Supplemental Note

Supplemental Note A

Quantitative Genetics for Multiple Traits
Single Trait

We first review quantitative genetics for a single trait. For simplicity, we only consider
genetic additive effects. It is straightforward to extend analysis to include the genetic dominance

effects. Consider the genetic model for a trait and a single locus:
Y =Xa+e¢g, (N1)

where Y denotes a trait, X an additive genotype score,  the genetic additive effect and ¢ error

. . 2
with mean zero and variance o, .

The genetic additive effect is estimated by

. COV(X,
a= cov(x, y) : (N2)
var(x)
The genetic additive variance Gf\ and narrow-sense heritability are
2
o = [cov(x, y)] (N3)
var(x)
and
h? =corr?(Y, X), (N4)

respectively.



Equation (N4) shows that the narrow heritability can also be expressed as the proportion of the
phenotype variation explained by the genetic variation or the squared correlation between the

genotype and phenotype.
Multiple Traits

Quantitative genetics for a single trait can be easily extended to multiple traits. Again

consider a genetic model for multiple traits and multiple loci:
Y =XB+E, (NS)
where Y =[Y,,...,Y, ] represent a vector of K phenotype variables, X is a vector of P genotype

variables, B=1[b,,...,b],b; € R” the matrix of genetic additive effects and ¢ =[¢,,.., &,] is a

vector of K error variables.

The genetic effect matrix B can be estimated by
B=3!% . (N6)
The covariance of the genetic additive effects is defined as

Y,=2 2% (N7)

XXXy

The concept of heritability for a single trait is well developed. Recently, there has been an
increasing attempt to extend heritability from a single trait to multiple traits. However, their
focus is to consider the heritability of a linear combination of multiple traits. Here, we consider a

heritability matrix that is defined as

IED el Y i I il (N8)

m Y xx S xy = yy



It is clear that the heritability matrix h’ is equal to the matrix R?in equation (7).

Linear Combination of Multiple Traits

We consider a linear combination of multiple phenotypes Yb and a linear combination of
genotypes at multiple loci Xa to transform the association analysis of multiple traits to the

association analysis of single trait. Define the linear genetic model for Yo and Xa:
Yb = (Xa)a +¢. (N9)
The total genetic effect of the multiple genotypes on the multiple traits can be estimated by

cov(Xa,Yb) a'Z, b
var(xa) a'z.a

a=

(N10)

Using equations (N3) and (N4), we obtain the genetic additive variance of Xa and heritability

of yb:

, _ @'z’

e (N11)
and

T 2
hz _ (@ Z4b) (N12)

I = Ty pa’s A
b’ ba'x.a
respectively.

It is clear that the squared multiple correlation coefficient is given by

, @'z,

b)2 )
b= baz.a h
yy XX



Next we seek the optimal combinations of the genotypes at multiple loci and the multiple traits to
maximize the genetic additive effect, genetic additive variance and heritability. We first find the

maximum genetic additive effect.

Using equation (N10) and the Lagrangian multiplier method, we can solve the following

optimization problem to obtain the maximum genetic additive effect:
L(a,b, 1) =aT2xyb+%(l—aT2XXa), (N13)

where A is a multiplier.

Setting 2-(2.b.4)
oa

==, b—A% a=00ives

r,pb=4%,a or

SaZ b =4a. (N14)
Suppose that the SVD of the matrix Z;Xley is given by

T2 =UAV. (N15)

XX~ xy

Then, it follows from equation (N15) that a, b and the optimal genetic effect are the left, right

singular vectors and singular value of ZQiZXy , respectively. Similarly, we can show that the

genetic additive variance Gf\, is the square of the singular value of 2;;}2Xy . The maximum

heritability can be obtained by setting the Lagrange function:

L(a,b, A, 1) =(@'Z,b)* + A(1-a'%a) + u(1-b"Z b) and



oL
== 2(a'z,b)z, b-213,a=0

L (N16)
5= 2(a'z,b)z,a-2u2,b=0.

Let

K=2,"72,%,” and SVD of Kbe

K=U,AN,, (N17)
where Uy =[u,,..,u,], Ay =diag(z,,...,7;) and Vi =[v;,...,v,].

Solving equation (N16) we obtain

a =" ,i=1...q,

XX

b,=%,"%v,,j=1..q, (N18)

yy

2 2
hy =7,

where U;, V; and ¢, are the left, right singular vectors and singular value of the matrix K,

respectively. Substituting equation (N18) into equations (N10) and (N11) gives

a; = U/ Ky,
. (N19)
On, =0 -
Note that 7 is the eigenvalue of the matrix
T _ v-1/2 -1 -1/2
KIK=X X, X, 2,2, . (N20)

It follows from equation (N20) and (18) that

K'K =R?.



This shows that the maximum heritability analysis is equivalent to CCA.
Supplemental Note B

RKHS framework for Functional CCA, Cross-covariance operator, Dependence Measure

and Independence Test
Introduction of RKHS

Many multivariate and functional statistical methods such as regression, CCA, kernel regression,
kernel CCA, functional regression and functional CCA, dependence measure can be used to test
the association of genetic variants with the phenotypes. In the past decades, reproducing kernel
Hilbert spaces (RKHS) have emerged as a general framework for various statistical and machine
learning methods. Here, we propose to use RKHS as a unified framework for association tests to
reveal the relationships among various multivariate and functional association tests.

We begin with briefly introducing RKHS [1,2]. Let # be a Hilbert space of functions on a

non-empty set ¥ and denote the inner product in # by <... >, . A bivariate function K on

¥ x xis called a reproducing kernel for # if K satisfies

(1) Forevery te y, K(,t) e #and (N21)

(2) Forevery te y and f € ', we have f(t)=<f,k(,t)>,. (N22)
We call # a RKHS with reproducing kernel K .
Define
K(s,t) = E[X(s)X (1)] (N23)

be a covariance function that generates a RKHS.
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A powerful analytical tool for CCA and independence tests is the cross-covariance operator that
is an extension of the covariance matrix to infinite dimensional space [3]. Recall that the

covariance matrix is defined as
S, =E[XYT], (N24)

where X and Y are vectors of random variables with E[X]=0and E[Y]=0. Equation (N24)
can be extended to feature space. Let ¢(X)and y (Y)be feature maps. In the feature space,

equation (N24) can be written as

Sy = E[(X)p" (V)] (N25)
Let f and g be vectors in the feature space. Recall that by the reproducing property, we have

f(X)=<f(),K(X)>and g(Y)=<g(),K(,Y)>. (N26)

Define kernels K (., X) =¢(X) and K(.,Y) =w(Y).Viewing the covariance matrix EXY asan

operator and applying it to the vector g , we obtain

T @ =E[B(X)w" (V)g()] = E[#(X) <K(.Y).9() >]

(N27)
= E[#(X)a(Y)]

Equation (N27) indicates that EXY g maps J to a vector in the feature space spanned by ¢(X).

Let f be avector in the feature space. Then, its inner product with ixyg is given by

f75,,9=E[fT¢(X)g(Y)]
= E[< f(),K(, X) > g(y)] (N28)
= E[f(X)g(Y)].

In terms of kernels, equation (N28) can be written as
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fTEXYg =E[< f(),k(, X)><K(Y,.),a()>]. (N29)
We assume that

f=>" ap(X)and g=>" Bu(Y,). (N30)

From equations (N27) and (N28) we can obtain the sampling formula for fTEXYg :

f7S,, 9 =%ZL< f(), K X)) >< K(Y,,),g()>- (N31)

Substituting equation (N30) into equation (N31) gives

fT2,,0 :%Z{“ﬁ ZT:lajK(xj,.), K(, X)) ><K(Y;,), 20" BK(Y,,) >

T A KO XK, Y) (N32)
zlaTKxKyﬁ,
m
where
K(Xl’xl) K(X11Xm) K(Yl’Yl) K(Yl’Ym)
K, = : : : and K, = : : :
K(X., X)) - K(X,,X.) K(Y..Y,) - K(Y,.Y.)

letGc =1 - i1m , where 1, isa mxm matrix of ones. The centered covariance is
m

Ly =Zyy _ﬂx/‘J'
where 4, = E[¢(X)] and x, = E[y(Y)].

Using the similar arguments, we can show



1
f73,,0 = EaTK K,B (N33)

where IZX =GK,G and Ry =GK,G.

Dependence Measure, Covariance Operator and CCA

The covariance operator is a useful tool for assessing dependence between variables and hence
form a foundation for association analysis. A dependence measure can be derived from solving

the following optimization problem:

1 T~ -~
max —a K K
e LS B
s.t. a' sza =1 (N34)
.
p Ky =1

Let u=K"2gand v= Ri/zﬂ. Then, the optimization problem (N34) can be transformed to

max iuTIZi’ZIZ;’ZV
u,v m
s.t. u'u=1 (N35)
viv=1.

Using the Lagrange multiplier approach to solve the optimization problem, we can obtain the
eigenequation:

1

HI—<~i’zlﬂ<“§’2v=/lu. (N36)
L Ruegvzy = gy (N37)
m

Substituting equation (N37) into equation (N36) gives eigenequation:

# KY2K,KY2u = 2%u. (N37)

Assume that the single value decomposition of R;’ZK;’Z is



C1/2171/2 T
Ki?K}? =UAVT, (N38)
where A =diag(p,,...,p,,) With p, > p,>...> p,.

After some algebra, we obtain

% zi":lpf = #Trace(u TK? Ky KY20)
(N39)

1 ~ ~
:FTrace(KXKy).

It is clear that izTrace (K,K,) can be used as a measure of dependence. The dependence
m

measure izTrace (K,K,) is used to test for dependence between two sets of random variables
m
[4] and to test for the association of genetic variants with multiple phenotypes [5].

Kernel CCA

Consider Kernel CCA (KCCA) [6]. Let ®(X) =[¢(X,),...,4(X,)]" and

) =[w(Y,),...w(Y, )] . The representation of linear combinations of the sampled features in

the feature space can be defined as

U=d"(X)Ga and V =¥ (Y)GS,
where center operator G =1, — ilm is defined as before.
m

The canonical variates are linear combinations of features and hence can be represented by

a=GO(X)U = GD(X)D" (X)Ga = K,aand b=G¥(Y)V =G¥(Y)¥ (V)G =K, 3,

where K, =G®(X)d"(X)Gand K, =GW¥(Y)¥' (Y)G, which are similar to K, and Ky defined

in equation (N33). The covariance between the canonical variates a and b is

10



cov(a,b) =o' IZXRYﬂ . Similarly, we can obtain the variance of a and the variance of b ,

respectively, var(a) =o' Kxﬁxa and var(b) = ' Kyﬁy S . The KCCA seeks canonical vectors

in terms of « and £ to optimize

1 T~ ~
max —a K K
e - KB
st.  a'KKa=1 (N40)
P
B KK B=1

If the constraints in (N40) are replaced by Var(U) = o' Kxa =1 and Var(V) = g’ Izyﬁ =1, the

optimization problem (N40) can be reduced to

1 T =~

max —a K K

ne - a KK, j

st. a'Ka=1 (N41)
BTK,B=1,

which is exactly the same as the formulation (N34). Similar to equation (22), the association

measure in the KCCA is equal to

1

1 A A
FTr(Az):FTrace (K.K,)- (N42)
Functional Association Tests

In this section, we show that the dependence measure in the FPC score-based kernel analysis
is asymptotically equal to the association measure of the FCCA and FCCA can be implemented

as CCA with FPC scores.
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To unify multivariate association tests and functional association tests, we use RKHS as a

general framework for formulation of the functional CCA [1]. Consider two index sets E,and
E, , and two stochastic processes: {X (t),t € E,}and {Y (s), s € E,} with mean zero

E[X (t)] = E(Y (s)] = 0forall t,S, auto covariance functions
R, (5,,S,) = cov(X(s,), X(s,)), R, (t,t,)=cov(Y(t),Y(t,)), and cross covariance functions
Ryy (s, 1) =cov(X(s),Y (1)) .

Let L2 and L2 be the Hilbert spaces spanned by the X and Y processes defined as the

completion of the set of all linear combinations of the random variables:
{a:a :Zin:lOtiX(ti),ti eE,q, eRne Z*} and
{b: b= Zi”:lﬂiX(si), s,€E,,8 eR,ne z+} under the inner product < a,, a, >, = E[a,a,]and

<by,b, >, = E[byb,], respectively. The covariance function can be used to define an integral

operator:
(RuB)(®) = [ Ry (s,t)B(s)ds - (N43)

By Mercer’s theorem [7], the covariance function can be expanded in terms of orthonormal

functions:

Ry (5,8) =2 A ()4 (1), (N44)
Re(s,t) =2 " 1;0;(8)6;(1), (N45)
where

12



(Ryd)(t) = 44 (t) and (RYHj)(t) = ,Ujgj (t) .

Using the Karhunen-Loeve representation, the stochastic processes X (t) and Y (t) can be

expressed as [1]

X(t)=>"" &¢(t) and Y (1) = Zlenjej (t), (N46)
where & and 77 j are uncorrelated variables with zero means, and variances and covariance
var(g) = 4, var(ry;) = p;, COV(G;, 77;) = 7y, (N47)
which implies

Ryv (s,1) = Zilzo;lﬂfm (s)6; (1) - (N48)

The RKHS #(R, ) generated by the covariance kernel R, is

0

HR) =) at) =37 Lag®. 3 Lai <ol (N49)
Similarly, we can define

HR) = BO): SU) =3 18,0, 5 4,87 <oof (N50)
The congruence mapping from #/(R, )to L3 is then given by [8]

(@) =2 Ao < Xifh > (N51)
Similarly, we define

¥, (o) = Z;Mﬁj <Y.0, >, (N52)

13



Using equations (N51) and (N52), we obtain

cov(¥, (), ¥, (B)) = z;z;ziyjaiﬂj COV(< X, >0y <Y, 6 >120)) - (N53)
By definition of the inner product in the L*(T) space, we have

<X,¢ >eq,= [ XO4®dtand <Y, 0, >, = [ Y®)0,(t)dt. (N54)

Then, using stochastic integral theory [9], we can connect the covariance between these two

inner products with the covariance operator:
COV(< X >y, <Y, 0 > 100)) = [ [ 4 (SR (5,0 (t)dsdt. (NS5)
Substituting equation (N55) into equation (N53) gives

COV(W,c (@), By (B)) = 2 D Ay B | [ 4 (S)Ry (5,0), (t)dlsdlt
= [ | L A (DR (5.0, 4,8,0;)dsdlt (N56)
= [ [ a(s)Ry (s,) A(t)dsdt.

Substituting equation (N46) into equation (N56) yields

COV(\PX (@), Yy (ﬁ)) =< (vaa)(t):ﬂ(t) > 2 T’ (N57)

where R, with the property (R, a)(t) = J'T Ry (s,D)a(s)ds =< Ry, (., 1), a() >, is a cross

(T

covariance operator. Equation (N57) is an extension of equation (N28) to functional space.

Now we formally define CCA for the stochastic process. The canonical correlation can be

defined in terms of both L2 and L7, and #/(R,)and #/(R,):

14



max cov?(<,v)

{esz,ueL\z(
var(¢)=1,var(v)=1 . (N58)
= maXx COV2 (lPx (a)l \PY (ﬂ))

aeH (Ry ), BeH (Ry)
el g y =LIBIE Ry ) =1

Now we consider the direct extension of the CCA from multivariate to functional space. Suppose

that expansions of the two functions «(s) and A(t) in terms of orthonormal functions

{4(s).i=12,.}and {6,(t), j =1,2....}are given by

a(s) = Zi:ai;ﬁi (s) and B(t) = ZL,B,-H,- (t) .- (N59)
Define the inner product of functions «(s) with stochastic process X (s) as
<a(s), X ($) > p,= L a(s)X (s)ds. (N60)

Substituting equation (N46) into equation (N60), we obtain

<a($),X(8) >z )= 2oy & [ () (s)ds

(N61)
= &a,
where ¢, = J'T a(s)é (s)ds.
Similarly, we have
<BOY O >e0,= 2 mBr By = [ BB, (N62)

Similar to multivariate CCA where we consider the correlation between linear combinations of
variables in two sets, the functional CCA consider extensions of linear combinations of the
random variables to the functional space. Using equations (N48), (N61) and (N62) we calculate

the covariance;:
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cov( jT a(s)X (s)ds, L BOY (t)dt) = jT a(s)R,y (s, 1) A(t)dty
=2 Z; a7

(N63)

Similarly, we have

var([ a(s)X (s)ds) = > Aot
var( jT BOY (Ndt =" u,B;.

(N64)

Therefore, the FCCA can be defined as

max a'A,, B
@p (N65)

st a'Agya=18"A,B=1
where

Yuu ot Vg A4 - 0 o 0 @ By

Comparing equation (N63) with equation (N56) gives
cov([ a(s)X (s)ds, [ B)Y ()dt) = cov(¥, (), W, (B))-

This shows that the formulation of FCCA in equation (N65) is equivalent to the formulation of
the FCCA inthe L}, L2 and #/(R, ), 7 (R, )as expressed in equation (N58). Similar to CCA,

R?in FCCA can be defined in terms of functional principal component scores:
R = A;%(/ZAYX Aﬁxleva;yz-

After some algebra, we obtain the association measure r in equation (11) :

16



2
r=Tr(R*) = ZLZL—ZZ_ | (M%)
i

If constraints o' A, a =1, 8" A, S =1 in equation (N65) is replaced by o' =1 and S’ =1,

i.e., the optimization problem (N65) is reduced to

max o' Ay f
a.p

(N67)
st. a'a=18"4=1,
then equation (N66) is reduced to
r=Tr(R*)= Zipﬂz(j‘:ﬂ/i? ' (N6g)

Assume that the expansion of X (t) and Y (t) in equation (N46) are truncated by P and Q terms,

respectively. Define the feature maps:

D(X;) =[&pn &l =& and O(Y,) =[] =17;, Where &, and 7, are the FPC score of

X, (t)and Y, (t) respectively.

Let
@' (X,) St Sip
d(X) = =&=| and
q)T (Xm) gml (:mp
o' (v,) Ui Thq
o(Y) = =n=
(DT (Ym) 1 nmq
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Define kernel Gram matrices K, = ®(X)®' (X)and K, = ®(Y)®' (Y) . The dependence

measure is

Dux = — Tr (R,K,) = — THEE ™) = — TH(E &) (N69)
m m m

Note that &77 asymptotically converges to E[£77] = A, - Therefore, the dependence measure

D,, based on FPCs asymptotically converges to

Dy = %Tr (Ao ATy,) = #Zip:l ch‘:l]/i? = # r . In other words, the dependence measure

based on the FPCs is asymptotically equal to the association measure of the FCCA.

Supplemental Note C
Impact of Derive Traits on Association Tests
Association Tests of Rare Variants
To investigate whether derived traits BMI, WHR, FEV1.FVC_Ratio and Total _Lean_Mass can
cause spurious association or not, we removed these derived traits from the original data
reanalyze the association of rare variants. The results were summarized in Table SN1 and Fig
SN1. We observed that the number of significant findings after removing derived traits was
slightly reduced and the P-values were slightly increased.
Association Tests of Common Variants

The same conclusion can be made for common variants. The Manhattan plots showing
genome-wide p-values of association of genes consisting of only common variants with the 46
traits calculated using QRFCCA before and after removing derived traits were presented in Fig
11 and Fig SN2, respectively.

Impact of Age on Association Tests

18



To investigate the impact of covariates on the association of the proposed test, we conducted
real data analysis adjusted for age. The results were summarized in Table SN2. The P-values of
QFCCA test for association of common and rare variants with 46 traits were listed in Table SN3.
The results showed that age was a confounding factor. After age adjusted, the number of
significantly associated genes was slightly reduced. We also observe that the impact of age on
association of rare variants is larger than that on common variants.

Impact of Homogeneity on Association Tests

To show how the genes were associated with the homogeneous groups of traits, we presented
Tables SN4 and SN5 that summarized the number of genes (rare variants only) significantly
associated with the kidney group and glycemic group traits with and without PC adjustments,
respectively. We observed that the impact of population structure on the QRFCCA was small,
but on the MSKAT was large.

Confirmation of Literature
A large proportion of association tests can be confirmed by publication in the literature. Table
SN6 summarized the proportions of identified genes in 5 kidney traits, 2 glycemic traits and 7

lipid traits which have been published in the literature.

19



Supplemental References

1. Eubank RL, Hsing T. Canonical correlation for stochastic processes. Stochastic Processes
and their Applications. 2008;118(9):1634-1661.

2. Gretton A. Introduction to RKHS, and some simple kernel algorithms. 2015. Available:
http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/lecture4_introTORKHS.pdf.

3. Gretton A. Notes on mean embeddings and covariance operators. 2015. Available:
http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/lecture5_covarianceOperator.pdf.

4. Gretton A, Fukumizu K, Teo CH, Song L, Scholkopf B, Smola AJ. A Kernel Statistical
Test of Independence. In: Platt JC, Koller D, Singer Y, Roweis ST, editors. Advances in
Neural Information Processing Systems 20 (NIPS 2007); Vancouver, Canada2007. p. 1-8.

5. Broadaway KA, Cutler DJ, Duncan R, Moore JL, Ware EB, Jhun MA, et al. A Statistical
Approach for Testing Cross-Phenotype Effects of Rare Variants. Am J Hum Genet.
2016;98(3):525-540.

6. Kuss M, Graepel T. The Geometry of Kernel Canonical Correlation Analysis. Max
Planck Institute for Biological Cybernetics, Tubingen, Germany, Inference E; 2003.

7. Bosq D. Linear processes in function spaces : theory and applications. New York:
Springer; 2000. xiii, 283 p. p.

8. Kupresanin A, Shin H, King D, Eubank RL. An RKHS framework for functional data
analysis. Journal of Statistical Planning and Inference. 2010;140(12):3627-3637.

9. Henderson D, Plaschko P. Stochastic differential equations in science and engineering.
New Jersey: World Scientific Pub.; 2006. 215 p. p.

20


http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/lecture4_introToRKHS.pdf
http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/lecture5_covarianceOperator.pdf

Manhattan Plot

25+
CTC-498)116.2
20 - TRAJ22
HARIE®
RP11-4F5.2

/-\15 n .

Q
~

=)

D
(_ID ADAM19 PNOC .

. .
10 ’ MIR409

1234565810 12 14 16 18 20
hromosome

Fig SN1. Manhattan plot showing the genome-wide P values of association of the genes
consisting of only rare variants with the 42 traits calculated using QRFCCA (removing BMI,

WHR, FEV1.FVC_Ratio and Total_Lean_Mass from the original 46 trains). The axis X
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values. The horizontal red line denotes the thresholds of P = 1.48 x 10~° for genome-wide
significance after Bonferroni correction.
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represented the chromosomal positions of 33,166 genes and axis y showed their -log 10 P-
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significance after Bonferroni correction.



Table SN1. The number of significant findings
in the original and trait removed datasets.

Body Lung Total

Common Original 0 3 67
Removed 0 3 64

Original 0 2 80

Rare Removed 0 3 71




Table SN2. The number of the genes significantly associated with 46 traits with age
adjusted and no age adjusted.

No adjusted  Age Adjusted

Common 67 63
Rare 79 68




Table SN3. The list of p-value for the significant genes before and after age adjustment for both common and rare variants
Rare Variants Common Variants
Gene Chromosome|QRFCCA |QRFCCA with AGene Chromosome |QRFCCA  |QRFCCA with Age Ai
CTC-498M16.2 5 5.74E-22 1.80E-21|REG1B 2| 1.65E-116| 4.86E-48
TRAJ22 14|  2.16E-20 2.18E-20|RP11-665C14.1 4 1.38E-93| 2.18E-18
AP000351.10 22| 2.09E-18 1.88E-18(ZNF160 19 1.98E-91| 2.74E-18
HAR1B 20| 7.81E-18 5.58E-18|LEF1 4 7.44E-83| 4.16E-16
IGHVII-20-1 14 7.49E-16 3.82E-16|DYNC1H1 14 3.46E-58| 9.50E-15
RP11-4F5.2 15| 9.94E-16 3.45E-15|DOCKY7 1 4.42E-51| 6.12E-13
RNVU1-17 1 3.90E-13 7.16E-09|SHC3 9 7.56E-42| 1.05E-14
PNOC 8| 1.63E-12 3.37E-10|Y_RNA 7 1.89E-36 9.18E-13
COTL1P1 17 8.71E-12 1.16E-10|CTD-2122P11.1 5 1.62E-33| 1.37E-10
LINCO00273 16| 4.41E-11 1.11E-10(GBF1 10 6.30E-28| 1.84E-09
snoU13 12 4.95E-11 2.86E-11|RP1-8B22.1 1 1.75E-27| 2.75E-09
ADAM19 5| 6.07E-11 4.60E-11|VPS13D 1 2.62E-26| 1.26E-09
CTD-2026G6.2 3| 1.91E-10 2.78E-11|RP11-68I3.2 17 3.20E-24| 1.31E-09
MIR409 14|  2.77E-10 6.17E-10|SLC13A3 20 8.51E-24| 2.00E-08
RP1-276E15.1 11 3.13E-10 3.66E-09|RP11-167N24.3 12 4.33E-23| 2.44E-10
HMGN1P6 2| 4.46E-10 1.02E-06(UBAG6 4 5.26E-22| 2.85E-10
HOXA7 7 2.18E-09 1.41E-08|GAN 16 1.49E-21| 2.91E-12
RNA5SP99 2| 2.41E-09 2.88E-06|RP4-794H19.2 1 4.07E-21| 6.64E-09
AC021660.1 3| 2.69E-09] 0.000670466(RP11-142120.1 18 5.29E-21| 6.84E-09
RP11-561N12.1 7|  3.12E-09 1.32E-09|METAP2 12 2.62E-20| 8.94E-07
FBXL5 4]  4.53E-09 1.08E-06(SLCO1C1 12 5.89E-20| 9.12E-09
PPIAP23 13| 5.40E-09 2.90E-08|AC105443.2 7 2.47E-17| 1.18E-08
HOXB2 17 7.00E-09 2.47111E-07|GRN 17 1.63E-16| 1.29E-08
RP11-170N16.1 4]  7.09E-09 5.25E-08|INTS12 4 1.72E-16| 1.29E-08
AC008694.3 5| 1.39E-08 9.89E-08|RP11-323115.5 15 9.29E-16| 1.48E-09
VILL 3| 1.69E-08 9.42E-09|UBE2U 1 2.88E-15| 1.66E-09
KRT27 17 2.04E-08 1.92E-08|BATF2 11 5.90E-15| 2.19E-08
RNU6-1243P 11| 2.28E-08 3.99E-08|C5o0rf51 5 1.02E-14| 2.29E-09
RP11-6N17.10 17| 2.49E-08 1.48E-05(RP11-814P5.1 15 1.28E-14| 3.31E-08
AL358134.2 6 2.83E-08 7.07E-08|USP44 12 3.49E-14| 4.34E-08




GAPDH
DERL1
RP1-102E24.9
PPBP
LINC00443
RP11-10017.1
PROCA1
CHMP2B
IGKV2-4
AC017104.1
RNUG6-980P
AC016691.2
RNA5SP19
snoU13

MLN
RP11-55L4.2
CTC-50503.2
ISCA1P1

JUN
AC140061.12
RP11-697E2.10
RNUG6-717P
RP11-98D18.17
PPIAP13
SETP2
AC008691.1
RP1-40E16.2
RP11-79P5.9
RN7SL699P
OR4A44P
C7orf71
COMP
PCDHBI10

12

12

13

15
17

N

19

(o2 o

17

a1

12
15
12

10
14

[*2)

17
11

19

2.96E-08
3.45E-08
4.32E-08
4.79E-08
5.08E-08
5.19E-08
5.62E-08
6.03E-08
6.33E-08
8.15E-08
8.16E-08
8.89E-08
9.03E-08
9.16E-08
9.47E-08
1.03E-07
1.22E-07
1.23E-07
1.25E-07
1.41E-07
1.77E-07
1.91E-07
2.36E-07
2.43E-07
2.67E-07
3.15E-07
3.38E-07
3.54E-07
3.69E-07
3.94E-07
4.80E-07
4.83E-07
4.97E-07

9.33E-08
6.44E-08
4.18E-06
9.68E-07
0.117002591
1.11E-08
3.68E-07
3.74348E-07
1.20197E-07
1.13E-08
3.80E-07
3.26E-07
7.30E-05
6.58117E-07
4.21E-08
9.94E-09
1.38E-06
6.06E-07
7.00E-06
2.23E-06
8.94E-08
1.15E-06
6.03E-07
3.20E-07
7.98E-08
7.52E-06
5.68E-07
3.42E-06
4.83E-07
1.34E-07
3.05E-07
2.66E-05
8.83E-07

C12orf5

SSH2

PHIP
ARRDC4
RP3-47704.16
FAM210B
AF001550.7
COLGALT1
IGSF5
GPR137B
RCL1

OXR1
CTD-2503016.4
C100rf76
SRRM4
RASAL3
MTHFD2P6
UQCRBP3
SEC14L3
UGCG
ZNF680
GPR56
CCDC26
SOX5
AC009892.10
HPSE
SLC35E4
CTC-575D19.1
EFTUD1
RP4-742N3.1
RP11-568J23.7
AC138655.1
EYA4

4.91E-14
5.59E-14
2.96E-13
1.73E-12
4.33E-12
5.59E-11
6.53E-11
9.53E-11
1.24E-10
3.54E-10
4.88E-10
1.77E-09
1.48E-08
1.89E-08
2.26E-08
5.31E-08
5.65E-08
7.58E-08
7.90E-08
7.98E-08
1.23E-07
1.26E-07
1.97E-07
2.54E-07
3.17E-07
3.21E-07
5.08E-07
6.25E-07
7.87E-07
9.42E-07
9.69E-07
1.01E-06
1.05E-06

2.44E-09
4.44E-09
6.48E-09
5.64E-08
7.07E-09
6.09E-08
6.32E-07
3.35E-07
9.98E-08
6.42E-09
5.05E-07
8.09E-08
5.22E-07
6.16E-08
1.40E-08
6.93E-07
1.18E-06
8.72E-08
9.10E-07
9.34E-08
9.47E-07
9.53E-08
9.64E-06
1.02E-07
1.04E-06
1.04E-06
1.06E-06
1.38E-06
1.52E-06
1.43E-06
1.44E-06
1.31E-06
1.51E-06




HOXB1
RN7SKP280
SEC31A
RP11-363E6.4
SHISA4
DAZAP2P1
PGLYRP3
RP11-138H8.4
RP11-153M7.3
EPS8L2

HPN
AC092685.1
AC079781.1
CTD-2014B16.2
SULT1B1
RP11-57G22.1

17

B NP oA~

15

11

19

14

18

5.27E-07
5.39E-07
5.51E-07
6.56E-07
6.84E-07
7.97E-07
8.97E-07
1.09E-06
1.10E-06
1.15E-06
1.15E-06
1.34E-06
1.36E-06
1.41E-06
1.43E-06
1.44E-06

3.31E-05
4.63E-07
1.29E-06
2.19E-07
3.05E-06
7.71E-07
7.28E-08
2.47E-06
4.36E-07
2.59E-07
4.34E-05
0.083234568
5.88E-06
9.87E-05
1.10E-05
8.89E-06

P2RY6
BACH2

MSH6
CTC-497E21.5

11

11

1.11E-06
1.24E-06
1.42E-06
1.49E-06

1.39E-06
1.40E-05
4.49E-06
1.70E-06




djustment



Table SN4. Number of genes with only rare variants significantly associated with 5 traits (Kidney group).

QRFCCA FCCA GAMuUT SCCA USAT MANOVA CCA PCA KCCA MSKAT

No adjusted | 78 73 6 0 0 0 0 5 0 17
Adjusted 55 21 1 0 0 0 0 2 0 11
Overlapped | 43 21 0 0 0 0 0 2 7

Proportion | 78.00% 100% O 100% 64%




Table SN5. Number of genes with only rare variants significantly associated with traits (Glycaemia group).

QRFCCA FCCA GAMuT SCCA USAT MANOVA CCA PCA KCCA MSKAT

No adjusted
Adjusted
Overlapped
Proportion

24 24 8 0 0 0 0 14 0 17

5 4 1 0 0 0 0 3 0 3

4 4 0 0 0 0 0 3 0 1
80.00% 100% O 100% 33%




Table SN6. Proportion of identified genes confirmed in the literature.

Trait Kidney  Glycaemia Lipid

Common Identified 20 11 5
Confirmed 8 7 3
Proportion 40% 63.60% 60%

Rare Identified 78 24 1
Confirmed 22 7 0
Proportion 28% 29% 0




