
1 
 

Supplemental Note 

Supplemental Note A 

Quantitative Genetics for Multiple Traits 

Single Trait 

     We first review quantitative genetics for a single trait. For simplicity, we only consider 

genetic additive effects. It is straightforward to extend analysis to include the genetic dominance 

effects.  Consider the genetic model for a trait and a single locus: 

  XY ,           (N1) 

where Y denotes a trait, X an additive genotype score,   the genetic additive effect and  error 

with mean zero and variance 
2

e . 

The genetic additive effect is estimated by 

)var(

),cov(
ˆ

x

yx
 .          (N2) 

The genetic additive variance 
2

A  and narrow-sense heritability are  

)var(

)],[cov( 2
2

x

yx
A  ,          (N3) 

and 

),(22 XYcorrh  ,          (N4) 

respectively. 
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Equation (N4) shows that the narrow heritability can also be expressed as the proportion of the 

phenotype variation explained by the genetic variation or the squared correlation between the 

genotype and phenotype. 

Multiple Traits 

     Quantitative genetics for a single trait can be easily extended to multiple traits. Again 

consider a genetic model for multiple traits and multiple loci: 

EXBY  ,          (N5) 

where  ],...,[ 1 kYYY   represent a vector of k phenotype variables, X is a vector of p genotype 

variables, 
p

jk RbbbB  ],,...,[ 1 the matrix of genetic additive effects and ],...,[ 1 k   is a 

vector of k error variables.  

The genetic effect matrix B can be estimated by 

xyxxB  1ˆ .          (N6) 

The covariance of the genetic additive effects is defined as 

xyxxyxA  1
.         (N7) 

The concept of heritability for a single trait is well developed. Recently, there has been an 

increasing attempt to extend heritability from a single trait to multiple traits.  However, their 

focus is to consider the heritability of a linear combination of multiple traits. Here, we consider a 

heritability matrix that is defined as 

2/112/12   yyxyxxyxyymh .        (N8) 
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It is clear that the heritability matrix 
2

mh is equal to the matrix 2R in equation (7).  

Linear Combination of Multiple Traits 

We consider a linear combination of multiple phenotypes Yb  and a linear combination of 

genotypes at multiple loci Xa to transform the association analysis of multiple traits to the 

association analysis of single trait. Define the linear genetic model for Yb   and Xa : 

  )(XaYb .         (N9) 

The total genetic effect of the multiple genotypes on the multiple traits can be estimated by 

aa

ba

xa

YbXa

xx

T

xy

T






)var(

),cov(
̂ .        (N10) 

Using equations (N3) and (N4), we obtain the genetic additive variance  of Xa  and heritability 

of yb : 

aa

ba

xx

T

xy

T

Al





2

2
)(

  ,          (N11) 

and  

abab

ba
h

xx

T

yy

T

xy

T

l





2

2
)(

,         (N12) 

respectively.  

It is clear that the squared multiple correlation coefficient is given by 

2

2

2
)(

l

xx

T

yy

T

xy

T

h
abab

ba
R 




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Next we seek the optimal combinations of the genotypes at multiple loci and the multiple traits to 

maximize the genetic additive effect, genetic additive variance and heritability. We first find the 

maximum genetic additive effect. 

   Using equation (N10) and the Lagrangian multiplier method, we can solve the following 

optimization problem to obtain the maximum genetic additive effect:  

)1(
2

),,( aababaL xx

T

xy

T 


 ,       (N13) 

where  is a multiplier. 

Setting 0
),,(





ab

a

baL
xxxy 


gives 

ab xxxy    or 

abxyxx 1
.          (N14) 

Suppose that the SVD of the matrix xyxx1
is given by 

T

eeexyxx VU 1
.         (N15) 

Then, it follows from equation (N15) that a , b  and the optimal genetic effect are the left, right  

singular vectors  and singular value of  xyxx1
, respectively. Similarly, we can show that the 

genetic additive variance 
2

Al  is the square of the singular value of xyxx1
. The maximum 

heritability can be obtained by setting the Lagrange function: 

)1()1()(),,,( 2 bbaababaL yy

T

xx

T

xy

T    and 
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. 02)(2

02)(2











baba
b

L

abba
a

L

yyyxxy

T

xxxyxy

T





       (N16) 

Let  

2/12/1   yyxyxxK  and SVD of  K be 

T

KKK VUK  ,          (N17) 

where ],...,[ 1 qK uuU  , ),...,( 1 qK diag   and ],...,[ 1 qK vvV  . 

Solving equation (N16) we obtain  

, 

,,...,1 ,

,,...,1 , 

22

 

2/1

2/1

klk

jyyj

ixxi

h

qjvb

qiua











        (N18) 

where iu , jv  and 
k are the left, right singular vectors and singular value of the matrix K , 

respectively.  Substituting equation (N18) into equations (N10) and (N11) gives 

. ˆ

ˆ

22

iAl

i

T

ii

i

Kvu








          (N19) 

Note that 
2

k is the eigenvalue of the matrix 

2/112/1   yyxyxxyxyy

T KK .        (N20) 

It follows from equation (N20) and (18) that 

2RKKT  .  
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This shows that the maximum heritability analysis is equivalent to CCA.  

Supplemental Note B 

RKHS framework for Functional CCA, Cross-covariance operator, Dependence Measure 

and Independence Test 

Introduction of RKHS 

Many multivariate and functional statistical methods such as regression, CCA, kernel regression, 

kernel CCA, functional regression and functional CCA, dependence measure can be used to test 

the association of genetic variants with the phenotypes. In the past decades, reproducing kernel 

Hilbert spaces (RKHS) have emerged as a general framework for various statistical and machine 

learning methods. Here, we propose to use RKHS as a unified framework for association tests to 

reveal the relationships among various multivariate and functional association tests. 

We begin with briefly introducing RKHS [1,2].  Let H be a Hilbert space of functions on a 

non-empty set   and denote the inner product in H by H .,. .  A bivariate function K on 

  is called a reproducing kernel for H if K  satisfies 

(1) For every t , H)(., tK and      (N21) 

(2) For every t  and 𝑓 ∈ ℋ, we have H )(.,,)( tkftf .   (N22) 

We call H a RKHS with reproducing kernel K . 

Define 

)]()([),( tXsXEtsK          (N23) 

 be a covariance function that generates a RKHS.  
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A powerful analytical tool for CCA and independence tests is the cross-covariance operator that 

is an extension of the covariance matrix to infinite dimensional space [3]. Recall that the 

covariance matrix is defined as 

][
~ T

XY XYE ,         (N24) 

 where X and Y are vectors of random variables with 0][ XE and 0][ YE . Equation (N24) 

can be extended to feature space.  Let )(X and )(Y be feature maps. In the feature space, 

equation (N24) can be written as 

)]()([
~

YXE T

XY  .        (N25) 

Let f and g be vectors in the feature space. Recall that by the reproducing property, we have 

 )(.,(.),)( XKfXf  and  )(.,(.),)( YKgYg .     (N26) 

Define kernels )()(., XXK   and )()(., YYK  .Viewing the covariance matrix XY
~

 as an 

operator and applying it to the vector g , we obtain 

)].()([

](.)),(.,)([(.)])()([
~

YgXE

gYKXEgYXEg T

XY








    (N27) 

Equation (N27) indicates that gXY
~

maps g to a vector in the feature space spanned by )(X . 

Let f  be a vector in the feature space. Then, its inner product with  gXY
~

 is given by 

. )]()([

)]()(.,(.),[

)]()([
~

YgXfE

ygXKfE

YgXfEgf T

XY

T





 

       (N28) 

In terms of kernels, equation (N28) can be written as 
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](.),.),()(.,(.),[
~

 gYKXkfEgf XY

T .     (N29) 

We assume that 

 


m

j jj Xf
1

)(  and  


m

l ll Yg
1

)( .      (N30) 

From equations (N27) and (N28) we can obtain the sampling formula for gf XY

T
~

: 

 


m

i iiXY

T gYKXKf
m

gf
1

(.),.),()(.,(.),
1~ .     (N31) 

Substituting equation (N30) into equation (N31) gives 

, 
1

),(),(
1

,.)(,.),()(.,,,.)(
1~

1 1 1

1 11







yx

T

m

j

m

l

m

i liijlj

m

i

m

l llii

m

j jjXY

T

KK
m

YYKXXK
m

YKYKXKXK
m

gf







  

 

  

 

  (N32) 

where 



















),(),(

),(),(

1

111

mmm

m

x

XXKXXK

XXKXXK

K







 and 



















),(),(

),(),(

1

111

mmm

m

y

YYKYYK

YYKYYK

K







. 

Let 
mm

m
IG 1

1
 , where m1 is a mm  matrix of ones. The centered covariance is  

T

YXXYXY 
~

, 

where )]([ XEX    and )]([ YEY   . 

Using the similar arguments, we can show 
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 yx

T

XY

T KK
m

gf
~~1

 ,        (N33) 

where GGKK xx 
~

  and GGKK yy 
~

. 

Dependence Measure,  Covariance Operator and CCA 

The covariance operator is a useful tool for assessing dependence between variables and hence 

form a foundation for association analysis.  A dependence measure can be derived from solving 

the following optimization problem: 

.1
~

              

1
~

         ..

~~1
       max

,












y

T

x

T

yx

T

K

Kts

KK
m

        (N34) 

Let  2/1~
xKu  and  2/1~

yKv  . Then, the optimization problem (N34) can be transformed to 

.1               

1u           s.t.

~~

m

1
         max

T

2/12/1

,





vv

u

vKKu

T

yx

T

vu

        (N35) 

Using the Lagrange multiplier approach to solve the optimization problem, we can obtain the 

eigenequation: 

uvKK
m

yx 2/12/1 ~~1
,         (N36) 

vuKK
m

xy 2/12/1 ~~1
.         (N37) 

Substituting equation (N37) into equation (N36) gives eigenequation: 

uuKKK
m

xyx

22/12/1

2

~ˆ~1
 .        (N37)  

Assume that the single value decomposition of  
2/12/1 ~~

yx KK is 
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T

yx VUKK 2/12/1 ~~
,         (N38) 

where ),...,( 1 mdiag    with  m  ...21 . 

After some algebra, we obtain 

).
~~

( Trace
1

)
~~~

(Trace
11

2

2/12/1

21

2

2

yx

xyx

Tn

i i

KK
m

UKKKU
mm



 


      (N39) 

It is clear that  )
~~

( Trace
1

2 yx KK
m

can be used as a measure of dependence. The dependence 

measure )
~~

( Trace
1

2 yx KK
m

is used to test for dependence between two sets of random variables 

[4] and to test for the association of genetic variants with multiple phenotypes [5].  

Kernel CCA 

     Consider Kernel CCA (KCCA) [6].  Let 
T

mXXX )](),...,([)( 1  and 

T

mYYY )](),...,([)( 1  . The representation of linear combinations of the sampled features in 

the feature space can be defined as  

GXU T )(  and GYV T )( , 

where center operator 
mm

m
IG 1

1
 is defined as before. 

The canonical variates are linear combinations of features and hence can be represented by 

 x

T KGXXGUXGa
~

)()()(  and  y

T KGYYGVYGb
~

)()()(  , 

where GXXGK T

x )()(
~

 and GYYGK T

Y )()(
~

 , which are similar to xK
~

and yK
~

defined 

in equation (N33). The covariance  between the canonical variates a  and b is 
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 Yx

T KKba
~~

),cov(  . Similarly, we can obtain the variance of a  and the variance of b , 

respectively,  xx

T KKa
~~

)var(    and  yy

T KKb
~~

)var(  . The KCCA seeks canonical vectors 

in terms of  and  to optimize 

.1
~~

              

1
~~

         ..

~~1
       max

,












yy

T

xx

T

yx

T

KK

KKts

KK
m

        (N40) 

If the constraints in (N40) are replaced by 1
~

)(   x

T KUVar  and 1
~

)(   y

T KVVar , the 

optimization problem (N40) can be reduced to 

,1
~

              

1
~

         ..

~~1
       max

,












y

T

x

T

yx

T

K

Kts

KK
m

        (N41) 

which is exactly the same as the formulation (N34).  Similar to equation (22), the association 

measure in the KCCA is equal to 

)ˆˆ( Trace
1

)(Tr
1

2

2

2 yx KK
mm

 .       (N42) 

Functional Association Tests 

    In this section, we show that the dependence measure in the FPC score-based kernel analysis 

is asymptotically equal to the association measure of the FCCA and FCCA can be implemented 

as CCA with FPC scores.  
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     To unify multivariate association tests and functional association tests, we use RKHS as a 

general framework for formulation of the functional CCA [1]. Consider two index sets 
1E and 

2E , and two stochastic processes: }),({ 1EttX  and }),({ 2EssY   with mean zero 

0)](()]([  sYEtXE for all st, , auto covariance functions  

)),(),(cov(),( 2121 sXsXssRX    ))(),(cov(),( 2121 tYtYttRY  ,  and cross covariance functions 

))(),(cov(),( tYsXtsRXY  . 

Let 
2

XL and 2

YL be the Hilbert spaces spanned by the X and Y  processes defined as the 

completion of the set of all linear combinations of the random variables: 

  


n

i iiii ZnREttXaa
1 1 ,,),(:   and 

  


n

i iiii ZnREssXbb
1 2 ,,),(:   under the inner product ][, 2121 2 aaEaa

XL
 and 

][, 2121 2 bbEbb
YL
 , respectively.  The covariance function can be used to define an integral 

operator: 

 T
XX dsstsRtR )(),())((   .       (N43) 

By Mercer’s theorem [7], the covariance function can be expanded in terms of orthonormal 

functions: 







1
)()(),(

i iiiX tstsR  ,        (N44) 







1
)()(),(

j jjjY tstsR  ,        (N45) 

where  
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)())(( ttR lllX    and )())(( ttR jjjY   . 

Using the Karhunen-Loeve representation, the stochastic processes )(tX and )(tY can be 

expressed as [1]   

)()(
1

ttX ii i



  and 






1
)()(

j jj ttY  ,      (N46) 

where  i and j are uncorrelated variables with zero means, and variances and covariance 

jjii   )var(,)var( , ijji  ),cov( ,       (N47) 

which implies 

 









1 1
)()(),(

i j jiijXY tstsR  .       (N48) 

The RKHS )( XRH  generated by the covariance kernel 
XR is

  









1 1

2),()(:)()
j j jjjjjX tttR H( .    (N49) 

Similarly, we can define 

  









1 1

2),()(:)()
j j jjjjjY tttR H( .    (N50) 

The congruence mapping from )( XRH to 
2

XL is then given by [8] 







1 )(2,)(
i TLiiiX X  .       (N51) 

Similarly, we define 







1 )(2,)(
j TLjjjY Y  .       (N52) 
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Using equations (N51) and (N52), we obtain 

),,,cov())(),(cov(
)()(1 1

22 TLjTLii j jijiYX YX   







 . (N53) 

By definition of the inner product in the )(2 TL  space, we have 


T

iTLi dtttXX )()(,
)(2   and 

T
jTLj dtttYY )()(,

)(2  .   (N54) 

Then, using stochastic integral theory [9],  we can connect the covariance between these two 

inner products with the covariance operator: 

 
T T

jXYiTLjTLi dsdtttsRsYX )(),()(),,,cov(
)()( 22  .   (N55) 

Substituting equation (N55) into equation (N53) gives  

.)(),()(

))(,())((

)(),()())(),(cov(

1 1

1 1

 

   

  























T T
XY

T T i j jjjXYiii

T T
jXYii j jijiYX

dsdtttsRs

dsdttsRs

dsdtttsRs







  (N56) 

Substituting equation (N46) into equation (N56) yields 

)(2)(),)(())(),(cov(
TLXYYX ttR   ,     (N57) 

where 
XYR with the property  

T TLXYXYXY tRdsstsRtR
)(2(.)),(.,)(),())((  is a cross 

covariance operator. Equation (N57) is an extension of equation (N28) to functional space.  

     Now we formally define CCA for the stochastic process.  The canonical correlation can be 

defined in terms of both 
2

XL  and 2

YL , and )( XRH and )( YRH : 
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))(),((cov    max

),(cov             max

2

1||||,1||||

)(),(

2

1)var(,1)var(
,

2
)(

2
)(

22












YX
RR

LL

YRXR

YX

YX










HH

HH

.      (N58) 

Now we consider the direct extension of the CCA from multivariate to functional space. Suppose 

that expansions of the two functions )(s and )(t in terms of orthonormal functions 

,...}2,1),({ isi and ,...}2,1),({ jtj are given by 

)()(
1

ss
ii i




   and 






1
)()(

j jj tt  .     (N59) 

Define the inner product of functions )(s with stochastic process )(sX  as 


TTL

dssXssXs )()()(),(
)(2  .       (N60) 

Substituting equation (N46) into equation (N60), we obtain 

,

)()()(),(

1
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ii i

i T
iiTL

dssssXs
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




      (N61) 

where   T
ii dsss )()(  . 

Similarly, we have  







1)(2)(),(
j jjTL

tYt  ,  T
jj dttt )()(  .     (N62) 

Similar to multivariate CCA where we consider the correlation between linear combinations of 

variables in two sets, the functional CCA consider extensions of linear combinations of the 

random variables to the functional space. Using equations (N48), (N61) and (N62) we calculate 

the covariance: 
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Similarly, we have  

.)()(var(
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Therefore, the FCCA can be defined as 

,1,1       s.t.
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,
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where  
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Comparing equation (N63) with equation (N56) gives 

 
T

YX
T

dttYtdssXs ))(),(cov())()(,)()(cov(  .  

This shows that the formulation of FCCA in equation (N65) is equivalent to the formulation of 

the FCCA in the 
2

XL , 2

YL  and )(),( YX RR HH as expressed in equation (N58). Similar to CCA, 

2R in FCCA can be defined in terms of functional principal component scores: 

2/112/12   YYXYXXYXYYR . 

After some algebra, we obtain the association measure r   in equation (11) : 
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If constraints 1,1   YY

T

XX

T  in equation (N65) is replaced by 1 T  and  1 T
, 

i.e., the optimization problem (N65) is reduced to 
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 then equation (N66) is reduced to 
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22 )(Tr  .        (N68) 

Assume that the expansion of )(tX and )(tY  in equation (N46) are truncated by p and q terms, 

respectively. Define the feature maps: 
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Define kernel Gram matrices )()( XXK T

x  and )()( YYK T

y  . The dependence 

measure is 

)Tr(
1

 )Tr(
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)ˆˆ(Tr 
1 TT
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22
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mm
KK

m
D yxYX  .    (N69) 

Note that  T  asymptotically converges to 
XY

TE ][  . Therefore, the dependence measure

YXD based on FPCs asymptotically converges to  

r
mmm

D
p

i

q

j ij

T

XYXYYX 21 1

2

22

11
)(Tr

1
   

 . In other words, the dependence measure 

based on the FPCs is asymptotically equal to the association measure of the FCCA.  

Supplemental Note C 

Impact of Derive Traits on Association Tests 

Association Tests of Rare Variants 

To investigate whether derived traits BMI, WHR,  FEV1.FVC_Ratio and  Total_Lean_Mass  can 

cause spurious association or not, we removed these derived traits from the original data 

reanalyze the association of rare variants. The results were summarized in Table SN1 and Fig 

SN1. We observed that the number of significant findings after removing derived traits was 

slightly reduced and the P-values were slightly increased.  

Association Tests of Common Variants 

The same conclusion can be made for common variants. The Manhattan plots showing 

genome-wide p-values of association of genes consisting of only common variants with the 46 

traits calculated using QRFCCA before and after removing derived traits were presented in Fig 

11 and Fig SN2, respectively.  

Impact of Age on Association Tests 
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To investigate the impact of covariates on the association of the proposed test, we conducted 

real data analysis adjusted for age. The results were summarized in Table SN2. The P-values of 

QFCCA test for association of common and rare variants with 46 traits were listed in Table SN3.  

The results showed that age was a confounding factor. After age adjusted, the number of 

significantly associated genes was slightly reduced.  We also observe that the impact of age on 

association of rare variants is larger than that on common variants.  

Impact of Homogeneity on Association Tests 

    To show how the genes were associated with the homogeneous groups of traits, we presented  

Tables SN4 and SN5 that summarized the number of genes (rare variants only) significantly 

associated with the kidney group and  glycemic group traits with and without PC adjustments, 

respectively. We observed that the impact of population structure on the QRFCCA was small, 

but on the MSKAT was large. 

Confirmation of Literature 

A large proportion of association tests can be confirmed by publication in the literature. Table 

SN6 summarized the proportions of identified genes in 5 kidney traits, 2 glycemic traits and 7 

lipid traits which have been published in the literature. 
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Fig SN1. Manhattan plot showing the genome-wide P values of association of the genes 

consisting of only rare variants with the 42 traits calculated using QRFCCA (removing BMI, 

WHR, FEV1.FVC_Ratio and Total_Lean_Mass from the original 46 trains). The axis x 

represented the chromosomal positions of 33,746 genes and axis y showed their -log 10 P-

values. The horizontal red line denotes the thresholds of  𝑃 = 1.48 × 10−6 for genome-wide 

significance after Bonferroni correction. 



 

Fig SN2. Manhattan plot showing the genome-wide P values of association of the genes 

consisting of only common variants with the 46 traits calculated using QRFCCA (removing 

BMI, WHR, FEV1.FVC_Ratio and Total_Lean_Mass from the original 46 trains). The axis x 

represented the chromosomal positions of 33,166 genes and axis y showed their -log 10 P-

values. The horizontal red line denotes the thresholds of 𝑃 = 1.51 × 10−6 for genome-wide 
significance after Bonferroni correction. 



Table SN1.  The number of significant findings 

in the original and trait removed datasets.  

    Body Lung Total 

Common 
Original 0 3 67 

Removed 0 3 64 

Rare 
Original 0 2 80 

Removed 0 3 71 

 



 

Table SN2.  The number of the genes significantly associated with 46 traits with age 

adjusted and no age adjusted.  

  No adjusted Age Adjusted 

Common 67 63 

Rare 79 68 

 

 



Gene Chromosome QRFCCA QRFCCA with Age AdjustmentGene Chromosome QRFCCA QRFCCA with Age Adjustment

CTC-498M16.2 5 5.74E-22 1.80E-21 REG1B 2 1.65E-116 4.86E-48

TRAJ22 14 2.16E-20 2.18E-20 RP11-665C14.1 4 1.38E-93 2.18E-18

AP000351.10 22 2.09E-18 1.88E-18 ZNF160 19 1.98E-91 2.74E-18

HAR1B 20 7.81E-18 5.58E-18 LEF1 4 7.44E-83 4.16E-16

IGHVII-20-1 14 7.49E-16 3.82E-16 DYNC1H1 14 3.46E-58 9.50E-15

RP11-4F5.2 15 9.94E-16 3.45E-15 DOCK7 1 4.42E-51 6.12E-13

RNVU1-17 1 3.90E-13 7.16E-09 SHC3 9 7.56E-42 1.05E-14

PNOC 8 1.63E-12 3.37E-10 Y_RNA 7 1.89E-36 9.18E-13

COTL1P1 17 8.71E-12 1.16E-10 CTD-2122P11.1 5 1.62E-33 1.37E-10

LINC00273 16 4.41E-11 1.11E-10 GBF1 10 6.30E-28 1.84E-09

snoU13 12 4.95E-11 2.86E-11 RP1-8B22.1 1 1.75E-27 2.75E-09

ADAM19 5 6.07E-11 4.60E-11 VPS13D 1 2.62E-26 1.26E-09

CTD-2026G6.2 3 1.91E-10 2.78E-11 RP11-68I3.2 17 3.20E-24 1.31E-09

MIR409 14 2.77E-10 6.17E-10 SLC13A3 20 8.51E-24 2.00E-08

RP1-276E15.1 11 3.13E-10 3.66E-09 RP11-167N24.3 12 4.33E-23 2.44E-10

HMGN1P6 2 4.46E-10 1.02E-06 UBA6 4 5.26E-22 2.85E-10

HOXA7 7 2.18E-09 1.41E-08 GAN 16 1.49E-21 2.91E-12

RNA5SP99 2 2.41E-09 2.88E-06 RP4-794H19.2 1 4.07E-21 6.64E-09

AC021660.1 3 2.69E-09 0.000670466 RP11-142I20.1 18 5.29E-21 6.84E-09

RP11-561N12.1 7 3.12E-09 1.32E-09 METAP2 12 2.62E-20 8.94E-07

FBXL5 4 4.53E-09 1.08E-06 SLCO1C1 12 5.89E-20 9.12E-09

PPIAP23 13 5.40E-09 2.90E-08 AC105443.2 7 2.47E-17 1.18E-08

HOXB2 17 7.00E-09 2.47111E-07 GRN 17 1.63E-16 1.29E-08

RP11-170N16.1 4 7.09E-09 5.25E-08 INTS12 4 1.72E-16 1.29E-08

AC008694.3 5 1.39E-08 9.89E-08 RP11-323I15.5 15 9.29E-16 1.48E-09

VILL 3 1.69E-08 9.42E-09 UBE2U 1 2.88E-15 1.66E-09

KRT27 17 2.04E-08 1.92E-08 BATF2 11 5.90E-15 2.19E-08

RNU6-1243P 11 2.28E-08 3.99E-08 C5orf51 5 1.02E-14 2.29E-09

RP11-6N17.10 17 2.49E-08 1.48E-05 RP11-814P5.1 15 1.28E-14 3.31E-08

AL358134.2 6 2.83E-08 7.07E-08 USP44 12 3.49E-14 4.34E-08

Rare Variants Common Variants

Table SN3. The list of p-value for the significant genes before and after age adjustment for both common and rare variants



GAPDH 12 2.96E-08 9.33E-08 C12orf5 12 4.91E-14 2.44E-09

DERL1 8 3.45E-08 6.44E-08 SSH2 17 5.59E-14 4.44E-09

RP1-102E24.9 12 4.32E-08 4.18E-06 PHIP 6 2.96E-13 6.48E-09

PPBP 4 4.79E-08 9.68E-07 ARRDC4 15 1.73E-12 5.64E-08

LINC00443 13 5.08E-08 0.117002591 RP3-477O4.16 20 4.33E-12 7.07E-09

RP11-10O17.1 15 5.19E-08 1.11E-08 FAM210B 20 5.59E-11 6.09E-08

PROCA1 17 5.62E-08 3.68E-07 AF001550.7 16 6.53E-11 6.32E-07

CHMP2B 3 6.03E-08 3.74348E-07 COLGALT1 19 9.53E-11 3.35E-07

IGKV2-4 2 6.33E-08 1.20197E-07 IGSF5 21 1.24E-10 9.98E-08

AC017104.1 2 8.15E-08 1.13E-08 GPR137B 1 3.54E-10 6.42E-09

RNU6-980P 19 8.16E-08 3.80E-07 RCL1 9 4.88E-10 5.05E-07

AC016691.2 2 8.89E-08 3.26E-07 OXR1 8 1.77E-09 8.09E-08

RNA5SP19 1 9.03E-08 7.30E-05 CTD-2503O16.4 5 1.48E-08 5.22E-07

snoU13 6 9.16E-08 6.58117E-07 C10orf76 10 1.89E-08 6.16E-08

MLN 6 9.47E-08 4.21E-08 SRRM4 12 2.26E-08 1.40E-08

RP11-55L4.2 17 1.03E-07 9.94E-09 RASAL3 19 5.31E-08 6.93E-07

CTC-505O3.2 5 1.22E-07 1.38E-06 MTHFD2P6 5 5.65E-08 1.18E-06

ISCA1P1 5 1.23E-07 6.06E-07 UQCRBP3 5 7.58E-08 8.72E-08

JUN 1 1.25E-07 7.00E-06 SEC14L3 22 7.90E-08 9.10E-07

AC140061.12 12 1.41E-07 2.23E-06 UGCG 9 7.98E-08 9.34E-08

RP11-697E2.10 15 1.77E-07 8.94E-08 ZNF680 7 1.23E-07 9.47E-07

RNU6-717P 12 1.91E-07 1.15E-06 GPR56 16 1.26E-07 9.53E-08

RP11-98D18.17 1 2.36E-07 6.03E-07 CCDC26 8 1.97E-07 9.64E-06

PPIAP13 10 2.43E-07 3.20E-07 SOX5 12 2.54E-07 1.02E-07

SETP2 14 2.67E-07 7.98E-08 AC009892.10 19 3.17E-07 1.04E-06

AC008691.1 5 3.15E-07 7.52E-06 HPSE 4 3.21E-07 1.04E-06

RP1-40E16.2 6 3.38E-07 5.68E-07 SLC35E4 22 5.08E-07 1.06E-06

RP11-79P5.9 5 3.54E-07 3.42E-06 CTC-575D19.1 5 6.25E-07 1.38E-06

RN7SL699P 17 3.69E-07 4.83E-07 EFTUD1 15 7.87E-07 1.52E-06

OR4A44P 11 3.94E-07 1.34E-07 RP4-742N3.1 7 9.42E-07 1.43E-06

C7orf71 7 4.80E-07 3.05E-07 RP11-568J23.7 16 9.69E-07 1.44E-06

COMP 19 4.83E-07 2.66E-05 AC138655.1 2 1.01E-06 1.31E-06

PCDHB10 5 4.97E-07 8.83E-07 EYA4 6 1.05E-06 1.51E-06



HOXB1 17 5.27E-07 3.31E-05 P2RY6 11 1.11E-06 1.39E-06

RN7SKP280 7 5.39E-07 4.63E-07 BACH2 6 1.24E-06 1.40E-05

SEC31A 4 5.51E-07 1.29E-06 MSH6 2 1.42E-06 4.49E-06

RP11-363E6.4 8 6.56E-07 2.19E-07 CTC-497E21.5 11 1.49E-06 1.70E-06

SHISA4 1 6.84E-07 3.05E-06

DAZAP2P1 2 7.97E-07 7.71E-07

PGLYRP3 1 8.97E-07 7.28E-08

RP11-138H8.4 15 1.09E-06 2.47E-06

RP11-153M7.3 4 1.10E-06 4.36E-07

EPS8L2 11 1.15E-06 2.59E-07

HPN 19 1.15E-06 4.34E-05

AC092685.1 7 1.34E-06 0.083234568

AC079781.1 7 1.36E-06 5.88E-06

CTD-2014B16.2 14 1.41E-06 9.87E-05

SULT1B1 4 1.43E-06 1.10E-05

RP11-57G22.1 18 1.44E-06 8.89E-06



QRFCCA with Age Adjustment



Table SN4. Number of genes with only rare variants significantly associated with 5 traits (Kidney group). 

  QRFCCA FCCA GAMuT SCCA USAT MANOVA CCA PCA KCCA MSKAT 

No adjusted 78 73 6 0 0 0 0 5 0 17 

Adjusted 55 21 1 0 0 0 0 2 0 11 

Overlapped 43 21 0 0 0 0 0 2  7 

Proportion 78.00% 100% 0         100%   64% 

 



Table SN5. Number of genes with only rare variants significantly associated with traits (Glycaemia group). 

  QRFCCA FCCA GAMuT SCCA USAT MANOVA CCA PCA KCCA MSKAT 

No adjusted 24 24 8 0 0 0 0 14 0 17 

Adjusted 5 4 1 0 0 0 0 3 0 3 

Overlapped 4 4 0 0 0 0 0 3 0 1 

Proportion 80.00% 100% 0         100%   33% 

 



Table SN6. Proportion of identified genes confirmed in the literature.  

Trait   Kidney  Glycaemia Lipid 

Common Identified 20 11 5 

 

Confirmed 8 7 3 

 

Proportion 40% 63.60% 60% 

Rare Identified 78 24 1 

 

Confirmed 22 7 0 

  Proportion 28% 29% 0 

 


