

Supplementary Figure 1 | EphB1 expression in axotomized neurons in the facial motor nucleus. (a) EphB1 and ephrin-B1 immunostaining in the axotomized facial motor nucleus (FMN) without permeabilization of sections and (b) co-localizing ephrin-B1/GFAP IR following permeabilization with 0.1% Triton. (c) Graph showing average number of EphB1 positive neurons per section in both the IL and CL FMN post facial nerve axotomy (n = 3, 3, 3, 4 per timepoint, respectively; **p≤0.01, ***p≤0.001, F_{time} = 100.8 and F_{axotomy} = 7.7; two-way ANOVA with Bonferroni comparison between IL and CL values). (d) Bar graph showing mean percentage of EphB1 positive neurons in the IL FMN over total NeuN labeled cells (n = 3 mice; *p ≤0.05, F = 6.25; one-way ANOVA with Tukey post-hoc test; see also Fig. 1). Data expressed as ± SEM. Scale bar: 30 µm.

Supplementary Figure 2 | Optimization of EphB1 treatments for assessing STAT3 phosphorylation. (a) STAT3 phosphorylation response detected by western blotting to serum starvation at 1, 6, 24, 48 and 96 hrs in comparison with total STAT3 and β-actin IR and to the effect of serum. (b) Western blot shows STAT3 phosphorylation at 0.5h, 1h or 5 hours of treatment with either IL-6, or clustered EphB1 (5 µg ml⁻¹). (c,d) Graphs demonstrate relative band densities when compared to the 1-hour value for **a** and **c** and 0.5-hour value for **b** and **d** after normalization to the β-actin band for each time point. N = duplicate cultures of 6 mice; *p = 0.044, *p = 0.029, *p = 0.015, *p = 0.033, F = 4.6 for **c** and ***p ≤ 0.001, F = 120.8 for **d**; one-way ANOVA with Dunnett's comparison. (e) Blots demonstrate STAT3 phosphorylation following a stimulation of 5 hours with clustered EphB1 at the following concentrations: 0.001, 0.01, 0.1, 1, 5, 10 µg ml⁻¹. Serum free medium (Sato) was used as negative control. (f) Bar graphs show relative band densities of pSTAT3 and total STAT3 to the control samples (Sato) after normalized to β-actin density. N = duplicate cultures from 6 mice; **p ≤ 0.001, *p ≤ 0.05, F = 232.1; one-way ANOVA with Dunnett's post-hoc test). (g) A dose-response curve was obtained by measuring levels of STAT3 phosphorylation by western blots. Data plotted is log of EphB1 concentration (µg ml⁻¹) against percentage of elicited response (EC₅₀ = 1.359). Data expressed as mean of fold increase ± SEM. See also Suppl. Fig. 10 for western blots.

Supplementary Figure 3 | EphB1 induces STAT3 activation via ephrin-B1, and triggers STAT3-dependent reactive morphological transformation in astrocytes. (a) Immunofluorescence images of nSTAT3 and ALDH1L1/DAPI IR in corresponding spinal astrocytes (ACs) treated with non-clustered or clustered EphB1-Fc with or without ephrin-B1 siRNA or non-targeting RNA (also see Fig. 3). (b) Representative images showing EphB1 and IL-6-induced rearrangements of the actin cytoskeleton in cortical astrocytes. Phalloidin labelled F-actin is mostly organised in parallel fibres (*full arrows*) in Sato's medium. astrocytes stimulated with EphB1 or IL-6 display organized thick cortical actin rings with radial thinner fibres (*arrowheads*). (c) Bar graph shows the percentage of astrocytes bearing cortical thick actin bundles. N = 5, 5, 6 from 3 cultures of 6 mice; ***p \leq 0.001, F = 31.89; one-way ANOVA with Bonferroni post-hoc test. (d) Western blot on whole cell lysates analysing the effects of EphB1 treatment on the expression levels of total STAT3, pSTAT3 and GFAP in both WT and STAT3-CKO astrocytes. (e) Bar graph show relative band density of GFAP to control bands (Sato) as fold change after normalization to β -actin band densities. N = 3 independent cultures; ***p \leq 0.0001, F = 68.9; one-way ANOVA with Dunnett's comparisons). Data are expressed as mean \pm SEM. Scale bar: 20 µm.

a Specific EphB1 induced genes

Supplementary Figure 4 | EphB1 and IL-6-induced mouse astrocytic transcriptome-wide signatures. (a) Heatmap showing specifically induced genes by EphB1 when compared to IL-6. Other heatmaps show comparisons between EphB1 or IL-6 with regard to induced genes related to (b) Stat3 regulators, (c) Stat3 targets, (d) axon growth inhibitory molecules and (e) axon growth permissive molecules (defined by published lists³). Gene expression data represent SD from mean of variance-stabilized values across rows.

Supplementary Figure 5 | Additional characterization of EphB1 and IL-6 induced mouse astrocytic phenotypes. (a) Immunofluorescence demonstrating Trim30 IR in cultured ALDH1L1/DAPI positive astrocytes (ACs) exposed to IL-6 or EphB1 treatment or untreated. (b) Western blots for Trim30 and β -actin of the same astrocyte samples. (c) Dot plot graph represent WB band density measurements normalized to β -actin (n = 3 cultures of 6 mice; p = 0.999 and p = 0.944 for IL6 and EphB1 respectively, F = 0.063; one-way ANOVA with Bonferroni post-hoc test). Data expressed as ± SEM. Scale bar: 20 µm. See also Suppl. Fig. 10 for western blot.

Supplementary Figure 6 | Characterization of hiPSC-astrocytes and their dose dependent response to EphB1. (a) Representative immunofluorescence images showing expression of astrocyte (AC) markers in hiPSC-astrocyte cultures, including ALDH1L1. GFAP, EAAT1 and EAAT2. (b) Bar graphs show the proportion of cells (%) positive for each marker over total number of cells identified by DAPI staining. (c,d) Dose dependent response of nSTAT3 IR in hiPSC-astrocytes to EphB1 treatment. Graphs represent the proportion of nSTAT3 positive cells amongst the total number of GFAP positive control (c) and in SOD1-mutant hiPSC-astrocytes (d). N = 6 cultures of 3 independently converted hiPSC-astrocytes from 2 healthy control and 1 ALS patient lines; *p = 0.046, F = 2.99 for SOD1-mutant astrocytes and F = 1.22 for control astrocytes; one-way ANOVA with Dunnett's post-hoc test). Data is expressed as mean ± SEM. Scale bar: 40 μ m.

Independent analysis of the isogenic (genetically corrected) control SOD1^{D90D} and mutant SOD1^{D90A} hiPSC-astrocytes

Supplementary Figure 7 | SOD1^{D90A}-mutant line and its isogenic control: independent verification of top findings in hiPSCastrocytes by qPCR and mass spectrometry. (a) Graph indicates *HSPB8* and *PHLDA3* mRNA levels relative to *GAPDH* and expressed as fold-change (n = 2 independently converted astrocyte cultures). (b) Measurements of relative protein levels by mass spectrometry (MS) in SOD1 hiPSC-astrocytes (ACs) normalized to the levels for isogenic control astrocytes (n = one sample each of isogenic corrected and SOD1-mutant line with replicate labelling for MS).

Supplementary Figure 8 | Whole western blots for Figure 1f. Membranes were cut guided by a marker (a) and/or stripped to enable simultaneous detection of multiple proteins in the same sample (b).

Supplementary Figure 9 | Whole western blots for Figure 2c.

Supplementary Figure 10 | Whole western blots for Supplementary Figure 2a (a), 2b (b), 2e (c) and for Supplementary Figure 5b (d).

Line ID	Mutation	Age	Gender	Source	
		(years)			
Control-1	None	78	Male	https://www.ncbi.nlm.	
				nih.gov/pmc/articles/	
				PMC4550814/	
Control-2	None	64	Male	Corriell (ND41866*C)	
Control-3	None	Unknown	Female	ThermoFisher	
				Scietific (A18945)	
SOD1-1	SOD1 ^{D90A}	70	Female	Coriell (ND35664)	
SOD1-2	SOD1 ^{D90A}	50	Female	Su-Chun Zhang's lab	
SOD1 ^{D90D}	None	50	Female	Su-Chun Zhang's lab	
Corrected					
isogenic					
control for					
SOD1-2					

Supplementary Table 1 | Details of human iPSC lines used

Target	Species	Assay ID	Assay Info	Source
A2m	Mouse	qMmuCID0021890	Intron- spanning	Bio-Rad
Cebpd	Mouse	Mm_Cebpd_1_SG	Intron- spanning	Qiagen
Gapdh	Mouse	qMmuCID0027497	Exonic	Bio-Rad
Kcnn3	Mouse	qMmuCID0011935	Intron- spanning	Bio-Rad
Mt1	Mouse	qMmuCID0003677	Exonic	Bio-Rad
Trim30a	Mouse	qMmuCID0007007	Intron- spanning	Bio-Rad
CEBPD	Human	qHsaCED0002556	Exonic	Bio-Rad
GAPDH	Human	qHsaCED0038674	Exonic	Bio-Rad
HSPB8	Human	qHsaCID0018781	Intron- spanning	Bio-Rad
KCNJ10	Human	qHsaCID0013161	Intron- spanning	Bio-Rad
LRP2	Human	qHsaCID0012030	Intron- spanning	Bio-Rad
PHLDA3	Human	qHsaCID0022631	Intron- spanning	Bio-Rad

Supplementary Table 2 | List of primers used for qPCR