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Supplementary Figures 

 

Supplementary Figure 1: CNA profiles from PDX gene expression data are highly similar 
to those from PDX SNP array data 

Moving average plots of PDX SNP arrays (upper panels) and their corresponding gene 
expression arrays (lower panels) in six representative cancer types. The CNAs identified in each 
sample by our pipeline are depicted as rectangles above the affected genomic regions. Gains are 
shown in red, losses in blue. 
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Supplementary Figure 2: The CNA landscapes of PDXs are highly similar to those of 
primary tumors from matched tissues 

CNA frequency plots of PDX model types and the respective primary tumor types from TCGA, 
showing that PDXs generally exhibit the aneuploidies and CNAs that are characteristic of each 
tissue type. Gains are shown in red, losses in blue.  
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Supplementary Figure 3: Gradual evolution of CNA landscapes throughout PDX passaging 

PDX models acquire CNAs throughout their in vivo propagation. (a) Bar plots present the 
fraction of the PDX models with at least one model-acquired CNA, as a function of the number 
of passages between measurements. (b) Box plots present the number of discrete CNAs as a 
function of the number of passages between measurements. Bar, median; box, 25th and 75th 
percentiles; whiskers, data within 1.5*IQR of lower or upper quartile; circles: all data points. P-
values indicate significance from a Wilcoxon rank-sum test. (c) Box plots present the proportion 
of genes affected by CNAs as a function of the number of passages between measurements. Bar, 
median; box, 25th and 75th percentiles; whiskers, data within 1.5*IQR of lower or upper quartile; 
circles: all data points. P-values indicate significance from a Wilcoxon rank-sum test. (d) Equal 
rates of acquiring new CNAs and losing existing ones in PDXs. Violin plots present the absolute 
CNA fraction of PDX models at early (p<2),  medium (2<p<4) and late (p>=4) passages. Bar, 
median; colored rectangle, 25th and 75th percentiles; width of the violin indicates frequency at 
that CNA fraction level. n.s., non-significant (Wilcoxon rank-sum test). 
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Supplementary Figure 4: Shifts in the allelic fraction of point mutations during PDX 
derivation and propagation 

(a) The allelic fractions (AF) of point mutations can change throughout PDX passaging. Plots 
present the number of point mutations with an AF shift (|ΔAF|>0.2) between the primary tumor 
and its derived xenograft, in 13 matched pairs of primary breast cancer tumors and PDXs from 
Eirew et al. 1. (b) AF shifts in non-synonymous missense and nonsense coding mutations in each 
of the matched pairs described in (a). (c) The allelic fractions (AF) of point mutations can 
change throughout PDX passaging. Plots present the number of point mutations with an AF shift 
(|ΔAF|>0.2) between early (p=1 or p=2) and late (p=5) PDXs, in two matched pairs of tumor 
xenografts from Eirew et al. 1. (d) AF shifts in non-synonymous missense and nonsense coding 
mutations in each of the matched pairs described in (c). 
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Supplementary Figure 5: PDX models from metastases exhibit larger CNA fractions and 
higher CIN70 scores than PDX models from primary tumors 

PDX models from metastases are more aneuploid than those from primary tumors. (a) Box plots 
present the absolute CNA fraction of PDX models from primary tumors (n=563) and from 
metastases (n=98). (b) Box plots present chromosomal instability (CIN70) signature scores of 
PDX models from primary tumors (n=563) and from metastases (n=98). P-values indicate 
significance from Wilcoxon rank-sum tests. 
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Supplementary Figure 6: Expansion of pre-existing subclones during PDX propagation 
demonstrated by identification of LOH “reversion” 

Alleles that seem to have been lost in early-passage PDX tumors can “re-appear” in later 
passages of the same PDX models, demonstrating expansion of rare pre-existing subclones 
throughout PDX propagation. Plots present the loss of heterozygosity (LOH) status along the 
genomes of four PDX models from Eirew et al. 1. LOH events are shown in purple. For each 
model, shown are two passages. Arrows mark large (>10Mb) chromosomal segments for which 
LOH was identified at the earlier passage, but both alleles were present at the later passage. 
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Supplementary Figure 7: Genomic instability in PDXs correlates both the genomic 
instability and the heterogeneity levels of primary tumors 

(a) The DGI of PDXs and that of primary tumors correlate extremely well. In PDXs, tissue DGI 
was defined as the median CNA fraction affected per passage. In TCGA tumors, tissue DGI was 
defined as the fraction of samples with whole-genome duplication (WGD). (b) The DGI of 
PDXs also correlates extremely well with intra-tumor heterogeneity (ITH) of primary tumors 
(including skin tissue). The DGI of PDXs was defined as the median number of arm-level CNAs 
per passage. The heterogeneity of primary tumors was defined as the median number of clones 
per tumor. Spearman’s rho values and p-values indicate the strength and significance of the 
correlations, respectively. 
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Supplementary Figure 8: Disappearance of recurrent CNAs throughout PDX propagation: 
opposite trends of patient-acquired and model-acquired CNAs 

Twelve recurrent arm-level CNAs, which were observed in >40% of TCGA samples, were found 
to be preferentially lost during PDX passaging. Heatmaps present the model-acquired arm-level 
CNAs identified in five PDX tumor types: breast, brain, colon, lung and pancreas. Gains are 
shown in red, losses in blue. The chromosome arms that show an opposite acquisition trend to 
that seen in human patients are highlighted with arrows. 86% of these events represent the 
disappearance of a CNA that existed at an earlier passage, rather than the acquisition of the 
opposite CNA. 
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Supplementary Figure 9: Disappearance of recurrent CNAs throughout PDX propagation: 
prevalence differences between early and late passages 

Recurrent CNAs that tend to disappear during PDX passaging are less commonly identified in 
late compared to early passage PDX samples. Absolute CNA frequency plots of three PDX 
model types (breast, brain and lung) at early and late passage numbers are presented. Gains are 
shown in red, losses in blue. Nine of the twelve events that tend to disappear in PDXs are less 
common in high passage PDXs (highlighted by arrows). P-values indicate significance from a 
Fisher’s exact test. 
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Supplementary Figure 10: Genomic instability of PDXs is comparable to that of cell lines 
and CLDXs 

(a) Gradual evolution of CNA landscapes throughout passaging of newly-derived cell lines. Box 
plots present model-acquired CNA fraction as a function of in vitro passage number. (b) Similar 
rates of CNA acquisition in PDXs and in newly-derived cell lines. Dot plots present the 
distribution of model-acquired CNA fractions across three available cancer types. Cell lines used 
for this analysis are listed in Supplementary Table 3. (c) The CNA acquisition rate of CLDXs 
is associated with the numerical karyotypic complexity of the parental cell lines. Violin plots 
present the fraction of CNAs acquired by passage 10 as a function of numerical karyotypic 
complexity. P-values indicate significance from a Wilcoxon rank-sum test. 
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Supplementary Figure 11: Arm-level CNAs affect genetic dependencies and drug 
sensitivities 

(a) Pancreatic cancer cell lines with chromosome 20q gain are more sensitive to RNAi-mediated 
knockdown of multiple PI3K genes. Box plots present the dependency scores to RNAi-mediated 
knockdown of the indicated genes. (b) Arm-level CNAs lead to significant gene expression 
changes in cell lines. Volcano plot shows the differential gene expression between cell lines with 
and without a gain of chromosome 1q. Genes that reside within chromosome 1q are highlighted 
in red. (c) Breast cancer cell lines with a chromosome 1q gain are less sensitive to the ARF1 
inhibitor brefeldin A. (d) Cell lines with a chromosome 1q gain are less sensitive to the ARF1 
inhibitor brefeldin A. Box plots present the area under the curve (AUC) values for cell lines with 
and without 1q gain. P-values indicate significance from a Wilcoxon rank-sum test. 
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Supplementary Figure 12: Arm-level CNAs are associated with extensive gene expression 
changes in cell lines 

The expression of most genes that reside within arm-level CNAs changes significantly, in the 
expected direction of the aberration. Volcano plots present the differential gene expression 
analysis between cell lines with and without arm-level CNAs, for all the recurrent arm-level 
CNAs that tend to disappear during PDX passaging. Genes that reside within the affected arm 
are highlighted in red (for gains) or blue (for losses). 
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Supplementary Figure 13: CNA-based and mutation-based phylogenetic trees are highly 
concordant 

Arm-level CNA-based phylogenetic trees are less informative than, but as accurate as, mutation-
based trees. (a) Phylogenetic trees constructed from arm-level CNAs (left) or point mutations 
(right) data from five patients2,3. Branch lengths correspond to genetic distance. (b) 
Quantification of the sensitivity and specificity of the arm-level CNA-based trees, compared to 
the mutation-based trees. Bar plots present the percentage of branch points from mutation-based 
trees that were also identified in CNA-based trees (gray); and the percentage of branch points 
identified in CNA-based trees that were also identified in mutation-based trees (black).  
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Supplementary Figure 14: De novo CNAs may play a role in PDX CNA dynamics as well 

(a) Model-acquired CNAs keep emerging at high in vivo passages. Plots present the model-
acquired CNAs in multiple passages of two breast PDX models 4. (b) Unique events also emerge 
in “sibling” PDXs, which were derived from the same primary tumor and propagated 
independently in mice. Plots present the model-acquired CNAs in pairs of passages from breast 
(PDX2127), lung (PDX1726), pancreas (PDX2081) and skin (PDX1655) PDX models 5. Gains 
are shown in red, losses in blue. (c) PDXs with a mutant or deleted p53 present a significantly 
higher rate of CNA acquisition throughout passaging, compared to their WT counterparts. Box 
plots present the rate of model-acquired CNAs in PDX models without (PDX-WT; n=65) and 
with (TP53 mut/del; n=110) a TP53 perturbation. P-value indicates significance from a 
Wilcoxon rank-sum test. 
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Supplementary Tables 

Study ID Tumor type (by 
primary tissue) 

# of PDX 
samples 

# of PDX 
models 

# of models with 
multiple time points 

# of models with 
primary tumors 

available 

Platform 
type Platform Reporting paper 

(PUBMED ID) 
Analyses in which 

data were used 

GSE14804 Brain cancer (GBM) 21 21 0 0 SNP 
array 

Affymetrix Human Mapping 50K Xba240 SNP 
Array 19139420 Fig. 1a, 1e 

GSE32530 Breast cancer 12 12 12 12 SNP 
array Affymetrix Genome-Wide Human SNP 6.0 Array 22019887 Fig. 1a, 1e, Table 

S2 

GSE41188 Prostate cancer 21 7 7 3 CGH 
array 

Agilent-022060 SurePrint G3 Human CGH 
Microarray 4x180K (Feature Number version) 24356420 Fig. 1a, 1e, Table 

S2 

MEXP-2576 Bone cancer 
(osteosarcoma) 27 15 15 8 CGH 

array NMC Human Genomic Array 20K v1 21713766 Fig. 1a, 1e 

EGAS00001
000952 Breast cancer 

79 

15 15 15 

SNP 
array Affymetrix Genome-Wide Human SNP 6.0 Array 

25470049 

Fig. 1a, 1e, 2f, S5 

17 
DNA 

sequenci
ng 

Illumina MiSeq; Illumina HiSeq 2000 Fig. 1a, 1e 

GSE78806 

Biliary tract 1 1 0 0 

GE array Affymetrix HG-U133 Plus 2.0 Array 26479923 

Fig. 1a, 1e 

Bone cancer 10 6 4 0 
Fig. 1a, 1d, 1e, 2a, 
2b, 2c, 3a, S3, S5, 

S14 

Breast cancer 79 40 27 0 

Fig. 1a, 1b, 1d, 1e, 
2a, 2b, 2c, 2e, 3a, 
3b, 3c, 4a, 4b, 4c, 
6a, 6b, S1, S2, S3, 
S5, S7, S8, S9, S14 

Brain cancer 7 4 3 0 

Fig. 1a, 1b, 1d, 1e, 
2a, 2b, 2c, 3a, 3b, 
3c, 3d, 4a, 4b, 4c, 
5b, S2,S3, S5, S7, 
S8, S9, S10, S14 

Endometrium cancer 13 8 5 0 

Fig. 1a, 1b, 1d, 1e, 
2a, 2b, 2c, 3a, 3b, 
3c, 3d, S1, S2,S3, 

S5, S7, S14 

Lymphoma 4 2 2 0 Fig. 1a, 1d, 1e, 2a, 
2b, S3, S14 

Kidney cancer 41 22 13 0 

Fig. 1a, 1b, 1d, 1e, 
2a, 2b, 2c, 3a, 3b, 
3c, 3d, S1, S2, S3, 
S5, S7, S10, S14 

Large Intestine 
(colorectal) 121 64 36 0 

Fig. 1a, 1b, 1d, 1e, 
2a, 2b, 2c, 3a, 3b, 
3c, 4a, 4b, 5b, S1, 
S3, S5, S7, S8, S14 

Liver cancer 3 2 1 0 Fig. 1a, 1d, 1e, 2a, 
2b, 2c, S3, S5, S14 

Non-small-cell lung 
cancer 99 50 35 0 

Fig. 1a, 1b, 1d, 1e, 
2a, 2b , 2e, 3a, 3b, 
3c, 3d, 4a, 4b, 4c, 
6a, 6b, S2, S3, S7, 

S8, S9, S14 

Meninges cancer 2 1 1 0 Fig. 1a, 1d, 1e, 2a, 
2b, S3, S14 

Oesophagus cancer 15 10 5 0 
Fig. 1a, 1d, 1e, 2a, 
2b, 2c, 3a, 5b, S3, 

S5, S14 

Ovarian cancer 52 36 16 0 

Fig. 1a, 1b, 1d, 1e, 
2a, 2b, 2c, 3a, 3b, 
3c, 4a, S2, S3, S5, 

S7, S14 

Pancreatic cancer 94 46 35 0 

Fig. 1a, 1d, 1e, 2a, 
2b, 2c, 2e, 3a, 3c, 
4b, 5b, 6a, 6b, S1, 
S3, S5, S7, S8, S14 

Skin cancer 46 29 15 0 

Fig. 1a, 1b, 1d, 1e, 
2a, 2b, 2c, 2e, 3a, 
3c, 4a, 6a, S1, S2, 

S3, S5, S7, S14 

Small intestine 2 2 0 0 Fig. 1a, 1e, 2b, S3, 
S14 

Soft-tissue cancer 62 41 19 0 
Fig. 1a, 1b, 1d, 1e, 
2a, 2b, 2c, 3a, 4a, 

S2, S3, S5, S14 

Stomach cancer 8 5 3 0 
Fig. 1a, 1d, 1e, 2a, 
2b, 3a, 3c, 3d, S3, 

S5, S7, S14 

Aerodigestive tumor 1 1 0 0 Fig. 1a, 1e, 2b, S3 

Endocrine tumor 1 1 0 0 Fig. 1a, 1e, 2b, S3 
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GSE14805 
* Brain cancer (GBM) 34 22 8 0 GE array Affymetrix HT Human Genome U133A Array 19139420 

Fig. 1a, 1b, 1c, 1e, 
4a, 4b, 4b, S2, S3, 

S8, S9, S10 

GSE32531 
** Breast cancer 15 11 11 11 GE array Agilent-014850 Whole Human Genome 

Microarray 4x44K G4112F 22019887 
Fig. 1a, 1b, 1e, 2a, 
4a, 4b, 4c, 5b, S2, 

S3, S8, S9, Table S2 
GSE41192 

*** Prostate cancer 21 7 5 0 GE array Agilent-028004 SurePrint G3 Human GE 8x60K 
Microarray (Probe Name Version) 24356420 Fig. 1a, 1e, Table 

S2 
GSE6465 / 
GSE72981 Liver cancer 38 7 6 7 GE array Affymetrix HG-U133 Plus 2.0 Array 18490075 Fig. 1a, 1e 

GSE66187 Prostate cancer 24 19 0 0 GE array Agilent-016162 PEDB Whole Human Genome 
Microarray 4x44K 26071481 Fig. 1a, 1e 

GSE28570 Breast cancer 15 5 0 0 GE array Illumina HumanHT-12 V4.0 expression beadchip 21768359 Fig. 1a, 1b, 1e 

GSE67312 Bladder cancer 5 5 5 5 GE array Affymetrix Human Exon 1.0 ST Array 26041878 Fig. 1a, 1e 

GSE51130 Soft-tissue cancer 
(rhabdomyosarcoma) 5 1 1 1 GE array Affymetrix HG-U133 Plus 2.0 Array 24687871 Fig. 1a, 1b, 1e 

GSE57633/
GSE57491 

Acute lymphoblastic 
leukaemia 9 9 9 9 GE array Illumina HumanWG-6 v3.0 expression beadchip 24885906 Fig. 1a, 1e 

GSE46106 Breast cancer 44 25 15 0 GE array Affymetrix HG-U133 Plus 2.0 Array 23737486 
Fig. 1a, 1b, 1e, 4a, 
4b, 4c, S2, S3, S8, 

S9 

GSE55828 Liver cancer 9 9 9 9 GE array [PrimeView] Affymetrix Human Gene Expression 
Array 26062443 Fig. 1a, 1e 

GSE42975 Soft-tisseue cancer 
(liposarcoma) 14 3 3 3 GE array Agilent-014850 Whole Human Genome 

Microarray 4x44K G4112F (Probe Name version) 23416162 Fig. 1a, 1b, 1e, S2, 
S3 

GSE28860 Breast cancer 11 3 3 2 GE array Agilent-014850 Whole Human Genome 
Microarray 4x44K G4112F (Probe Name version) 22446188 Fig. 1a, 1b, 1e, S2, 

S3 

GSE15621 Acute lymphoblastic 
leukaemia 5 5 5 5 GE array llumina HumanWG-6 v3.0 expression beadchip 20739953 Fig. 1a, 1e 

GSE45153 Head and neck cancer 13 5 5 0 GE array Affymetrix HG-U133 Plus 2.0 Array 23981300 Fig. 1a, 1b, 1e, S2, 
S3, S10 

SRP028952 Large Intestine 
(colon) 10 4 4 4 

RNA 
sequenci

ng 
Illumina HiSeq 2000 24278200 Fig. 1a, 1b, 1e, S2, 

S3 

 
 

* Partial (20 models) overlap with the tumors described in GSE14804 
** Partial (11 models) overlap with the tumors described in GSE32530 
*** Partial (7 models) overlap with the tumors described in GSE41188 

 

 

Supplementary Table 1: Summary of PDX datasets 

A list of the datasets included in this study, together with their accession numbers, tumor types, the number of 
PDX models and samples included in them, the experimental platform used, and the Pubmed ID number of the 
original study that generated them. 
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Study PDX 
model 

SNP/CGH array GE array SNP/CGH array GE array 

Primary tumor to earliest passage Early to late passage 

Gains Losses Gains Losses Gains Losses Gains Losses 

GSE32530/1 

HCI001 2p, 9p, Xp, Xq - 2p, 9p, Xp, Xq - 2p, 9q 

9p, 10p, 
14q, 

19q, Xp, 
Xq 

2q, 5q, 9q 
9p, 10p, 

14q, 19q, 
Xp, Xq 

HCI002 - - - - 1q - 1q - 

HCI003 8q, 16p, 17q, 
20p, 20q 

1p, 4p, 4q, 
8p 16p,17q,20p,20q 4p,4q,8p,13q na na na na 

HCI004 2q, 12q, 13q,21q 16q 2q, 12q, 13q,21q 16q na na na na 

HCI007 8q,17q,19q - 8q,19q - na na na na 

HCI008 - - - - na na na na 

HCI009 7p, 
10p,14q,20p,20q 19q 7p, 10p, 

14q,20p,20q - na na na na 

HCI10 9p - - - na na na na 

HCI11 1q, 8q, 13q 
1p, 8p, 9p, 
11p,17p, 
19q, 22q 

8q,13q 1p, 9p, 11p, 
17p, 19p na na na na 

HCI12 7p, 10q, 11q, 
13q, 14q 

3p, 4p, 10p, 
11p, 12q, 
22q, Xq 

7p, 9q, 10q, 12p, 
13q, 14q 

3p, 4p, 10p, 
11p, 12q, 22q na na na na 

GSE41188/92 

LTL418 - - - - 2p, 4q 11q 2p, 4q 11q 

LTL412 - 1p - 1p - - - - 

LTL311 na na na na - 12p - 12p,19q 

LTL313B na na na na - - - 14q 

LTL313H na na na na 13q,18q,Xq - 13q,18q,Xq - 

 

Supplementary Table 2: Comparison of DNA- and RNA-based CNA profiles 

A comparison of model-acquired CNAs inferred from DNA and RNA data from the same tumor samples.  
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Reporting 
paper 

(PUBMED ID) 

Tumor 
type 

# of primary 
tumor 

samples 

# of advanced 
disease 
samples 

Platform type Platform Accession ID 

25979483 Colorectal 
cancer 5 17 CGH array Agilent SurePrint G3 Human CGH 

Microarray 180 K GSE58512 

26109429 Colorectal 
cancer 19 19 DNA 

sequencing Illumina HiSeq 2000 GSE50760 

25979483 Colorectal 
cancer 11 11 DNA 

sequencing Illumina HiSeq 2000 GSE53799 

27472274 Colorectal 
cancer 5 17 SNP array Affymetrix Genome-Wide Human 

SNP 6.0 Array GSE63490 

27348297 Endometri
al cancer 23 31 

DNA 
sequencing and 

SNP array 

Illumina HiSeq 2000 & Affymetrix 
SNP 6.0 Array 

phs001127.v
1.p1 (dbGaP) 

26618343 
Brain 

cancer 
(glioma) 

44 44 
DNA 

sequencing and 
SNP array 

Illumina HiSeq 2500  & Illumina 
HumanOmniExpress-24 v1.1 

BeadChip 

EGAS000010
01588 

27634761 
Lung 

cancer 
(NSCLC) 

6 16 DNA 
sequencing Illumina HiSeq 2500 n.a. 

26619122 
Head and 

neck 
cancer 

19 19 DNA 
sequencing Illumina HiSeq 2500 

phs0001007.
v1.p1 

(dbGaP) 

 

Supplementary Table 3: Summary of advanced disease datasets 

A list of the advanced disease datasets included in this study, together with their accession 
numbers, tumor types, the number of primary tumor and advanced disease samples, the 
experimental platform used, and the Pubmed ID number of the original study that generated 
them. 
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Reporting paper (PUBMED 
ID) Cancer type Tumor / Cell line 

ID 
Passage_numbe

r 
Accession_numbe

r 

Tseng et al. (in preparation) 

Pancreatic 

AA01T 

1 

n.a. 

3 

10 

15 

21 

AA02T 

0 

6 

10 

20 

Esophagus 

AB002_ATT 

1 

5 

10 

20 

AB002_BTT 

1 

9 

10 

15 

19 

AB018T 

0 

7 

10 

20 

Metastatic Colon Cancer to 
Brain BT584T 

1 

5 

10 

20 

GBM 

BT607T 

0 

5 

10 

20 

BT632T 

0 

5 

10 

20 

Anaplastic Thyroid JL16T 

0 

5 

10 

20 

23981300 Head and neck HOSC1 
n.s. 

GSE45153 
n.s. 
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18037961 GBM 

GS1 
19 

GSE8049 

28 

GS2 
10 

13 

GS3 12 

GS3 23 

GS4 
11 

12 

GS5 
9 

12 

GS6 10 

GS7 
11 

25 

GS8 
8 

18 

GS9 
6 

13 

21294158 GBM 

GS10 12 

GSE23806 GS11 11 

GS12 11 

21668985 Kidney 

50PC n.s. 

n.a. 

59RG n.s. 

60CC n.s. 

61FG n.s. 

66SML n.s. 

70LS n.s. 

73PG n.s. 

80MLa n.s. 

81BPG n.s. 

 

Supplementary Table 4: Summary of newly-derived cell lines 

A list of the newly-derived cell lines included in this study, together with their accession 
numbers, tumor types, passage numbers, and the Pubmed ID number of the original study that 
generated them. 
 

  

26 
 



Gene expression comparison 
Recurrent arm-level CNA enrichment_stat p_val (one-sided) 

chr1q_gain 36.84934863 9.01E-47 
chr4p_loss -11.03874633 8.60E-51 
chr4q_loss -20.05261324 5.08E-36 
chr7p_gain 18.678073 4.00E-65 
chr7q_gain 33.94634954 3.54E-59 
chr8q_gain 23.68555794 1.07E-58 
chr10p_loss -8.341567128 6.29E-49 
chr10q_loss -22.16795676 1.86E-50 
chr20q_gain 21.82304448 3.07E-71 
chr22q_gain 7.672067713 1.40E-18 

   
Genetic dependency (RNAi) comparison 

Recurrent arm-level CNA enrichment_stat p_val (one-sided) 
chr1q_gain 2.658194034 3.25E-05 
chr4p_loss -1.045604187 2.05E-05 
chr4q_loss -1.759585902 0.002660013 
chr7p_gain 1.759644212 2.62E-05 
chr7q_gain 4.365535663 3.02E-08 
chr8q_gain 2.767599408 1.08E-06 
chr10p_loss -1.021092902 0.000237148 
chr10q_loss -1.588799628 0.002168448 
chr20q_gain 2.552646879 3.74E-06 
chr22q_gain 1.789044702 0.000281875 

Supplementary Table 5: Comparisons of gene expression and genetic dependencies in cell 
lines with arm-level CNAs and cell lines without them 

A lineage-controlled comparison of cell lines with and without recurrent arm-level CNAs, across 
a panel of 936 cell lines (for gene expression) or 446 cell lines (for gene dependencies). In the 
gene expression comparison, genes that are differentially expressed between cell lines with the 
CNA and cell lines without it were subjected to gene set enrichment analysis (GSEA), and found 
to be significantly enriched for genes that reside within that chromosome arm. In the genetic 
dependency comparison, genes that are differentially depleted in a pooled genome-wide RNAi 
screen between cell lines with the CNA and cell lines without it were subjected to GSEA, and 
found to be significantly enriched for genes that reside within that chromosome arm. Presented 
are the effect magnitudes (enrichment statistics) and the p-values of the enrichments. Note that 
the enrichment statistics are positive in the expression comparison and negative in the 
dependency comparison. Therefore, a gain of an arm results (on average) in increased expression 
and reduced dependency on the genes within the arm, and a loss of an arm results (on average) in 
decreased expression and increased dependency on the genes within the arm. 
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cpd_name broad_cpd_id Associated 
CNA target logF

C 
p_le

ft 
p_rig

ht 
q_le

ft 
q_rig

ht 

VX-680 BRD-
K59369769 1q_amp AURKA;AURKB;AURKC -

3.24 0.00 1.00 0.05 0.95 

BRD-K01737880 BRD-
K01737880 1q_amp na -

2.94 0.00 1.00 0.05 0.95 

navitoclax:pluripotin (1:1 mol/mol) BRD-
M07227555 1q_amp BCL2;BCL2L1;BCL2L2;MAPK1;RASAL1 0.71 1.00 0.00 0.98 0.02 

decitabine:navitoclax (2:1 mol/mol) BRD-
M43399311 1q_amp DNMT1;BCL2;BCL2L1;BCL2L2 0.69 1.00 0.00 0.78 0.22 

brefeldin A BRD-
A31107743 1q_amp ARF1 0.67 1.00 0.00 0.82 0.18 

navitoclax BRD-
K82746043 1q_amp BCL2;BCL2L1;BCL2L2 0.61 1.00 0.00 0.76 0.24 

UNC0638:navitoclax (1:1 mol/mol) BRD-
M97749165 1q_amp EHMT1;EHMT2;BCL2;BCL2L1;BCL2L2 0.58 1.00 0.00 0.76 0.24 

BRD-A02303741:navitoclax (2:1 
mol/mol) 

BRD-
M76874421 1q_amp DOT1L;BCL2;BCL2L1;BCL2L2 0.56 1.00 0.00 0.78 0.22 

pluripotin BRD-
K98538768 1q_amp MAPK1;RASAL1 0.54 1.00 0.00 0.78 0.22 

navitoclax:piperlongumine (1:1 
mol/mol) 

BRD-
M43334969 1q_amp BCL2;BCL2L1;BCL2L2 0.53 0.99 0.01 0.76 0.24 

bardoxolone methyl BRD-
K59437938 1q_amp na -

0.38 0.01 0.99 0.24 0.76 

bendamustine BRD-
K17068645 1q_amp na -

0.28 0.00 1.00 0.24 0.76 

clofarabine BRD-
K34022604 4q_del na 0.97 1.00 0.00 0.99 0.01 

nutlin-3 BRD-
A12230535 4q_del MDM2 0.43 1.00 0.00 0.93 0.07 

carboplatin:etoposide (40:17 
mol/mol) 

BRD-
M63575423 4q_del TOP2A 0.40 1.00 0.00 0.83 0.17 

TGX-221 BRD-
A41692738 4q_del PIK3CB 0.29 1.00 0.00 0.83 0.17 

brefeldin A BRD-
A31107743 10q_del ARF1 -

0.83 0.00 1.00 0.06 0.94 

BRD-A05715709 BRD-
A05715709 10q_del IDH1 0.41 1.00 0.00 0.91 0.09 

BRD-K01737880 BRD-
K01737880 20q_amp na 0.97 0.95 0.05 0.76 0.24 

SB-743921 BRD-
K62358710 20q_amp KIF11 0.84 1.00 0.00 0.96 0.04 

RITA BRD-
K00317371 20q_amp MDM2;TP53 0.77 1.00 0.00 0.99 0.01 

omacetaxine mepesuccinate BRD-
K76674262 20q_amp na 0.74 1.00 0.00 0.97 0.03 

teniposide BRD-
A35588707 20q_amp TOP2A;TOP2B 0.74 1.00 0.00 0.97 0.03 

barasertib BRD-
K63923597 20q_amp AURKB 0.71 1.00 0.00 0.97 0.03 

mitomycin BRD-
K59670716 20q_amp na 0.71 1.00 0.00 0.99 0.01 

rigosertib BRD-
K55187425 20q_amp PIK3CA;PIK3CB;PLK1 0.63 1.00 0.00 0.96 0.04 

tanespimycin:gemcitabine (1:1 
mol/mol) 

BRD-
M41695494 20q_amp HSP90AA1;CMPK1;RRM1;TYMS 0.62 1.00 0.00 0.96 0.04 

doxorubicin BRD-
K92093830 20q_amp TOP2A 0.61 1.00 0.00 0.99 0.01 

vincristine BRD-
K82109576 20q_amp na 0.61 0.99 0.01 0.93 0.07 

paclitaxel BRD-
A28746609 20q_amp na 0.58 0.98 0.02 0.86 0.14 

indisulam BRD-
K17610631 20q_amp CA9 0.57 1.00 0.00 1.00 0.00 

docetaxel:tanespimycin (2:1 
mol/mol) 

BRD-
M60574774 20q_amp HSP90AA1 0.57 0.99 0.01 0.91 0.09 

GSK461364 BRD-
K92428232 20q_amp PLK1 0.57 0.99 0.01 0.91 0.09 

tanespimycin BRD-
K81473043 20q_amp HSP90AA1 0.55 1.00 0.00 0.96 0.04 

nutlin-3 BRD-
A12230535 20q_amp MDM2 0.54 1.00 0.00 1.00 0.00 

28 
 



navitoclax:gemcitabine (1:1 
mol/mol) 

BRD-
M68535767 20q_amp BCL2;BCL2L1;BCL2L2;CMPK1;RRM1;TYMS 0.54 0.99 0.01 0.92 0.08 

parbendazole BRD-
K02407574 20q_amp na 0.54 1.00 0.00 0.95 0.05 

PF-3758309 BRD-
K37764012 20q_amp PAK4 0.54 0.97 0.03 0.81 0.19 

clofarabine BRD-
K34022604 20q_amp na 0.51 0.99 0.01 0.91 0.09 

KX2-391 BRD-
K29968218 20q_amp SRC 0.48 0.99 0.01 0.88 0.12 

bleomycin A2 BRD-
A42083487 20q_amp na 0.48 1.00 0.00 0.93 0.07 

Ki8751 BRD-
K47150025 20q_amp KDR;KIT;PDGFRA 0.48 1.00 0.00 0.96 0.04 

BI-2536 BRD-
K64890080 20q_amp PLK1 0.46 0.98 0.02 0.85 0.15 

triazolothiadiazine BRD-
K05402890 20q_amp PDE4A;PDE4B;PDE4D 0.45 0.99 0.01 0.93 0.07 

doxorubicin:navitoclax (2:1 
mol/mol) 

BRD-
M01915239 20q_amp TOP2A;BCL2;BCL2L1;BCL2L2 0.45 1.00 0.00 0.96 0.04 

tanespimycin:bortezomib (250:1 
mol/mol) 

BRD-
M09675615 20q_amp HSP90AA1;PSMB1;PSMB2;PSMB5;PSMD1

;PSMD2 0.45 1.00 0.00 0.95 0.05 

etoposide BRD-
K37798499 20q_amp TOP2A 0.44 1.00 0.00 0.97 0.03 

nakiterpiosin BRD-
K38264551 20q_amp na 0.44 1.00 0.00 0.97 0.03 

BRD-K70511574 BRD-
K62825658 20q_amp PLK1 0.44 1.00 0.00 0.97 0.03 

carboplatin:etoposide (40:17 
mol/mol) 

BRD-
M63575423 20q_amp TOP2A 0.43 1.00 0.00 0.98 0.02 

PHA-793887 BRD-
K64800655 20q_amp CDK1;CDK2;CDK4;CDK5;CDK7;CDK9 0.42 1.00 0.00 0.95 0.05 

ML210 BRD-
K01877528 20q_amp na -

0.42 0.05 0.95 0.24 0.76 

birinapant BRD-
K18589165 20q_amp DIABLO;XIAP 0.41 0.98 0.02 0.85 0.15 

CD-437 BRD-
K28907958 20q_amp RARG 0.41 1.00 0.00 0.98 0.02 

cytarabine hydrochloride BRD-
K33106058 20q_amp na 0.41 0.98 0.02 0.86 0.14 

sirolimus:bortezomib (250:1 
mol/mol) 

BRD-
M02488208 20q_amp MTOR;PSMB1;PSMB2;PSMB5;PSMD1;PS

MD2 0.40 0.98 0.02 0.86 0.14 

FQI-2 BRD-
K35498412 20q_amp na 0.40 1.00 0.00 0.97 0.03 

narciclasine BRD-
K06792661 20q_amp RHOA 0.40 0.99 0.01 0.91 0.09 

BRD-K44224150 BRD-
K44224150 20q_amp na 0.40 0.98 0.02 0.85 0.15 

BRD9876 BRD-
K89329876 20q_amp na 0.39 0.99 0.01 0.93 0.07 

alisertib:navitoclax (2:1 mol/mol) BRD-
M07476339 20q_amp AURKA;AURKB;BCL2;BCL2L1;BCL2L2 0.38 0.97 0.03 0.80 0.20 

SNX-2112 BRD-
K71281111 20q_amp HSP90AA1;HSP90B1 0.36 0.97 0.03 0.81 0.19 

selumetinib:tretinoin (2:1 mol/mol) BRD-
M45185124 20q_amp MAP2K1;MAP2K2;RARA;RARB;RARG 0.35 0.95 0.05 0.76 0.24 

ceranib-2 BRD-
K31514534 20q_amp ACER1;ACER2;ACER3;ASAH1;ASAH2;ASAH

2B 0.34 1.00 0.00 0.94 0.06 

ciclosporin BRD-
A38030642 20q_amp PPID 0.34 1.00 0.00 0.95 0.05 

ELCPK BRD-
K44847641 20q_amp na 0.33 0.99 0.01 0.90 0.10 

MK-1775 BRD-
K54256913 20q_amp WEE1 0.32 0.99 0.01 0.89 0.11 

topotecan BRD-
K55696337 20q_amp TOP1 0.32 0.96 0.04 0.79 0.21 

oxaliplatin BRD-
M14820059 20q_amp na 0.32 1.00 0.00 0.96 0.04 

quizartinib BRD-
K93918653 20q_amp FLT3 0.32 0.99 0.01 0.89 0.11 

cucurbitacin I BRD-
A28105619 20q_amp na 0.31 0.96 0.04 0.77 0.23 
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AT-406 BRD-
K02834582 20q_amp XIAP 0.31 0.98 0.02 0.85 0.15 

marinopyrrole A BRD-
K57261999 20q_amp MCL1 0.31 1.00 0.00 0.93 0.07 

TPCA-1 BRD-
K51575138 20q_amp IKBKB 0.30 1.00 0.00 0.96 0.04 

AM-580 BRD-
K06854232 20q_amp RARA 0.30 0.97 0.03 0.81 0.19 

BRD-K34222889 BRD-
K34222889 20q_amp na 0.30 1.00 0.00 0.95 0.05 

avrainvillamide BRD-
K10466330 20q_amp NPM1 0.30 1.00 0.00 0.93 0.07 

chlorambucil BRD-
K29458283 20q_amp na 0.29 0.99 0.01 0.93 0.07 

BYL-719 BRD-
K54997624 20q_amp PIK3CA 0.29 0.96 0.04 0.77 0.23 

cimetidine BRD-
K34157611 20q_amp HRH2 0.29 0.99 0.01 0.88 0.12 

ML312 BRD-
K70809902 20q_amp SCARB1 0.28 0.95 0.05 0.76 0.24 

FSC231 BRD-
K24784241 20q_amp PICK1 0.28 0.99 0.01 0.89 0.11 

AZD1480 BRD-
K65928735 20q_amp JAK1;JAK2 0.28 0.97 0.03 0.80 0.20 

ML311 BRD-
A40802033 20q_amp MCL1 0.28 1.00 0.00 0.93 0.07 

BRD-K66453893 BRD-
K66453893 20q_amp na 0.28 1.00 0.00 0.97 0.03 

3-Cl-AHPC BRD-
A09890259 20q_amp NR0B2 0.28 0.98 0.02 0.86 0.14 

HBX-41108 BRD-
K50501969 20q_amp USP7 0.27 0.98 0.02 0.86 0.14 

YK 4-279 BRD-
A62182663 20q_amp DHX9;ERG;ETV1 0.27 1.00 0.00 0.96 0.04 

SB-225002 BRD-
K61323504 20q_amp CXCR2 0.27 1.00 0.00 0.94 0.06 

CHM-1 BRD-
K94145482 20q_amp na 0.26 0.99 0.01 0.90 0.10 

FQI-1 BRD-
A91658086 20q_amp na 0.26 0.97 0.03 0.81 0.19 

KU-0063794 BRD-
K67566344 20q_amp MTOR 0.26 0.97 0.03 0.81 0.19 

foretinib BRD-
K03449891 20q_amp KDR;MET 0.26 0.95 0.05 0.76 0.24 

BRD-K30019337 BRD-
K30019337 20q_amp na 0.26 0.96 0.04 0.79 0.21 

LY-2183240 BRD-
K37865504 20q_amp FAAH 0.25 1.00 0.00 0.96 0.04 

JQ-1:carboplatin (1:1 mol/mol) BRD-
M11510342 20q_amp BRDT 0.25 0.96 0.04 0.79 0.21 

XL765 BRD-
K75308783 20q_amp MTOR;PIK3CA;PIK3CB;PIK3CD;PIK3CG;PRK

DC 0.25 1.00 0.00 0.97 0.03 

crizotinib BRD-
K78431006 20q_amp ALK;MET 0.25 0.99 0.01 0.92 0.08 

lenvatinib BRD-
K39974922 20q_amp FLT1;FLT3;KDR;KIT;PDGFRA;PDGFRB 0.25 0.96 0.04 0.80 0.20 

methylstat BRD-
K52560704 20q_amp KDM3A;KDM4A;KDM4B;KDM4C;KDM4D 0.25 0.98 0.02 0.87 0.13 

serdemetan BRD-
K60219430 20q_amp MDM2 0.24 0.99 0.01 0.91 0.09 

AZ-3146 BRD-
K59146805 20q_amp TTK 0.24 0.98 0.02 0.85 0.15 

R428 BRD-
K14870255 20q_amp AXL 0.23 0.97 0.03 0.81 0.19 

gossypol BRD-
K19295594 20q_amp BCL2;BCL2L1;LDHA;LDHB;LDHC 0.22 1.00 0.00 0.94 0.06 

phloretin BRD-
K15563106 20q_amp SLC5A1 0.22 1.00 0.00 0.96 0.04 

ML320 BRD-
K81491172 20q_amp GSK3B -

0.22 0.05 0.95 0.24 0.76 

palmostatin B BRD-
K42137908 20q_amp LYPLA1 0.22 0.97 0.03 0.80 0.20 
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pitstop2 BRD-
K90570971 20q_amp CLTA;CLTB;CLTC;CLTCL1 0.21 0.97 0.03 0.81 0.19 

NSC632839 BRD-
K37392901 20q_amp USP13;USP5 0.21 0.99 0.01 0.91 0.09 

PLX-4720 BRD-
K16478699 20q_amp BRAF -

0.20 0.03 0.97 0.18 0.82 

PL-DI BRD-
K83336168 20q_amp na 0.20 0.98 0.02 0.85 0.15 

BMS-270394 BRD-
K04905989 20q_amp RARG 0.20 0.99 0.01 0.92 0.08 

KHS101 BRD-
K78978711 20q_amp TACC3 0.20 0.99 0.01 0.91 0.09 

PIK-93 BRD-
K29395450 20q_amp PIK3CG 0.19 0.97 0.03 0.80 0.20 

ML334 diastereomer BRD-
K93367411 20q_amp KEAP1;NFE2L2 -

0.19 0.03 0.97 0.20 0.80 

prochlorperazine BRD-
K19352500 20q_amp DRD2 0.18 1.00 0.00 0.94 0.06 

isoevodiamine BRD-
A68631409 20q_amp na 0.18 0.96 0.04 0.79 0.21 

RO4929097 BRD-
K22024824 20q_amp APH1A;NCSTN;PSEN1;PSENEN 0.17 0.95 0.05 0.76 0.24 

Compound 1541A BRD-
K30064966 20q_amp CASP3;CASP6;CASP7 0.17 0.98 0.02 0.85 0.15 

BRD-K50799972 BRD-
K50799972 20q_amp na 0.16 0.97 0.03 0.80 0.20 

PYR-41 BRD-
K60750172 20q_amp UBA1 0.16 0.99 0.01 0.92 0.08 

IU1 BRD-
K45841694 20q_amp USP14 0.16 0.99 0.01 0.89 0.11 

GW-405833 BRD-
K10705233 20q_amp CNR2 0.15 0.99 0.01 0.89 0.11 

NVP-BSK805 BRD-
K02017404 20q_amp JAK2 0.14 0.95 0.05 0.77 0.23 

piperlongumine:MST-312 (1:1 
mol/mol) 

BRD-
M37545453 20q_amp TERT 0.14 0.96 0.04 0.79 0.21 

JW-480 BRD-
K99655327 20q_amp NCEH1 0.14 0.98 0.02 0.86 0.14 

PDMP BRD-
K05653692 20q_amp UGCG 0.12 0.98 0.02 0.85 0.15 

StemRegenin 1 BRD-
K36739687 20q_amp AHR 0.12 0.96 0.04 0.79 0.21 

UNC0321 BRD-
K74236984 20q_amp EHMT2 0.11 0.97 0.03 0.81 0.19 

ML029 BRD-
K59962020 20q_amp na 0.09 0.97 0.03 0.80 0.20 

 

Supplementary Table 6: Comparison of drug response in cell lines with arm-level CNAs 
and cell lines without them 

A lineage-controlled comparison of cell lines with and without recurrent arm-level CNAs, across 
a panel of 804 cell lines and 545 compounds. Compounds that are differentially active/inactive 
towards cell lines with CNAs vs. cell lines without them are listed (one-tailed p<0.05; one-tailed 
q<0.25). Presented are the compound names, the associated CNAs, the known compound targets, 
the average response differences (log fold-change), and the statistical significance of these 
differences. 
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Legends to Supplementary Datasets 

Supplementary Dataset 1: CNA profiles of PDX samples 

PDX CNA profiles generated in this study from gene expression data. The first tab provides a 
full description of the samples. The second tab provides a segmental aberration matrix, in a 
format readily visualized by the Integrative Genomics Viewer (IGV; 
https://www.broadinstitute.org/igv/). 

Supplementary Dataset 2: Model-acquired CNAs in PDX samples 

PDX model-acquired CNAs identified in this study from gene expression data. The first tab 
provides a full description of the samples. The second tab provides a segmental aberration 
matrix, in a format readily visualized by the Integrative Genomics Viewer (IGV; 
https://www.broadinstitute.org/igv/). 

Supplementary Dataset 3: CNA profiles of CLDX samples 

CLDX CNA profiles generated in this study from gene expression data. The first tab provides a 
full description of the samples. The second tab provides a segmental aberration matrix, in a 
format readily visualized by the Integrative Genomics Viewer (IGV; 
https://www.broadinstitute.org/igv/). 

Supplementary Dataset 4: Model-acquired CNAs in CLDX samples 
CLDX model-acquired CNAs identified in this study from gene expression data. The first tab 
provides a full description of the samples. The second tab provides a segmental aberration 
matrix, in a format readily visualized by the Integrative Genomics Viewer (IGV; 
https://www.broadinstitute.org/igv/).
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Supplementary Note 

1. Supplementary Introduction: Previous evidence for genomic instability of PDXs 

Hints that PDXs may be more genomically unstable than assumed have begun to emerge, with a 
recent study showing that the clonal composition of breast cancer PDXs evolves during serial 
passaging in vivo1. Another study recently extended this analysis to additional breast cancer 
PDXs, showing that while there was overall similarity of PDX models to their tumors of origin, 
the clonal composition of the tumors could change dramatically throughout PDX derivation and 
propagation6. Importantly, both studies presented a deep characterization of PDXs from a total of 
83 models of a single tissue type (breast), with no systematic assessment of the rate, prevalence 
or recurrence patterns of genomic changes during in vivo passaging of PDXs. Additionally, 
whether the observed clonal dynamics have any functional importance remains an open question.  

 

2. Supplementary Introduction: Somatic copy number alterations (CNAs) in cancer 

Somatic copy number alterations (CNAs) are detectable in the vast majority of cancers7,8, and 
therefore represent a powerful strategy to track the clonal evolution of tumors. Moreover, CNAs 
are often drivers of tumorigenesis and have been associated with drug response and prognosis in 
human patients9-14. Despite the importance of CNAs in cancer, they are rarely characterized in 
PDX models, and comprehensive analysis of CNA dynamics during in vivo PDX passaging has 
yet to be reported6,15-17. 

 

3. Supplementary Results: Comparison of DNA- and RNA-derived copy number profiles 

To validate the accuracy of inferred CNAs, we analyzed PDXs from which both gene expression 
and SNP array data (a more direct measurement of DNA copy number) were available. Because 
in most cases DNA and RNA were obtained from different PDX passages, we focused on the 59 
PDX models that had stable CNAs over time. The DNA- and RNA-derived profiles were highly 
concordant both when comparing the proportion of the genome affected by CNAs (Pearson’s r = 
0.86) and when comparing the concordance of affected genes (median concordance = 0.82) 
(Supplementary Fig. 1). Moreover, for 15 breast and prostate PDXs, we could directly compare 
the changes that occurred during their engraftment and/or passaging (hereinafter called ‘model-
acquired CNAs’), using DNA and RNA data from the same samples. These DNA- and RNA-
derived profiles were highly concordant (Pearson’s r = 0.95; median concordance = 0.91). These 
results thus confirmed that gene expression accurately identifies model-acquired CNAs 
(Supplementary Table 2). 
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4. Supplementary Results: Changes in the allelic fraction of point mutations throughout 
PDX passaging 

To assess whether model-acquired clonal evolution affected genes known to play important roles 
in cancer, we analyzed the whole-genome sequencing data of 13 matched breast cancer models1. 
We first focused on changes in the allelic fraction (AF) of mutations when comparing primary 
tumors to their PDXs. We found a median of 64 mutations with a substantial AF shift 
(|ΔAF|>0.2) (Supplementary Fig. 4a). Importantly, a median of 7 of these mutations were non-
synonymous missense or nonsense coding mutations, many involving oncogenes and tumor 
suppressor genes (Supplementary Fig. 4a-b). For example, the AF of a TP53BP1 missense 
mutation increased from 0.188 to 0.562, and the AF of a PIK3CA missense mutation increased 
from 0.339 to 0.740 during the PDX evolution of tumors SA531 and SA536, respectively 
(Supplementary Fig. 4b). Similarly, substantial coding mutation AF shifts were observed when 
comparing early passage (P1 or P2) to late passage (P5) PDXs (Supplementary Fig. 4c-d). For 
example, the Rho-associated kinase ROCK1 has been previously shown to promote tumor cell 
invasion and metastasis18,19. A missense ROCK1 mutation was not detected at all in a PDX 
model at passage 2, but was detected at a high AF (AF=0.46) at passage 5 of the same model 
(Supplementary Fig. 4d). These results indicate that clonal dynamics quickly alter the 
prevalence of functional mutations in cancer genes, with potentially important functional 
consequences. 

 

5. Supplementary Results: Deviation of melanoma from the observed correlation between 
PDX instability and primary tumor heterogeneity 

Melanoma is the only tumor type that deviated from the tight correlation between intra-tumor 
heterogeneity and model-acquired genomic instability (Supplementary Fig. 7a). A potential 
explanation for this discrepancy is that the extent of genetic heterogeneity in melanoma may be 
overestimated compared to other cancer types due to the unusually high mutation load of this 
tumor. 

 

6. Supplementary Results: Association between arm-level CNAs and cell line gene 
expression, genetic dependencies and drug response 

To further assess the potential functional relevance of model-acquired chromosomal changes we 
turned to the Cancer Cell Line Encyclopedia (CCLE) project and its associated datasets of 
genomic features, genetic dependencies and drug response20-22. Interestingly, arm-level CNAs 
significantly affected the genetic dependencies for genes that reside within them: cell lines with 
an arm-level gain were less sensitive on average to RNAi-mediated depletion of genes within the 
gained arm, whereas cell lines with an arm-level loss were hyper-sensitive to such perturbations 
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(Supplementary Table 5). Next, we queried the drug response data for the CCLE cell lines and 
asked whether there were differential drug responses associated with the twelve hallmark arm-
level CNAs that tend to disappear in PDXs. Out of 545 drugs tested, each arm-level CNA had on 
average 13 (range, 0-112) differentially active drugs associated with it. That is, the responses to 
these drugs were significantly associated with the copy number status of that arm (p<0.05, 
q<0.25; Supplementary Table 6). For example, the gene ARF1 is located on chromosome 1q, 
and is the most significantly over-expressed gene in cell lines with a 1q gain (p=9.8E-45) 
(Supplementary Fig. 11b); this rendered cell lines with a gain of this chromosome arm more 
resistant to the ARF1 inhibitor brefeldin A (p=0.01), and this strong association remained 
significant when breast cancer cell lines were considered alone (p=0.026) (Supplementary Fig. 
11c-d). 

 

7. Supplementary Discussion: Comparison of our findings to previous studies 

Our findings may be surprising in light of previous works that emphasized the relative stability 
of PDXs throughout their propagation. However, most prior studies either focused on 
comparisons at the cohort level5,15,16; inferred stability from the increased similarity between 
PDXs derived from the same patient compared to PDXs from different patients5,6,17; or used only 
a handful of markers to assess stability23 (reviewed in 24). Our large-scale, genome-wide, 
pairwise comparison of early vs. late PDXs exposed previously-underappreciated CNA 
dynamics, similar to the SNV dynamics recently seen in breast cancer PDXs1. 

 

8. Supplementary Discussion: The relevance of our CNA-based analysis to other types of 
genetic alterations 

While we focused our analysis on CNAs, we confirmed the accuracy of CNA-based 
phylogenetic trees (Supplementary Fig. 13) using matched point mutation and CNA data from 
primary tumors and their metastases2,3. It seems very likely that PDX models (as all other 
models) also acquire other types of aberrations, including point mutations, small insertions and 
deletions, translocations, and epigenetic modifications. Large-scale datasets do not exist at 
present to experimentally confirm these other forms of selection, but an analysis of a small 
cohort of breast cancer PDXs7 confirmed that the allelic fraction of cancer genes can drastically 
change within the course of very few passages. 

 

9. Supplementary Discussion: Combination of pre-existing and de novo occurring CNAs in 
PDXs 
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Our study strongly suggests that clonal dynamics play a major role in model-acquired CNAs. In 
particular, the acquisition of identical events in “sibling” PDXs, and the detection of LOH 
“reversion” throughout PDX passaging, strongly point towards expansion of pre-existing 
subclones. However, our analysis suggests that de novo events also occur. First, model-acquired 
CNAs are not limited to the early passages and keep emerging, albeit at a lower rate, even at high 
passages (Supplementary Fig. 14a and Supplementary Data 2). Second, although “sibling” 
PDXs exhibit high similarity of model-acquired CNAs, most of them also acquire unique events 
(Supplementary Figure 14b). Third, we found that PDXs with a mutant or deleted p53 present 
a significantly higher rate of CNA acquisition throughout passaging, compared to their WT 
counterparts (Supplementary Figure 14c). All three of these findings, however, could also be 
potentially explained by extensive pre-existing heterogeneity. 

 

10. Supplementary Discussion: Distinct selection pressures in PDXs and in patients 

Unique, context-dependent selection pressures shape tumor evolution, giving rise to recurrent 
cancer type-specific CNAs7. While genetic drift or “founder effects” may underlie some of the 
changes observed in PDXs, we provide evidence that selection plays an important role. The 
increase in proliferation signatures and decrease in cell death signature throughout passaging; the 
independent emergence of the same events in “sibling” PDX models; and the tendency of 
recurrent arm-level CNAs to disappear – all support the notion of selection. In line with selection 
for increased fitness, a recent work demonstrated increased tumor growth rate with PDX 
passaging25. At least three important parameters may account for the different selection pressures 
between patients and PDXs: the species (human vs. mouse), the anatomical and physiological 
context (a specific organ vs. subcutaneous growth), and the interaction with the immune system 
(immunocompetent patients vs. immunodeficient animals). We note that relaxation of selection, 
followed by genetic drift, may also play a role in the observed dynamics. In the future, 
comparisons of orthotopic vs. subcutaneous PDXs, and of mouse-derived xenografts in 
“humanized” immunocompetent vs. immunodeficient recipients, may help delineate the 
contribution of each of these parameters to shaping tumor evolutionary pressures. 

 

11. Supplementary Discussion: Implications of PDX genomic instability for their use in 
drug testing 

PDX collections are generally used for drug testing in two different ways: to predict, at the 
cohort level, the relationship between genotype and dependency; and to predict, at the individual 
level, a therapeutic response24. Our findings have several practical implications for both of these 
uses. The rapid genomic divergence that we identify on the individual tumor level suggests that 
PDXs may often not be faithful representations of their parental tumors. If individual PDXs are 
to be utilized as avatar models for personalized medicine, it will be necessary to ensure that the 
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model retains the relevant genomic features of the primary tumor from which it was derived, 
before PDX drug response is used to guide clinical treatment decisions. It will also be advisable 
to use such avatar models at the earliest passage possible and avoid their prolonged propagation, 
especially in the context of a 1x1x1 (one animal per model per treatment) experimental design6. 
For population level analyses, our findings highlight the need to document the molecular 
properties of the models at the same passage as that used for drug testing, rather than relying on 
an early passage characterization. They also emphasize the importance of large cohorts of PDX 
models, similar to the large cell line collections that were recently established20,26, in order to 
average out random effects when performing drug screens and biomarker studies. Finally, the 
gradual loss of recurrent primary CNAs suggests that prolonged propagation could lead to under-
representation of some hallmark cancer events in late passage PDX cohorts. 

 

12. Supplementary Discussion: Possible explanations for the difference in CNA acquisition 
rate between PDXs and CLDXs 

The comparison of PDXs to CLDXs showed a lower CNA acquisition rate in CLDXs than in 
PDXs. There are three potential explanations for this difference: a lower degree of heterogeneity 
in established cancer cell lines, a reduced bottleneck upon cell line transplantation, or a reduced 
rate of ongoing instability. As cell lines are generally more clonal than primary tumors27, and as 
we could attribute much of the CNA dynamics observed in PDXs to expansion of pre-existing 
clones, we speculate that the reduced heterogeneity of established cell lines explains most of the 
observed difference, although this question remains to be addressed experimentally. In any case, 
this difference suggests that although established cell lines don’t represent primary tumors as 
faithfully as newly-derived cell lines and PDXs, their genomic landscapes are more stable. 

 

13. Supplementary Discussion: Implications beyond cancer model systems 

Our study may have implications beyond cancer model systems. Recent single cell RNAseq 
studies used hallmark arm-level CNAs as genetic markers to distinguish between tumor and non-
tumor cells28,29. The finding that some of these events, such as trisomy 7 and monosomy 10 in 
GBM, can disappear in PDXs, suggests that minor subclones without these aberrations probably 
exist in primary tumors; therefore, cells should not be classified as non-tumor cells solely based 
on the absence of a single hallmark event. 
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