, Yz-A4-F/R, Yz-Rg₁-F/R, Yz-Rg₆-F/R, Yz-C2-F/R, Yz-C3-F/R, Yz-C4-F/R, Yz-O2-F/R, Yz-O5-F/R, Yz-O6-F/R, Yz-O12-F/R, and Yz-B4-F/R as primers, Table S3).

Anticancer Activity Assays of TXN-A and Analogues.

All cell-culture work was conducted in a class II biological safety cabinet. Jurkat cells were maintained in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS). Jurkat cells

were grown to approximately 80% confluence, and then were collected, and pelleted by centrifugation (3 min at 1000 rpm). The supernatant was discarded and the cell pellet was resuspended in fresh medium, and the concentration of cells was determined using a hemacytometer. The cell suspension was diluted to a concentration of 10000 cells/50 µL. The wells of a pre-sterilized 96-well plate were charged with 50 µL per well of the diluted cellular suspension. Stock solutions of each compound in DMSO were diluted serially with RPMI-1640 medium (supplemented with FBS), and 50 µL resulting solutions were added to the wells containing cells to achieve final concentrations of 0.25 nM to 2 nM (TXN-A) or 0.25 nM to 2500 nM (all other compounds). After incubating at 37 °C and 5% CO₂ for 48 h, 10 µL of CCK-8 (VazymeTMCCK-8 Cell Counting Kit) was added to each well. After incubating at 37 °C and 5% CO₂ for 4 h, The optical density was read out at $\lambda = 450$ nm with a microplate reader and the background was subtracted at $\lambda = 630$ nm. Cells incubated with 0.1% DMSO served as positive control. Three independent replicates were conducted.

- 1. R. P. Maskey, E. Helmke, O. Kayser, H. H. Fiebig, A. Maier, A. Busche and H. Laatsch, J. *Antibiot. (Tokyo).* 2004, **57**, 771-779.
- H. M. Ma, Q. Zhou, Y. M. Tang, Z. Zhang, Y. S. Chen, H. Y. He, H. X. Pan, M. C. Tang, J. F. Gao, S. Y. Zhao, Y. Igarashi and G.-L. Tang, *Chem. Biol.* 2013, 20, 796-805.

Carbon	¹³ C-NMR	Enhanced signal	Enhanced signal	$[1,2-^{13}C_2]$ -acetate feeding	
position		[1- ¹³ C]-acetate	[2- ¹³ C]-acetate	Jc-c/Hz	adjacent carbon
1	203.09	\checkmark		66.50	9a
2	67.95			46.50	3
3	36.68	\checkmark		46.50	2
4	67.55		\checkmark	58.63	4a
4a	126.66	\checkmark		58.63	4
5	116.98		\checkmark	76.00	6
6	142.89	\checkmark		76.00	5
7	114.90		\checkmark	85.63	8
8	151.77	\checkmark		86.00	7
8a	114.81		\checkmark	85.00	9
9	163.17	\checkmark		85.00	8a
9a	107.54		\checkmark	66.25	1
10	144.82		\checkmark	79.38	10a
10a	135.46	\checkmark		79.38	10
11	69.22	\checkmark		40.13	12
12	71.47		\checkmark	39.75	11
13	101.59		\checkmark	51.38	
14	68.34				
15	104.69			80.50	
16	99.76			79.88	
17	48.21			35.75	
18	20.39		\checkmark	53.63	
19	62.76			66.50	
16'	56.82				
16″	56.24				
1′	97.99				
2'	36.65				

Table S1. Summary of ¹³C NMR data of TXN-A from incorporation of ¹³C-labeled acetate

3'	68.83				
4'	74.43				
5'	62.90				
6'	16.89				
7'	170.41 √		74.60	8'	
8'	20.91	\checkmark	74.50	7'	
9'	25.73				
1"	94.84				
2''	31.54				
3″	70.20				
4''	79.58				
5"	63.85				
6''	14.55				
7''	210.42	\checkmark			
8″	27.78	\checkmark			

Strain/Plasmid	Characteristics	
Strains		
E. coli DH5α	Host for general cloning	Invitrogen
<i>E. coli</i> S17-1	Donor strain for conjugation between E. coli and S.	1
	bottropensis NRRL 12051	
<i>E. coli</i> BW 25114	Host for PCR-targeting gene replacement on fosmids	2
S.bottropensis	Wild type strain, TXN producing	NRRL
NRRL12051		
S.bottropensisTG5001	$\Delta txnA_1$ gene replacement mutant, TXN non-producing	This work
S.bottropensis TG5002	$\Delta or f$ -3 gene replacement mutant, TXN producing	This work
S.bottropensis TG5003	$\Delta or f$ -1 gene replacement mutant, TXN producing	This work
S.bottropensis TG5004	$\Delta txnRg_1$ gene replacement mutant, TXN low-producing	This work
S.bottropensis TG5005	$\Delta orf+11$ gene replacement mutant, TXN low-producing	This work
S.bottropensis TG5006	$\Delta orf+3$ gene replacement mutant, TXN producing	This work
S.bottropensis TG5007	$\Delta txnRg_6$ gene replacement mutant, TXN low-producing	This work
S.bottropensis TG5008	$\Delta txnA_4$ gene replacement mutant, TXN non-producing	This work
S.bottropensis TG5009	$\Delta txnC_2$ gene replacement mutant, TXN non-producing	This work
S.bottropensis TG5010	$\Delta txnC_4$ gene replacement mutant, TXN non-producing	This work
S.bottropensis TG5011	$\Delta txnO_2$ gene replacement mutant, TXN non-producing	This work
S.bottropensis TG5012	$\Delta txnO_5$ gene replacement mutant, TXN non-producing	This work
S.bottropensis TG5013	$\Delta txnC_3$ gene replacement mutant, TXN non-producing	This work
S.bottropensis TG5014	$\Delta txnO_6$ gene replacement mutant, TXN non-producing	This work
S.bottropensis TG5015	$\Delta txnO_{12}$ gene replacement mutant, TXN non-producing	This work
S.bottropensis TG5016	<i>ttropensis</i> TG5016 $\Delta txnB_4$ gene replacement mutant, TXN non-producing	
Plasmids		
pSP72	Ap^{R} , <i>E. coli</i> subcloning vector	Promega
рСС1FOS-1тм	fosmid vector for genomic library construction	Epicentre

Table S2. Strains and plasmids used in this study

pTG5001	pCC1FOS-1-based, S.bottropensis NRRL12051 fosmid	This work
	containing TXN gene cluster (left part)	
pTG5002	pCC1FOS-1-based, S.bottropensis NRRL12051 fosmid	This work
	containing TXN gene cluster (middle part)	
pTG5003	pCC1FOS-1-based, S.bottropensis NRRL12051 fosmid	This work
	containing TXN gene cluster (right part)	
pTG5004	pTG5001 derivative for gene replacement of orf-3	This work
pTG5005	pTG5001 derivative for gene replacement of orf-11	This work
pTG5006	pTG5001 derivative for gene replacement of $txnA_1$	This work
pTG5007	pTG5001 derivative for gene replacement of $txnRg_1$	This work
pTG5008	pTG5001 derivative for gene replacement of $txnA_4$	This work
pTG5009	pTG5001 derivative for gene replacement of $txnB_4$	This work
pTG5010	pTG5002 derivative for gene replacement of $txnC_2$	This work
pTG5011	pTG5002 derivative for gene replacement of $txnC_4$	This work
pTG5012	pTG5002 derivative for gene replacement of $txnO_2$	This work
pTG5013	pTG5002 derivative for gene replacement of $txnO_5$	This work
pTG5014	pTG5002 derivative for gene replacement of $txnC_3$	This work
pTG5015	pTG5002 derivative for gene replacement of $txnO_6$	This work
pTG5016	pTG5003 derivative for gene replacement of $txnRg_6$	This work
pTG5017	pTG5003 derivative for gene replacement of $txnO_{12}$	This work
pTG5018	pTG5003 derivative for gene replacement of <i>orf+3</i>	This work
pTG5019	pTG5003 derivative for gene replacement of <i>orf</i> +11	This work

 Ap^{R} , ampicillin resistance; Km^{R} , kanamycin resistance; Am^{R} , apramycin resistance. Tsr^{R} , thiostrepton resistance.

- 1 T. Kieser, M. J. Bibb, M. J. Buttner, K. F. Chater and D. A. Hopwood, *Practical Streptomyces Genetics* 2000, (John Innes Foundation, Norwich, UK).
- B. Gust, G. L. Challis, K. Fowler, T. Kieser and K. F. Chater, *Proc. Natl. Acad. Sci. USA* 2003, 100, 1541–1546.

Table S3. Primers used in this study

Primers	Sequence $(5' \rightarrow 3')$		
KS-For	ATCACCGTGGCCTGYTTYGAYGCSATC		
KS-Rev	CCGGTGTTGACSGSRTAGAACCANGC	Degenerate	
4,6-DH-F	CSGGSGSSGCSGGSTTCATSGG	Degenerate	
4,6-DH-R	GGGWRCTGGYRSGGSCCGTAGTTG	Degenerate	
SK-PKS-II-F	GCGGTCTCGTACTCGGAG	Specific	
SK-PKS-II-R	GCCGGCTCGGTATGTGATCG	Specific	
SK-dUDP-F	GTAGTTGTTGGAGCAGCGG	Specific	
SK-dUDP-R	CTCCACGTACGTCCGAGGC	Specific	
Orf-3-F	GAACGAGCCGCGGCAATCGATTCCCAGGACCTGTTCCGCATT CCGGGGATCCGTCGACC	Specific	
Orf-3-R	GCTCCGTGGCCTGGCGGCCTTGTACGTCGTCCTGTTCCATGTA GGCTGGAGCTGCTTC	Specific	
Orf-1-F	GTCAGAGAGTCTTGAGGGACGAGGCGATGGCCTGGTCGGATT CCGGGGATCCGTCGACC	Specific	
Orf-1-R	ATCCCGCGTTCGCCGCCATGGACTTCCACGCACCGTATCTGT AGGCTGGAGCTGCTTC		
Orf+3-F	GGATGGTGGACACCTTCGTCGAAGAGGTCGGCAGGGTGGATT CCGGGGATCCGTCGACC	Specific	
Orf+3-R	TGACGCCCAGCGCCCTGCGATACGGAGAGGCCATCAGGTTGT AGGCTGGAGCTGCTTC	Specific	
Orf+11-F	CTTCGACGACGTCTGGAGGCTGCTGCTCGACGACCGGCTATT	Specific	
Orf+11-R	TCCAGCGCGCCGGTGACCAGTTGGGCGTAGATCGCGACCTGT	Specific	
TxnA1-F	ACTTCTCACCGATGGCCGATCGGCCACACGCACCATCAGATT	Specific	
TxnA1-R	GTACTTCCCTCGCGGATCAGCTCCACCGCGTGTCCGATCTGTA GGCTGGAGCTGCTTC	Specific	
TxnA4-F	GTCAGCGTCTGGCGTGGTCCGGCCTCGACCAGGAGCATGATT CCGGGGATCCGTCGACC	Specific	
TxnA4-R	GGTCATCGGCATCGACGACGTCCGGCGTGCCCAGCCTCTTGT AGGCTGGAGCTGCTTC	Specific	
TxnRg1-F	GAAGCGGAACTGCGGGTCATTGGCAGGCTCCTGGCAGCCATT CCGGGGATCCGTCGACC	Specific	
TxnRg1-R	CCGGGTGCCGACCTTAGACGGTGCAGGCCATGGAACGGCTGT AGGCTGGAGCTGCTTC	Specific	
TxnRg6-F	CCTCGACCCAACGCCCTTGGGCCGTCTTCGACATCGACGTGT AGGCTGGAGCTGCTTC	Specific	
TxnRg6-R	GGATGGTGGACACCTTCGTCGAAGAGGTCGGCAGGGTGGATT CCGGGGATCCGTCGACC	Specific	
TxnC2-F	CATGGCGGTCTTCGGGTGTGCTCGTGGCGCCGAGAACGTATT		
TxnC2-R	CAGACGGCGTTCACGGTGACGCCGGTCCGCGCCAGTTCCTGT AGGCTGGAGCTGCTTC	CACGGTGACGCCGGTCCGCGCCAGTTCCTGT Specific	
TxnC3-F	GGATGCCTCCGTACTGGTGGACACCGCCGCCACCGAAGCATT CCGGGGATCCGTCGACC	Specific	
TxnC3-R	CACCACCGCAGGTAGTTCTCGGTCCGGTCCAGCAGTTCCTGT AGGCTGGAGCTGCTTC	Specific	

TxnC4-F	GTTACGAAGCAGCCGGTGGGACCGTCCGCGTCGAGCGTGATT CCGGGGATCCGTCGACC	Specific
TxnC4-R	CCGCATCGACGAGCGGCACGGCCGGCTGGACATCCTCATTGT AGGCTGGAGCTGCTTC	Specific
TxnO2-F	AGATCCGGACACCGCTCCAGCAGCACGCGCAGGGCGATGAT TCCGGGGATCCGTCGACC	Specific
TxnO2-R	GGACCGCGCCGACTTCCACCTGTGGTCGAGCGATCTGTCTG	Specific
TxnO5-F	GGAAGAGCTTGCTCCACACGATCTCCAGCTCCAGGCGTGATT CCGGGGATCCGTCGACC	Specific
TxnO5-R	TCAACGCCTACATCAGCGACCTGATCCAGACCAAGCGCCTGT AGGCTGGAGCTGCTTC	Specific
TxnO6-F	GCGAACAGGTTGACATGACGCAGGAGTTCGTCCACCGCGATT CCGGGGATCCGTCGACC	Specific
TxnO6-R	GCAGTCGGTCTTCGACGAACTGCTCGACGACATCGAGGC TGTAGGCTGGAGCTGCTTC	Specific
TxnO12-F	GGAACGGACGGCGGTCTTCGCTTCCAGCCTGGCCAGCGGATT CCGGGGATCCGTCGACC	Specific
TxnO12-R	GGAGTTCCGTTCGGCGACCGTGACAAGTTCCACCGCTGG TGTAGGCTGGAGCTGCTTC	Specific
TxnB4-F	GAGGACCAGTACACGTGCGCACGCTCACCTATTGGCAGGATT CCGGGGATCCGTCGACC	Specific
TxnB4-R	CATGCACCATGAGCGAGGTCGCGACCACCGTGACGTCGTTGT AGGCTGGAGCTGCTTC	Specific
Yz3-F	AGTGGTACGCCGTCACTC	Specific
Yz3-R	CAGTGCTCTCGACCTGGC	Specific
Yz1-F	AGCGACGCGTTCTCGGCTG	Specific
Yz1-R	ACGCGCGGCGATGTGGACTG	Specific
Yz-+3-F	CGCATGCGTGACATCCTC	Specific
Yz-+3-R	CGATGTCCACCAGGTCGC	Specific
Yz-+11-F	CGCCTCGTGGTACATCACC	Specific
Yz-+11-R	AGGCTGCCTCCAGTGCCAC	Specific
Yz-A1-F	TGCGGAGAGTCGCCATCAC	Specific
Yz-A1-R	CGTGGATGGCGTCGAAGC	Specific
Yz-A4-F	GCGCGAACGATGTCAGCG	Specific
Yz-A4-R	GGACCTCATGGACGACGAG	Specific
Yz-Rg1-F	AGTCCACATCGCCGCGCGTG	Specific
Yz-Rg1-R	ACTGCGCGATCGGAGAGTCG	Specific
Yz-Rg6-F	GCACTCGGAACGTAGACG	Specific
Yz-Rg6-R	TTCGACACCCTCTCGGAGG	Specific
Yz-C2-F	CCATCGTTACCGGCGCGAC	Specific
Yz-C2-R	GCCGTAGTACTCGGCATGG	Specific
Yz-C3-F	CTGAACAACGCCGGGCTGG	Specific
Yz-C3-R	GCCAGCAGGCCTTCCTGTG	Specific
Yz-C4-F	GCCGTCCGACGGTCACCAG	Specific

Yz-C4-R	CGCGACAAGGCTCGCGGT	Specific
Yz-O2-F	TCTCGTACGGCACCGCCAG	Specific
Yz-O2-R	TCCGCTGTCGGTCATCTGC	Specific
Yz-O5-F	AAGGCCTGGCGAGCCTCAG	Specific
Yz-O5-R	CAGGACCGGCACGACTTCT	Specific
Yz-O6-F	AAGCCGGAGGTGTCGGTCG	Specific
Yz-O6-R	CATGGACTCGCCCGAGCAC	Specific
Yz-O12-F	CGTCGAGGGCCAGGTCCGG	Specific
Yz-O12-R	GTCCAGGACTTCGCGTTC	Specific
Yz-B4-F	GCTGACACCGGTGCACTCG	Specific
Yz-B4-R	GCACCATGAGCGAGGTCGCG	Specific

Legend: R, A or G; Y, C or T; M, A or C; K, G or T; S, C or G; W, A or T; H, A, C, or T; B, C, G, or T; V, A, C, or G; D, A, G, or T; N, any nucleotide.

	4 a			4b
No.	δ_C	δ_{H}	δ_C	δ_{H}
1	174.41		174.93	
2	90.43		90.02	
3	168.74		168.88	
4	103.62	5.57 (s,1H)	104.09	5.57 (s, 1H)
5	166.55		166.39	
6	119.85		119.28	
7	139.8		140.2	
8	103.8	6.30(d,2.4 Hz, 1H)	103.64	6.31 (d, 1.1 Hz, 1H)
9	164.2		164.41	
10	112.75	6.22(d,2.4Hz,1H)	113.02	6.23 (d, 1.3 Hz, 1H)
11	106.48		106.48	
12	38.88	3.57 (s, 2H)	38.82	3.60 (s, 2H)
13	203.12		203.24	
14	121.89		121.64	
15	159.18		158.59	
16	101.9	6.14(d, 2.2Hz, 1H)	101.87	6.14 (s, 1H)
17	162.56		162.35	
18	106.48	6.25(d,2.2 Hz, 1H)	106.08	6.31 (d, 1.1 Hz, 1H)
19	150.67		165.66	
20	39.02	2.45 (Sept, 6.8 Hz, 1H)	32.01	2.74 (sept, 6.2 Hz,1H)
21	32.43	1.37 (m, 1H), 1.46 (m, 1H)	22.18	1.06 (d, 6.2 Hz,3H)
22	12.92	0.69 (t, 7.4 Hz, 3H)	22.18	1.06 (d, 6.2 Hz,3H)
23	22.18	1.01 (d, 4.9 Hz, 3H)		

Table S4. ¹H- and ¹³C-NMR data of **4a** and **4b**

No.	δ_C	δ_{H}
1	165.26	
2	89.7	5.34 (s, 1H)
3	172.19	
4	101.61	5.79 (s, 1H)
5	167.7	
6	38.1	4.18 (q, 16.0 Hz, 2H)
7	136.23	
8	125.6	6.81 (d, 7.4 Hz, 1H)
9	135.4	7.32 (t, 7.9 Hz, 1H)
10	118.51	6.84 (d, 8.9 Hz, 1H)
11	159.47	
12	118.66	
13	192.44	
14	48.54	2.81(m, 1H),2.94(m, 1H)
15	100.82	
16	47.34	2.81(m, 1H),2.91(m, 1H)
17	194.14	
18	100.42	5.59 (s, 1H)
19	195.64	
20	42.95	2.23(m,1H)
21	27.18	1.44(m, 1H), 1.64(m, 1H)
22	11.71	0.88 (dd, 13.3, 7.2 Hz, 3H)
23	17.24	1.11 (dt, 8.0, 4.0 Hz, 3H)

Table S5. ¹H- and ¹³C-NMR data of **6a**

No.	δ_C	δ_{H}
1	205.82	
2	34.13	
3	30.39	
4	63.18	5.34(4, 4.2 Hz, 1H)
4a	110.93	
5	120.69	7.85 (s, 1H)
6	139.84	
6-Me	24.03	2.86 (s, 3H)
7	119.76	
8	151.59	
8a	117.8	
9	157.16	
9a	112.95	
10	157.99	
10a	133.33	
11	178.96	
12	109.8	6.46(s, 1H)
13	172.74	
14	73.12	
15	33.12	2.16 (m, 2H)
16	8.35	0.79 (t, 6.0 Hz, 3H)
17	26.94	1.55 (s, 3H)

Table S6. ¹H- and ¹³C-NMR data of **9a**

_

12a		12b		
No.	δ_C	δ_{H}	δ_C	δ_{H}
1	203.11		202.9	
2	67.83	4.77 (dd, 12.2, 5.3 Hz, 1H)	67.94	4.78 (dd, 11.7, 4.1 Hz, 1H)
3	36.76	2.23 (m, 1H), 2.78 (m, 1H)	36.62	2.20 (m, 1H), 2.81 (m, 1H)
4	68.07	5.38 (d, 3.1 Hz, 1H)	67.46	5.39 (d, 2.8 Hz, 1H)
4a	126.58		126.48	
5	116.91	7.47 (s, 1H)	116.87	7.49 (s, 1H)
6	143.17		143.07	
6-Me	20.65	2.59 (s, 3H)	20.45	2.61 (s, 3H)
7	114.93		115	
8	151.78		151.83	
8a	115.5		114.78	
9	163.18		163.25	
9a	107.52		107.39	
10	144.99		144.83	
10-Me	62.84	3.83 (s, 3H)	62.75	3.84 (s, 3H)
10a	135.56		135.42	
11	69.32	4.86 (d, 3.7 Hz, 1H)	69.1	5.22(d, 4.1 Hz, 1H)
12	73.46	5.25(d, 3.7 Hz, 1H)	71.47	5.35(d, 4.1 Hz, 1H)
13	100.26		101.57	
14	68.98		68.31	
15	104.12		104.61	
16	99.02	4.75 (s, 1H)	99.6	4.75 (s, 1H)
16-OMe	56.82	3.47 (s, 3H)	56.81	3.45 (s, 3H)
16-OMe	57.27	3.61 (s, 3H)	56.84	3.61 (s, 3H)
17	50.0	3.02 (d, 5.3 Hz, 1H),	47.07	2.86 (d, 5.7 Hz, 1H),
17	50.9	3.12 (d, 5.3 Hz, 1H)	47.97	2.93 (d, 5.7 Hz, 1H)
1'	98.22	5.38 (d, 3.1 Hz, 1H)	97.96	5.37 (t, 4.0 Hz, 1H)
21	267	1.62 (d, 14.6 Hz, 1H),	25.57	1.62 (d, 14.5 Hz, 1H),
2	30.7	1.96 (dd, 14.6, 4.0 Hz, 1H)	55.57	1.96 (m, 1H)
3'	69.55		68.83	
3'- Me	25.83	1.07 (s, 3H)	25.71	1.07 (s, 3H)
4'	74.53	4.71 (s ,1H)	74.4	4.73 (s ,1H)
5'	63.03	4.54 q, 6.4 Hz, 1H)	62.91	4.54 (q, 6.3 Hz, 1H)
6'	17	1.24 (d, 6.4 Hz, 1H)	16.89	1.29 (d, 6.3 Hz, 1H)
4'-CO <u>C</u> H ₃	21.05	2.14 (s, 3H)	20.93	2.14 (s, 3H)
4'- <u>C</u> OCH ₃	170.57		170.41	
1"			94.83	5.79 (d, 3.0 Hz, 1H)
2"			29.71	2.07 (m, 1H), 2.20 (m, 1H)
3"			69.97	3.61 (m, 1H)
4"			74.57	
5"			64.37	4.76 (m, 1H)

Table S7. ¹H- and ¹³C-NMR data of **12a** and **12b**

6"	16.77	1.24 (overlap, 3H)
4"-Me	26.28	1.34 (s, 3H)

	13a		13b
No.	δ_C	δ_H	δ_H
1	202.37		
2	67.93	4.70 (m, 1H)	4.71 (m, 1H)
3	48.04	3.13 (m,2H)	3.13(m, 2H)
4	192.86		
4a	121.24		
5	116.41	7.75 (s, 1H)	7.78(s,1H)
6	143.25		
6-Me	18.68	2.61 (s, 3H)	2.61(s, 3H)
7	117.84		
8	150.72		
8a	117.84		
9	161.58		
9a			
10	146.62		
10a	136.19		
11	69.64	5.29 (d, 3.2 Hz, 1H)	5.29 (d, 4.1 Hz, 1H)
12	71.51	5.49 (d, 3.2 Hz, 1H)	5.49 (d, 4.1 Hz, 1H)
13	101.86		
14	68.97		
15	104.5		
16	100.06	4.73 (d, 1.0 Hz, 1H)	4.69(s, 1H)
16-OMe	55.45	3.45 (d, 1.0 Hz, 3H)	3.42 (s, 3H)
16-OMe	55.52	3.60 (d, 1.0 Hz, 3H)	3.57 (s, 3H)
17	47.86	2.71 (d, 5.6 Hz, 1H)	2.73 (d, 5.7 Hz, 1H)
17		2.86 (d, 5.6 Hz, 1H)	2.87 (d, J5.7 Hz, 1H)
1"	94.23	5.84 (s, 1H)	5.80 (d, 3.2 Hz, 1H)
2"	21.1	2.38 (m, 1H), 2.05 (m,	
2	31.1	1H)	
3"	70.12	3.66 (m, 1H)	
4"	79.1		
5"	64.38	4.94 (q, 6.3 Hz, 1H)	4.95 (q,6.3 Hz, 1H)
6"	13.61	1.14 (d, 6.3 Hz, 3H)	1.30 (d, 6.3 Hz, 3H)
4"- <u>C</u> OCH ₃	210.4		3.85 (q, 6.5Hz,1H)
4"-CO <u>C</u> H ₃	24.83	2.30 (s, 3H)	1.29 (d, 6.6 Hz, 3H)

Table S8. ¹H- and ¹³C-NMR data of **13a** and **13b**

No.	δ_C	δ_H		
1	203.13			
2	68.07	4.76 (dd, 12.7, 5.3 Hz, 1H)		
3	36.79	2.19(td, 13.3, 2.6 Hz,1H),2.78(m, 1H)		
4	67.66	5.38 (m, 1H)		
4a	126.77			
5	117.08	7.50 (s, 1H)		
6	142.93			
6-Me	20.44	2.61(s,3H)		
7	115.24			
8	151.87			
8a	114.96			
9	163.3			
9a	107.62			
10	144.96			
10-Me	62.87	3.83 (s, 3H)		
10a	135.57			
11	69.52	5.22 (d, 4.2 Hz, 1H)		
12	71.85	5.35 (d, 4.2 Hz, 1H)		
13	101.74			
14	68.55			
15	105.16			
16	67.66	3.72(d, 11.25 Hz, 1H), 3.79(d, 11.25 Hz, 1H)		
16-OMe				
16-OMe	60.41	3.47 (s, 3H)		
17	48.29	2.93 (d, 5.2 Hz, 1H), 2.87 (d, 5.2 Hz, 1H)		
1'	98.14	5.37(m,1H)		
2'	36.79	1.60 (d, 14.6 Hz, 1H), 1.94 (m, 1H)		
3'	68.94			
3'- Me	25.83	1.05 (s, 3H)		
4'	74.55	4.72(m,1H)		
5'	63.03	4.51 (m, 1H)		
6'	16.99	1.22 (d, J = 6.8, 3H)		
4'-CO <u>C</u> H ₃	21	2.12(s, 3H)		
4'- <u>C</u> OCH ₃	170.47			
1"	94.95	5.83 (d, <i>J</i> = 2.3 Hz, 1H)		
2"	31.67	2.11(m,1H),2.42(m, 1H)		
3"	70.33	3.68(m, 1H)		
4"	79.7			
5"	63.94	4.97 (m, 1H)		
6"	14.66	1.07(d, 6.4 Hz, 3H)		
4"-CO <u>C</u> H ₃	27.95	2.47 (s, 3H)		

Table S9. ¹H- and ¹³C-NMR data of **14a**

-

4"-<u>C</u>OCH₃ 210.53

15a			15b			
No.	δ_C	δ_{H}	δ_C	δ_{H}		
1	203.47		203.81			
2	22 (2.67 (m, 1H),	22.01	2.65 (m, 1H)		
	32.6	3.01(m, 1H)	32.91	3.14 (m, 1H)		
2	20 55	2.21(m,1H), 2.41(m,	27.74	2.26(m, 111) = 2.42(m, 111)		
3	26.55	1H)	27.74	2.20(m,111), 2.73(m, 111)		
4	66.42	5.36 (m, 1H)	62.5	5.41 (m, 1H)		
4a	126.98		130.41			
5	117.04	7.50 (d, 0.6 Hz, 1H)	116.18	7.49 (d, 0.6 Hz, 1H)		
6	142.37		141.84			
6-Me	20.47	2.59 (s, 3H)	20.52	2.62(s, 3H)		
7	114.97		114.38			
8	151.89		152.09			
8a	114.65		114.33			
9	163.43		162.97			
9a	109.44		109.31			
10	144.29		143.16			
10-Me	62.99	3.83 (s, 3H)	62.97	3.93(s,3H)		
10a	135.26		135.5			
11	69.42	5.22 (d, 4.1 Hz, 1H)	70.42	5.25 (d, 4.1 Hz, 1H)		
12	71.61	5.33 (d, 4.1 Hz, 1H)	71.45	5.36 (d, 4.1 Hz, 1H)		
13	101.64		101.51			
14	69		69.5			
15	104.8		104.04			
16	99.84	4.75 (s, 1H)	99.89	4.78(s,1H)		
16-OMe	56.93	3.47 (s, 3H)	56.92	3.50 (s, 3H)		
16-OMe	56.33	3.61 (s, 3H)	56.15	3.64 (s, 3H)		
17	48 37	2.97 (d, 5.7 Hz, 1H)	48.33	2.98 (d, 5.7 Hz, 1H)		
1,	10.57	2.92 (d, 5.7 Hz, 1H)		2.91 (d, 5.7 Hz, 1H)		
1'	97.13	5.25 (d, 3.6 Hz, 1H)				
		1.92 (dd, 14.5, 4.0 Hz,				
2'	36.65	1H)				
		1.59 (d, 14.6 Hz, 1H)				
3'	68.5					
3'- Me	25.8	1.05 (s, 3H)				
4'	74.62	4.72 (s, 1H)				
5'	62.89	4.48 (d, 7.2 Hz, 1H)				
6'	17.04	1.21 (d, 6.8, 3H)				
4'-CO <u>C</u> H ₃	21.04	2.11 (s, 3H)				

Table S10. ¹H- and ¹³C-NMR data of **15a** and **15b**

4'- <u>C</u> OCH ₃	170.54			
1"	94.93	5.83 (d, 2.6 Hz, 1H)	94.99	5.86 (d, 2.7 Hz, 1H)
2"	31.68	2.41(m,1H), 2.11(m, 1H)	31.77	2.45(m,1H), 2.13(m,1H)
3"	70.36	3.70(m,1H)	70.42	3.70(m,1H)
4"	79.74		79.79	
5"	63.93	5.00 (q, 6.4 Hz, 1H)	63.97	5.03 (q, 6.4 Hz, 1H)
6"	14.68	1.07(d, 6.4 Hz, 3H)	14.47	1.10(d,6.4 Hz, 3H)
4"-CO <u>C</u> H ₃	27.95	2.47 (s, 3H)	27.74	2.50 (s, 3H)
4"- <u>C</u> OCH ₃	210.58		211.4	

Table S11. HRESIMS data of compounds 4a~15b

Comp. Name	Mass	Formula	Tgt Mass	Diff (ppm)	MFG Formula	DB Formula
4 a	426.1309	$C_{23}H_{22}O_8$	426.1315	-1.37	$C_{23}H_{22}O_8$	$C_{23}H_{22}O_8$
4b	412.114	$C_{22}H_{20}O_8$	412.1158	-5.74	$C_{22}H_{20}O_8$	$C_{22}H_{20}O_8$
6a	428.149	$C_{23}H_{24}O_8$	428.1471	4.72	$C_{23} H_{24} O_8$	$C_{23}H_{24}O_8$
9a	398.135	$C_{22}H_{22}O_7$	398.1366	-3.41	$C_{22}H_{22}O_7$	$C_{22}H_{22}O_7$
12a	704.226	$C_{34}H_{40}O_{16}$	704.2316	-7.68	$C_{34}H_{40}O_{16}$	$C_{34}H_{40}O_{16}$
12b	848.304	C ₄₁ H ₅₂ O ₁₉	848.3103	-7.39	C ₄₁ H ₅₂ O ₁₉	$C_{41}H_{52}O_{19}$
13 a	688.203	$C_{33}H_{36}O_{16}$	688.2003	3.7	C ₃₃ H ₃₆ O ₁₆	$C_{33}H_{36}O_{16}$
13b	690.217	$C_{33}H_{38}O_{16}$	690.2160	1.14	$C_{33}H_{38}O_{16}$	$C_{33}H_{38}O_{16}$
14a	846.297	$C_{41} {\rm H}_{50} {\rm O}_{19}$	846.2946	2.35	$C_{41}H_{50}O_{19}$	$C_{41}H_{50}O_{19}$
15 a	860.309	$C_{42}H_{52}O_{19}$	860.3103	-1.18	$C_{42}H_{52}O_{19}$	$C_{42}H_{52}O_{19}$
15b	674.22	$C_{33}H_{38}O_{15}$	674.2211	-2.14	$C_{33}H_{38}O_{15}$	$C_{33}H_{38}O_{15}$

Fig. S1 ¹³C NMR data of TXN-A from the incorporation of ¹³C-labeled acetate.

(A) $[1^{-13}C]$ -acetate; (B) $[2^{-13}C]$ -acetate; (C) $[1,2^{-13}C_2]$ -acetate; (D) No feeding as control.

Fig. S2 Identification of the genotype of mutants via homologous recombination.

Genomic DNA from both the S. bottropensis wild type and mutant strains S. sp. TG5001 ($\Delta txnA1$),

S. sp. TG5002 (Δorf -3), S. sp. TG5003 (Δorf -1), S. sp. TG5004 ($\Delta txnRg1$), S. sp. TG5005 (Δorf +11), S. sp. TG5006 (Δorf +3), S. sp. TG5007 ($\Delta txnRg6$), S. sp. TG5008 ($\Delta txnA4$), S. sp. TG5009 ($\Delta txnC2$), S. sp. TG5010 ($\Delta txnC4$), S. sp. TG5011 ($\Delta txnC3$), S. sp. TG5012 ($\Delta txnO2$), S. sp. TG5013 ($\Delta txnO5$), S. sp. TG5014 ($\Delta txnO6$), S. sp. TG5015 ($\Delta txnO12$), and S. sp. TG5016 ($\Delta txnB4$) were extracted and tested by PCR analysis, respectively. A 1.6-kb (spectinomycin resistance gene fragment) band can be amplified from all of the mutants with specific primers. Wild type for *orf*-3, *orf*-1, *orf*+3, *orf*+11, *txnRg1*, *txnRg6*, *txnB4*, *txnC2*, *txnC3*, *txnC4*, *txnA1*, *txnA4*, *txnO2*, *txnO5*, *txnO6*, *txnO12* gene the corresponding PCR products is 0.9-kb, 0.2-kb, 0.5-kb, 0.6-kb, 0.6-kb, 0.6-kb, 0.6-kb, 0.6-kb, 0.6-kb, 0.6-kb, 0.6-kb, 0.5-kb and 0.6-kb, respectively). Lane 1, *Streptomyces* mutant strain; Lane 2 DNA marker.

Fig. S3 ¹H-NMR spectrum of compound **4a** in CD₃OD

Fig. S4 ¹³C-NMR spectrum of compound **4a** in CD₃OD

Fig. S5 ¹H-¹H COSY spectrum of compound **4a** in CD₃OD

Fig. S6 HSQC NMR spectrum of compound 4a in CD₃OD

Fig. S7 HMBC NMR spectrum of compound 4a in CD₃OD

Fig. S8 ¹H-NMR spectrum of compound 4b in CD₃OD

Fig. S10 $^{1}\text{H}\text{-}^{1}\text{H}$ COSY spectrum of compound **4b** in CD₃OD

Fig. S11 HSQC NMR spectrum of compound 4b in CD₃OD

Fig. S12 HMBC NMR spectrum of compound 4b in CD₃OD

Fig. S13 ¹H-NMR spectrum of compound **6a** in CDCl₃

Fig. S15 ¹H-¹H COSY spectrum of compound **6a** in CDCl₃

Fig. S16 HSQC NMR spectrum of compound 6a in CDCl₃

Fig. S17 HMBC NMR spectrum of compound 6a in CDCl₃

Fig. S18 ¹H-NMR spectrum of compound **9a** in DMSO-d6

Fig. S19¹³C-NMR spectrum of compound **9a** in DMSO-d6

Fig. S20 HSQC NMR spectrum of compound 9a in DMSO-d6

Fig. S21 HMBC NMR spectrum of compound 9a in DMSO-d6

Fig. S23 13 C-NMR spectrum of compound **12a** in CDCl₃

Fig. S24 HSQC NMR spectrum of compound 12a in CDCl₃

Fig. S25 HMBC NMR spectrum of compound 12a in CDCl₃

Fig. S27 ¹³C-NMR spectrum of compound **12b** in CDCl₃

Fig. S28 ¹H-NMR spectrum of compound **13a** in CD₃OD

Fig. S29¹³C-NMR spectrum of compound **13a** in CD₃OD

Fig. S30 HSQC NMR spectrum of compound 13a in CD₃OD

Fig. S31 HMBC NMR spectrum of compound 13a in CD₃OD

Fig. S32 ¹H-NMR spectrum of compound **13b** in CD₃OD

Fig. S33 ¹H-NMR spectrum of compound **14a** in CDCl₃

Fig. S35 HSQC NMR spectrum of compound 14a in CDCl₃

Fig. S36 ¹H-¹H COSY spectrum of compound **14a** in CDCl₃

Fig. S37 HMBC NMR spectrum of compound 14a in CDCl₃

S39

Fig. S40 ¹H-¹H COSY spectrum of compound **15a** in CDCl₃

Fig. S41 HSQC NMR spectrum of compound 15a in CDCl₃

Fig. S42 HMBC NMR spectrum of compound 15a in CDCl₃

Fig. S43 ¹H-NMR spectrum of compound **15b** in CDCl₃

Fig. S44 ¹³C-NMR spectrum of compound **15b** in CDCl₃

Fig. S45 Proposed pathway from intermediate 9 to 10.

