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SUMMARY

Copy-number variations (CNVs) are ubiquitous in
cancer and often act as driver events, but the effects
of CNVs on the proteome of tumors are poorly under-
stood. Here, we analyze recently published geno-
mics, transcriptomics, and proteomics datasets
made available by CPTAC and TCGA consortia on
282 breast, ovarian, and colorectal tumor samples
to investigate the impact of CNVs in the proteomes
of these cells. We found that CNVs are buffered
by post-transcriptional regulation in 23%–33% of
proteins that are significantly enriched in protein
complex members. Our analyses show that complex
subunits are highly co-regulated, and some act as
rate-limiting steps of complex assembly, as their
depletion induces decreased abundance of other
complex members. We identified 48 such rate-
limiting interactions and experimentally confirmed
our predictions on the interactions of AP3B1 with
AP3M1 and GTF2E2 with GTF2E1. This study high-
lights the importance of post-transcriptional mecha-
nisms in cancer that allow cells to cope with their
altered genomes.

INTRODUCTION

Cancer development is driven by the acquisition of somatic

genetic variation that includes point mutations, copy-number

variations (CNVs), and large chromosome rearrangements or

duplications (i.e., aneuploidy) (Beroukhim et al., 2010). These

events can result in a fitness advantage and cancer progres-

sion, but they are most often detrimental to cellular fitness.

While somatic gene amplification of key oncogenes such as

MYCN, AKT2, ERBB2, and others (Santarius et al., 2010)

can drive cancer development, germline CNVs are rare and

are under negative selection (Itsara et al., 2009). Gene ampli-
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fications and other CNVs are thought to be detrimental due to

changes in gene expression that cause an imbalance to the

cell. In females, one of the two X chromosomes is inactivated

by a specialized RNA-based silencing mechanism (Avner and

Heard, 2001; Lyon, 1961), but such a mechanism does not

exist for gene-dosage imbalances in the autosomal chro-

mosomes. Protein and mRNA abundance measurements in

models of aneuploidy in yeast and human cells have shown

that most autosomal gene duplications are propagated to

the protein level, with the notable exception of protein com-

plex subunits that showed attenuated (i.e., less than ex-

pected) changes in protein abundance (Dephoure et al.,

2014; Stingele et al., 2012). In yeast aneuploid strains, the

discrepancy between gene copy-number and protein abun-

dance has been shown to be mostly due to control of protein

abundance by degradation (Dephoure et al., 2014). For protein

complexes in particular, this observation fits with a model

where subunits are degraded when free from the complex

(Abovich et al., 1985). Given that not all subunits were

observed to be attenuated, it has been hypothesized that

these non-attenuated subunits could act as scaffolding pro-

teins or be rate-limiting for the assembly of the complex (De-

phoure et al., 2014). In addition, duplicated chromosomes

have been shown to cause global stress responses that

include cell-cycle and metabolic defects and proteotoxic

stress among others (Tang and Amon, 2013). While somatic

CNVs are known to be drivers of cancer development, and

that aneuploidy is a common feature of tumor cells, the impact

of gene-dosage changes on the proteome of cancer cells has

yet to be studied. We therefore decided to study the extent by

which changes in gene copy number are propagated to pro-

tein abundance in cancer patient samples, as well as the po-

tential mechanisms underlying the attenuation of protein

abundance changes.

In this study, we investigated the implications of CNVs

on the proteome of tumors by taking advantage of the com-

prehensive datasets made available by The Cancer Genome

Atlas (TCGA) and the Clinical Proteomic Tumor Analysis

Consortium (CPTAC), consortia comprising copy-number,

transcript, and protein measurements for hundreds of tumors
Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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(Cancer Genome Atlas Network, 2012a, 2012b; Cancer

Genome Atlas Research Network, 2011; Mertins et al., 2016;

Zhang et al., 2014, 2016). These data revealed that CNVs are

often propagated to the protein level, although we observed

that post-transcriptional mechanisms attenuate this impact in

23%–33% of the measured proteins. Protein complexes

were notably attenuated and showed strong protein abun-

dance co-regulation across samples. Not all complex subunits

are attenuated, with some acting as potential rate-limiting

factors for complex assembly. Here we identified 48 regulatory

interactions whereby the abundance of one of the subunits can

modulate the abundance of other complex members. We

experimentally assessed the role of AP3B1 and GTF2E2 as

potential rate-limiting subunits through knockdown experi-

ments. In addition, ranking the samples by their potential to

attenuate gene-dosage effects identified putative mechanisms

involved in autosomal gene-dosage compensation. Finally, a

gene expression signature of attenuation potential was found

to be associated with drugs targeting chaperones, the protea-

some, and the E3 ligase murine double minute 2 (MDM2). Us-

ing 282 tumor samples we revealed the widespread impor-

tance of post-transcriptional mechanisms to ameliorate the

impact of CNVs in cancer cells.

RESULTS

Tumor Pan-cancer Proteomics Reveals Attenuation of
Copy-Number Alterations in Protein Complex Subunits
To study the implication of gene-dosage changes on the

proteome of cancer cells we compiled and standardized exist-

ing datasets made available by the TCGA and CPTAC consor-

tia, comprising three different cancer types: breast (BRCA)

(Cancer Genome Atlas Network, 2012b; Mertins et al., 2016),

high-grade serous ovarian (HGSC) (Cancer Genome Atlas

Research Network, 2011; Zhang et al., 2016), and colon and

rectal (COREAD) (Cancer Genome Atlas Network, 2012a;

Zhang et al., 2016) (Figure 1A). These datasets provide mole-

cular characterization of gene CNVs, gene expression, and

protein abundance of solid tumor samples of 282 patients

for which clinical information is also available (Figure 1A,

Table S1).

Current methods can reliably measure the complete ex-

pressed transcriptome, but measuring the total proteome is

still a challenge with current techniques only providing partial

snapshots (Nagaraj et al., 2011). Thus, we quantified the frac-

tion of expressed transcripts measured in the proteomics ex-

periments in each tumor sample (Figure 1B) (see the STAR

Methods). COREAD samples displayed the lowest average

coverage of the expressed transcriptome (22.3%) compared

with the coverage measured for the HGSC (42.0%) and

BRCA (56.1%) samples. The proteomics experiments were

not conducted using the same methodologies, and therefore

it is crucial to take into consideration potential confounding ef-

fects. In particular, the COREAD (Zhang et al., 2014) quantifi-

cations were done with a label-free approach, while the

HGSC and BRCA were quantified using isobaric labeling

(Mertins et al., 2016; Zhang et al., 2016). To ensure compara-

ble measurements among datasets we removed confounding

and systematic effects from the proteomics and transcrip-
tomics, by regressing-out batch effects associated with

experimental technologies used, patient gender and age, and

tumor type (see the STAR Methods). The associations be-

tween these possible confounding factors and the principal

components were completely removed after correction (Fig-

ures S1 and S2).

Having assembled this compendium of datasets we then set

out to understand the implication of CNV events in the expres-

sion of the proteome (Figure 1C). For each gene/protein we

calculated, across all samples, the agreement between the

CNVs and transcriptomics and the CNVs and proteomics using

the Pearson correlation coefficient (Figure 1D). Transcript abun-

dance is, on average, well correlated with gene CNV changes

(median Pearson’s r = 0.43), and this contrasts with the signifi-

cant decrease (Welch’s t test p value < 1 3 10�4) of agreement

of CNVs with protein abundance (median Pearson’s r = 0.20)

(Figure 1D; Table S2). We hypothesize that, as transcription is in-

termediate between the copy-number alterations and protein

abundance, it sets the maximum possible agreement between

both. Then, using a Gaussian mixture model, we defined as

attenuated proteins those that have a lower agreement between

CNVs and protein abundance than expected by their CNV to

gene expression correlation (see the STAR Methods). In these

samples we found that, by this definition 1,496–2,119 proteins

are significantly attenuated, corresponding to 23%–33% of all

genes with available measurements (6,418). This result shows

that a significant fraction of the proteome undergoes gene-

dosage balancing. In addition, this group of attenuated proteins

highlights the complexity of the regulation of protein abundance,

hinting at constraints that control protein translation or degrada-

tion rates.

To understand the biological processes that are affected by

this attenuation we performed an unbiased enrichment analysis

using gene ontology terms (Ashburner et al., 2000; Subramanian

et al., 2005; The Gene Ontology Consortium, 2015) (Figure 2A)

(see the STAR Methods). The enrichment analysis revealed

that proteins involved in complexes and modules of functionally

interacting proteins displayed a significant agreement with the

copy-number measurements at the transcript level, but this

agreement is generally lost at the protein level (Figure 2B). This

recapitulates previous findings in models of aneuploidy in yeast

(Dephoure et al., 2014) and human cell lines (Stingele et al.,

2012), showing that these observations generalize from the

aneuploidy models to the hundreds of patient tumor samples

studied here. To validate the generality of the set of attenuated

proteins, we confirmed that these are also recapitulated in inde-

pendent proteomic cell line panels of triple-negative breast can-

cer and ovarian cancer (Coscia et al., 2016; Lawrence et al.,

2015) (Figure 2C). To test if degradation plays a role in the atten-

uation observed in human cells, we used publicly available data

on changes in protein ubiquitination after proteasome inhibition

as markers of degradation (Kim et al., 2011). We observed that

proteins defined as attenuated in our study show a faster

increase in ubiquitination after proteasome inhibition than other

proteins (Figure 2D), suggesting that degradation plays a key

role in the attenuation. These results suggest that the abundance

of protein subunits of large stable protein complexes are under

active control to maintain their co-regulation, possibly to guar-

antee the stability and formation of the associations or prevent
Cell Systems 5, 386–398, October 25, 2017 387



Figure 1. Pan-cancer Effects of Copy-Number Variation on Transcript and Protein Abundances

(A) Overview of the number of samples used in this study overlapping with the proteomics measurements for each tumor type.

(B) Proteomics coverage of the expressed transcripts in each sample and for each tumor type.

(C) Diagram depicting the implication of copy-number alterations along the central dogma of biology.

(D) Each dot in the scatterplot represents a transcript/protein. The x axis represents the Pearson correlation coefficient between copy-number variation and

transcriptomics, and the y axis the Pearson correlation between copy-number variation and proteomics. AGaussianmixturemodel with twomixture components

was used to identify proteins with high attenuation levels (colored in red).
the accumulation of free subunits that might be prone to

aggregate.

Proteomic Correlation Analysis Uncovers Strong Co-
regulation of Protein Complexes
To test the hypothesis that the attenuation of members serves to

tune the stoichiometry of all complex members, we performed

protein-protein correlation analysis using the proteomics mea-

surements and compared this with gene expression-based

correlations (Figure 3A). We performed all possible pairwise

correlation of protein abundance for all the 6,434 proteins

measured in at least 50%of the samples across the threedifferent
388 Cell Systems 5, 386–398, October 25, 2017
tumor types (see the STAR Methods). Consistently, proteins

within the samecomplexesdisplay coordinated changesof abun-

dance across samples (Figure 3A). Then, we assessed if this co-

regulation effect is ubiquitous in a curated set of human protein

complexes from the CORUMdatabase (Ruepp et al., 2010). Pairs

of proteins present together in a complex display a degree of co-

regulation (mean Pearson’s r = 0.25) that is significantly higher

than that observed for random pairs (mean Pearson’s r = 0). We

also assessed if this co-regulation was visible at the transcript

level, and, while there is a significant increase over random asso-

ciations (mean Pearson’s r = 0.15), this correlation is significantly

lower than the one seen at the protein level (Figure 3B). Protein



Figure 2. Enrichment Analysis of the Proteins Undergoing Copy-Number Attenuation

(A) Enrichment analysis of the correlation differences between copy-number variation and transcriptomics and copy-number variation and proteomics. Protein

subsets used represent biological processes (BP, green), cellular components (CC, red), and post-translational modifications (PTM, blue). Gene sets listed are all

significantly enriched at FDR <5%.

(B) The distribution of the enrichment scores for terms referring to protein complexes or subunits are represented in red and all the rest in gray.

(C) Proteins classified according to their attenuation profile in tumors are mapped against their attenuation in breast and ovarian cancer cell lines.

(D) Ubiquitination site fold changes over time after proteasome inhibition with bortezomib discretized according the protein attenuation level in tumors.
pairs that have functional interactions but are not complex sub-

units show a lower degree of abundance correlation (mean Pear-

son’s r = 0.15) that is also closer to the observed at the transcript

level (mean Pearson’s r = 0.11) (Figure 3B).

In light of this agreement between functionally related proteins

we examined the capacity of protein-protein correlation profiles

to predict different types of protein-protein interactions

(Figure 3C) (see the STAR Methods). We found that direct and

indirect functional interactions could be well identified with pro-

teomics (area under the receiving operating characteristic

curves AROC = 0.86 and 0.75, respectively), and worse with

transcriptomics (AROC=0.69 and0.67, respectively) (Figure 3C).

This finding goes in line with a recent work that showed that

proteins within similar biological processes or pathways display
better agreement at the protein than at the transcript level (Wang

et al., 2016). We noticed that protein interactions derived from

signaling networks displayed in general poor agreement at

the protein and transcript abundance levels (AROC = 0.55

and 0.54) (Figure 3C), suggesting that the abundance of signaling

proteins in the same pathway does not necessarily need to be

coordinated. Furthermore, metabolic enzymes involved in the

same metabolic pathways displayed some degree of agreement

at the protein and transcript level (AROC = 0.65 and 0.62)

(Figure 3C).

Our results shown that protein complex subunits often have

copy-number changes that are attenuated at the protein level

and that nevertheless also show higher co-regulation of protein

abundance than observed at mRNA level.
Cell Systems 5, 386–398, October 25, 2017 389



Figure 3. Copy-Number Variation Attenuation for Protein Complex Subunits Results in Strong Co-regulation of Their Abundances across

Samples

(A) Protein-protein correlation matrix using Pearson correlation coefficient and two representative cases of top correlated protein complexes.

(B) Distribution of all protein-protein correlations at the protein level (proteomics) and transcript level (transcriptomics). Protein interactions within complexes are

represented by the complex label, and protein functional interactions, which are not necessarily direct, are represented by the functional label.

(C) Enrichment analysis by the means of the area under the receiving operating characteristic curves (AROC) using pairwise correlation coefficients, for both

proteomics and transcriptomics measurements. Error bars display the variability obtained with five randomized true negative sets.
Proteogenomics Analysis Identifies Subunits that
Control the Protein Abundance Levels of Other
Members of the Complex
It has been hypothesized that non-attenuated subunits could

act as scaffolding proteins or rate-limiting for the assembly of

the complex (Dephoure et al., 2014). However, past studies

based on aneuploidy models were conducted on a small

number of yeast strains or cell lines (Dephoure et al., 2014;

Stingele et al., 2012). Given the large number of tumor samples

analyzed here we reasoned that we could more readily identify

such subunits that can act as drivers of complex assembly. To

study this we assessed if the CNVs of a given gene product

within a protein complex could explain the changes in abun-

dance of other subunits once we discount their transcriptional

changes (see the STAR Methods). In other words, if the pres-

ence or absence of certain proteins of the complex could be

associated with the protein degradation rate of other members.

This was performed systematically for all identifiable protein

pairs within protein complexes using linear regression models

where the CNVs of a protein (Px) was used to estimate the
390 Cell Systems 5, 386–398, October 25, 2017
protein abundance variation of the paired protein (Py) (Fig-

ure 4A) (see the STAR Methods). To consider the differences

in degradation or translation rates of the protein, the transcript

measurements were regressed-out from the protein abundance

measurements (Figure 4A) (see the STAR Methods). This

allowed us to consider the variability arising post-transcription-

ally and, importantly, to discard possible confounding effects

occurring at the genomic and transcript level, such as close

genomic localization. Out of the 58,627 possible directed pro-

tein interactions, 64 were found to be significantly associated

(false-discovery rate FDR <5%) (Figure 4A; Table S3) (see the

STAR Methods). To ensure that the association was not only

visible at the genomic but also at the transcript level, the

same associations were performed using transcriptomics

measurements. As expected since that transcript abundance

is a closer measurement to the protein abundance, we found

a substantial increase of significant associations, 2,846

(FDR <5%) (Figure S3; Table S3). Also, 75% (48) of the associ-

ations found at the genomic level were found to be significant

at the transcript level (Figure 4A; Table S3).



Figure 4. Protein Complex Regulators

(A) Volcano plot displaying the effect size and adjusted p value of all the tested regulatory interactions. Associations were performed using the copy-number

variation of the putative regulatory protein, Px, and the protein residuals of the regulated protein, Py. Significant associations found with the transcript

measurements of Px are denoted with a red border.

(B) Representative significant associations. Boxplots show the agreement between the copy-number variation of Px and the residuals of the regulated Py.

Scatterplot show the agreement between the protein pairs in the proteomics measurements.
Given that the associations are made between the copy level

of one gene and the residual abundance of the interactor partner

they are expected to be causal relationships. It is unlikely that the

residual abundance of a protein would cause a change in the

DNA copy number of the interacting partner. Therefore, this anal-

ysis identified interactions that may act as rate-limiting steps of

the assembly of protein complexes. We found, for example, an

association between the copy number of COG3 and the protein

variability of COG2 (Pearson’s r = 0.39, p value 9.90 3 1012)

(Figure 4B). COG3 is also significantly associated with COG4

(Figure 4B), increasing the possibility that COG3 is a regulator

of the assembly of the conserved oligomeric Golgi (COG) com-

plex. These findings are corroborated by an existing study where

COG3 knockdown leads to a decreased abundance of COG2

and COG4 (Bailey Blackburn et al., 2016; Zolov and Lupashin,

2005). Besides identifying known rate-limiting members of com-

plexes, our analysis also predicts two possibly novel associa-

tions within the COG complex, with COG6 being significantly
associated with COG2 (Figure 4). Additional positive regulatory

interactions were found for subunits of the eukaryotic initiation

factor 3 (EIF3), transcription factor IIH, adaptor-related protein

complex 3 (AP3), among others (Table S3), providing with infor-

mation on the putative assembly pathways of these complexes.

The number of significant negative associations was lower

than the number of positive associations (Figures 4A and S3C).

SMARCA2 copy-number alterationswere significantly and nega-

tively associated with the degradation of SMARCA4 (Figure 4A)

and this was also visible at the protein level (Figure 4B). Negative

associations are likely to represent mutually exclusive events

within protein complexes, thus when one protein is present the

other will not be necessary for the complex formation and may

undergo degradation. Indeed, current evidence in the literature

suggest that SMARCA2 and SMARCA4 are paralogs and mutu-

ally exclusive within the SWI/SNF complex (Karnezis et al., 2016;

Ori et al., 2016). The lower number of negative associations sug-

gests that these types of events are less frequent.
Cell Systems 5, 386–398, October 25, 2017 391
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AP3B1andGTF2E2Protein Abundance Levels Indirectly
Control the Abundance of Interaction Partners
We experimentally validated two of the top significant positive

associations (Figure 5). Thesewere foundwithin protein complex

subunits of the AP3 and the transcription initiation factor IIE

(TFIIE), AP3B1-AP3M1, and GTF2E2-GTF2E1, respectively (Fig-

ures 5A and 5C). To assess their implication we performed small

hairpin RNA (shRNA) knockdown of the putative rate-limiting

proteins, AP3B1 andGTF2E2, in shRNA transfected HCT116 hu-

man colon cancer cell lines followed by western blot. Knocking

down AP3B1 and GTF2E2 not only affected their abundance

but also the abundance of the interacting proteins within the pro-

tein complex subunit, AP3M1 and GTF2E1 (Figures 5B and 5D).

While for the putative rate-limiting interactions the inverse asso-

ciation was not found significant (FDR >5%), we cannot exclude

that they might exist as we are limited by the coverage of the da-

tasets. For example, the lack of variability at the copy-number

level might lead to uninformative associations of the gene prod-

uct with the other members of the complex. To address this, we

also performed the reverse experiment by knocking down

AP3M1 and GTF2E1 and measured the impact in protein

abundance. We observed that AP3M1 knockdown did not

have any impact in the abundance of AP3B1 (Figure 5B) as ex-

pected by the low association coefficient of the linearmodel (Fig-

ure 5A). On the other hand, GTF2E1 knockdown resulted in the

depletion of GTF2E2 (Figure 5D) suggesting that this rate-limiting

interaction is bidirectional. The lack of any strong depletion of

GTF2E1 in the copy-number dataset may explain why this asso-

ciation cannot be captured on this direction (Figure 5C).

To further assess if our associations were capable of

identifying the rate-limiting interactions occurring in both direc-

tions we used two independent studies where members of

COG and EIF3 were systematically knocked down with shRNAs,

and the abundance of the complexmembers wasmeasuredwith

western blot (Bailey Blackburn et al., 2016; Wagner et al., 2014).

We found a significant (Spearman’s r =�0.4, p value 3.43 10�4)

agreement between our predicted association effect and those

measured experimentally (Figure 6A). Moreover, all the signifi-

cant associations captured within these complexes showed

significantly higher impact on abundance (Figure 6B). This high-

lighted that our approach is able to capture well rate-limiting

associations with strong effects and can identify with moderate

confidence if the association occurs in both directions.

Molecular Features Associated with High Attenuation
Potential
Having assessed the attenuation of the effects of CNVs in the

proteome we set out to quantify the extent of this regulation in
Figure 5. Experimental Validation of Regulatory Interactions among P

Rate-limiting interactions within the adaptor protein complex 3 (AP3) and the tra

(A and C) Correlation of the copy-number profile of the regulatory protein with the

level between the two proteins (right plot).

(B and D) shRNA knockdown of the regulatory proteins, AP3B1 and GTF2E2, sho

and GTF2E1, respectively. Knocking down GTF2E1 showed a significant downreg

contrast, AP3M1 shRNA did not affect AP3B1 protein abundance. Protein abund

specific for the corresponding proteins. The quantified bands in the shAP3B1, s

control shRNA (shNT). GAPDH was used as a loading control.

Error bars shown are the SD from the mean (n = 3 independent experiments). *p
each tumor sample.We reasoned that, by stratifying the samples

by their capacity to attenuate the CNV changes, we could iden-

tify the underlying attenuation mechanisms. Similarly to the pro-

tein analysis (Figure 1D), we performed a correlation analysis

between the CNVs and transcriptomics and proteomics for

each sample (Figure 7A), instead of each protein. Furthermore,

recurring to a Gaussian mixture model we classified 50 samples

(18%) as those having a general strong attenuation effect (see

the STAR Methods). Such tumor samples have a higher number

of genes with strong attenuation, suggesting either an overall

increase in degradation or decrease in translation rates in these

samples. To attempt to understand the underlying differences in

attenuation potential we first correlated this metric with the

degree of somatic copy-number alterations from Davoli et al.

(2017) and observed a significant correlation (r = 0.33, p value =

1.2 3 10�7). This would suggest that in part the higher apparent

attenuation potential is due to larger copy-number alterations. It

also indirectly suggests that there is not a very strong saturation

whereby larger numbers of gene-dosage alterations would result

in lower attenuation capacity. We did not find a significant asso-

ciation between attenuation potential and sample ploidy or sam-

ple purity (r = 0.031 and �0.11, respectively, Figures S4B

and S4C). We then searched for complexes and complex

subunits that are more likely to be amplified or deleted in the tu-

mors with stronger attenuation and could therefore contribute to

the attenuation potential (see the STAR Methods). Tumors with

strong attenuation effects displayed a significant enrichment

of gene amplifications in several complex subunits, including

genes involved in the endoplasmic reticulum-associated degra-

dation (ERAD) pathway (DERL1 and VIMP), cell polarity (SCRIB,

LLGL2, and VANGL2), GPI-anchor biosynthesis (PIGT and

PIGU), and RNAi (AGO2) (Figures 7B and 7C). We also found

significant enrichment for deletions in GTF2E2 involved in tran-

scription regulation complex TFIIE.

Gene Expression Profile of Protein Attenuation Is
Associated with Specific Drug Responses
Since the tumors with strong attenuation of the effects of CNVs

displayed particular characteristics, we defined a gene expres-

sion signature by systematically correlating each gene with the

attenuation potential (see the STAR Methods). We then per-

formed gene set enrichment analysis on this gene expression

signature (Figures S4E and S4F) and we found that samples

with higher attenuation potential have increased expressions of

cell-cycle-related functions (e.g., meiotic recombination, sister

chromatid segregation, G1 phase of the mitotic cell cycle), and

decreased expression of metabolic-related function (e.g.,

phagocytosis, respiratory chain complex I, and glucosamine
rotein Complex Subunits

nscription initiation factor IIE (TFIIE) complexes.

protein residuals of the regulated protein (left plot) and agreement at the protein

w strong decrease in the protein abundance of the regulated proteins, AP3M1

ulation of GTF2E2, indicating a bidirectional relation between those proteins. In

ance changes are measured and quantified by western blot using antibodies

hAP3M1, shGTF2E2, and shGTF2E1 experiments were scored relative to the

< 0.05 compared with shNT, two-tailed unpaired t test.
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Figure 6. COG3 and EIF3 Complexes Rate-

Limiting Interactions

(A) Agreement between experimentally measured

COG and EIF3 complex element knockdown with

in silico estimated impact.

(B) Welch’s t test comparing the computational

rate-limiting interactions (FDR <5%) and all the

other experimentally measured interactions.
metabolic process). Among the downregulated functions are

also some related to immune response (e.g., cytokine secretion

and cellular defense response). This is consistent with the obser-

vation that samples with higher somatic copy-number alter-

ations have downregulation of immune-related gene sets (Davoli

et al., 2017). However, while ourmeasure of attenuation potential

per sample is correlated with total SCNAs scores, it is not corre-

lated with sample purity (r = �0.11, p value = 8.5 3 10�2), indi-

cating that there is no strong difference of immune infiltration

across samples of different attenuation potential. These changes

in gene expression are more likely reflective of the degree of

copy-number alterations and may not be immediately informa-

tive to understand the mechanisms underlying the differences

in attenuation potential. We observed that this signature is

capable of discriminating samples with strong versus weak

attenuation using a cross-validation approach (Figure S4A;

AROC = 0.69). This signature provides a putative ranking of the

agreement between gene expression and the attenuation profile

of the samples. Next, we explored the capacity of this signature

to identify particular cellular states that can be informative for

drug response. Samples with a strong correlation with the signa-

ture would be predicted to have higher attenuation and could, for

example, display a higher proteasomal capacity. Thus, we

considered an independent cell line panel for which gene

expression and drug response is available (Iorio et al., 2016b),

and ranked the cell lines according to their predicted protein

attenuation potential (see the STAR Methods). Then we as-

sessed the association between this predicted attenuation po-

tential and drug-response measurements for 265 compounds

(see the STAR Methods) (Figures 7D and S4D). Among the top

predicted compounds are a proteasome (Bortezomib and

MG-132) and chaperone inhibitors (AUY922, 17-AAG, Elesclo-

mol, CCT018159, and SNX-2112), which displayed a significant

(FDR <5%) positive association, suggesting that a stronger

predicted attenuation potential is associated with increased

resistance to proteasome/chaperone inhibitors (Table S4). This

unbiased search also revealed significantly positive associations

of Nutlin-3a and JNJ-26854165 and the proteome attenuation
394 Cell Systems 5, 386–398, October 25, 2017
profile (Pearson’s r = 0.20 and 0.16,

respectively). Both compounds target

the oncoprotein E3 ligase MDM2 which,

in p53 wild-type tumors, suppresses the

activity of p53 by ubiquitination and

thereby is a potential therapeutic target

(Shangary and Wang, 2008). The protein

attenuation potential predicted for the

cell lines also displayed tissue specificity,

supporting the idea that proteasomal ca-

pacity is constrained by the tissue of
origin. This analysis suggests that the gene expression signature

for the proteome attenuation may be associated with an

increased capacity of the protein quality control machinery and

an increased resistance to drugs that target this system.

DISCUSSION

Gene-Dosage Changes Are Attenuated for 23%–33% of
Proteins
We aimed here to study the extent by which gene dosage is

attenuated in cancer at the protein level and what are the mech-

anisms that govern this process. We observed that, while CNVs

have on average a good agreement with transcript measure-

ments, 23%–33% of the proteins undergo post-transcriptional

regulation, which attenuates the impact of CNVs (Figures 1C

and 1D). We cannot rule out the possibility that some of the

apparent protein level attenuation may be due to higher mea-

surement error in the protein abundance relative to the gene

expression measurements. However, this is not expected to

alter the ranking of proteins from strongest to weakest attenua-

tion as shown by the replication with the cell line data (Figure 2C).

The identification of attenuated proteins alone is very relevant for

the identification of causal genes within amplified genome re-

gions. Since copy-number changes are buffered and not

observed at the protein level, these are therefore less likely to

be drivers of cancer progression and similarly less likely to

explain changes in drug associations. Notably, this attenuation

was more pronounced in protein subunits and complexes, in

agreement with previous observations (Dephoure et al., 2014;

Stingele et al., 2012). This is likely explained by the fact that

the stoichiometry of complexes needs to be preserved, and

that proteins over-represented compared with other members

of the complex are likely degraded due to increased instability

(McShane et al., 2016). Furthermore, we observed that proteins

with stronger attenuation are more quickly ubiquitinated (Kim

et al., 2011) (Figure 2D), suggesting that the attenuation may

be mostly driven by changes in degradation instead of transla-

tion rates. In line with this, it has been shown, in time-series



Figure 7. Putative Mechanisms for Tumor Attenuation Potential and Their Association with Chaperone/Proteasome Drug Resistance

(A) Tumor sample correlations of the copy-number changes and the transcript (x axis) and protein (y axis) measurements. Samples classifiedwith high attenuation

potential, in red, display stronger attenuation of the copy-number variation.

(B) Protein complexes significantly enriched for gene amplifications (FDR <5%) on the samples with high protein attenuation.

(C) Top strongly amplified genes within the significantly enriched complexes.

(D) Drug-response associations performed in a large cell line panel using the cell lines using putative attenuation potential as the predictive feature. Significant

associations (FDR <5%) of chaperone and proteasome inhibitors are labeled and marked in red. Boxplots representing the distributions of the drug associations

effect sizes of all the proteasome and chaperones inhibitors in the drug panel.
experiments, thatmany protein complex subunits have degrada-

tion profiles that are best fit by a two-state model, suggesting

that the degradation rate of these proteins changes, presumably

when free or when assembled into the complex (McShane et al.,

2016). Attenuation of abnormal gene copy numbers by protein

degradation seems to be a general and conserved effect in aneu-

ploidy cells, as also shown inMcShane et al. (2016). We note that

we cannot rule out that control of translation rate might also play

an important role to buffer copy-number alterations.

Some Proteins Can Indirectly Control the Abundance of
Interaction Partners
We identified 48 putative rate-limiting proteins for complex as-

sembly, capable of regulating the abundance of other complex

subunits (Figure 4A). These results suggest that protein interac-

tions and complex assembly are important control points for pro-

tein level gene-dosage compensation. This systematic analysis

recapitulated previously known rate-limiting interactions in

COG and EIF3, and it also found potentially novel associations.

Of these, we have experimentally validated two rate-limiting in-

teractions, AP3B1-AP3M1 and GTF2E2-GTF2E1, within the

AP3 and TFIIE complexes, respectively (Figure 5). The AP3B1-

AP3M1 interaction was not bidirectional in contrast to the

GTF2E2-GTF2E1. This latter case is of particular importance

as it illustrates a case where we did not predict but observed

an indirect effect on abundance of an interacting protein. The

absence of a predicted indirect effect could be due to lack of sta-

tistical power, for example a limited number of strong depletions

and amplifications of a given gene. We also designed experi-

mental validations for RPA2-RPA3 and for EIF3A-EIF3E, but
knocking down RPA2 or EIF3A proved to be lethal for the trans-

fectedHCT116 colon cancer cell lines. Potential mutual exclusiv-

ity associations were present in much lower numbers. The most

compelling negative association was SMARCA2-SMARCA4,

which was supported by current literature where the two are re-

ported to be mutually exclusive ATPases (Karnezis et al., 2016)

and paralogs (Ori et al., 2016) within the SWI/SNF complex.

Identification of trans-regulatory effects is still a challenging

task and it is estimated to represent 70% of mRNA heritability

(Price et al., 2011). These results provide examples and putative

mechanistic explanations for how variation in copy number or

gene expression of a protein can have trans effects in the

abundance of interacting proteins, as seen in protein quantitative

trait loci analyses (Battle et al., 2015; Chick et al., 2016). Identifi-

cation of rate-limiting interactions in protein complex assembly

will help understand how protein-protein interactions are struc-

tured and will be important to understand complex traits (Boyle

et al., 2017).

Association Analysis Suggests Mechanisms Associated
with Gene-Dosage Attenuation
Tumor samples with strong attenuation of the effects of CNVs in

protein abundance displayed a significant enrichment for ampli-

fications of several protein complexes involved in the response

to misfolded proteins in the endoplasmic reticulum (ER), cell

polarity, trafficking, and gene repression. Consistent with the

increased protein attenuation profile of these tumors, we

observe amplifications of the ERAD components, DERL1 and

VIMP, which are part of an ER complex that is responsible for

the retrotranslocation of misfolded proteins to the cytosol for
Cell Systems 5, 386–398, October 25, 2017 395



proteasomal degradation (Lilley and Ploegh, 2004; Ye et al.,

2004). While this association is expected, the others are less

obviously linked to post-transcriptional control. The cell polar-

ity-related SCRIB protein complexes have been previously re-

ported to play an important role in cancer progression in breast

cancer, and their inhibition has been linked to a decrease in cell

migration (Anastas et al., 2012). The proteasome system is

important for the regulation of focal adhesions in migrating cells

(Teckchandani and Cooper, 2016), and inhibition of the protea-

some inhibits migration and invasion in breast cancer cells

(Xie et al., 2009). However, it is not clear how the overexpression

of these cell polarity factors would result in an increase in

attenuation potential. The association between increased

attenuation and amplification of AGO2 could be explained by

its role in repressing the initiation of mRNA translation (Kiriakidou

et al., 2007).

Differential Drug-Response Association with Gene
Expression Signature of Proteome Attenuation
In cell lines, proteome attenuation, predicted by a gene expres-

sion signature, was associated with increased resistance to

proteasome and chaperone inhibitors (Figure 7D), suggesting

that tumors, where attenuation is more pronounced, are more

resistant to perturbations in the chaperone/proteasome sys-

tem. The two compounds in the screen targeting MDM2 were

among the top associated with the gene expression signature,

suggesting that tumors with high predicted attenuation poten-

tial may have a high proteasome capacity and therefore be

less sensitive to the inhibition of MDM2, which is the E3 ligase

responsible for the degradation of TP53 in p53 wild-type

tumors (Shangary and Wang, 2008). While we show that the

gene expression signature has some power to predict attenua-

tion potential in cross-validation tests, additional work will be

required to conclusively validate the putative associations be-

tween the attenuation potential and the drug responses. The

increasing availability of proteomics studies in cancer cell lines

will enable the estimation of protein attenuation directly and

without the need to rely on an attenuation potential gene

expression signature defined in tumor samples. This will

augment our power to study gene-dosage compensation and

its effect on drug response.

In this study, we provide insights into how cancer cells

manage to cope with often dramatic chromosomal rearrange-

ments (Thompson and Compton, 2011), and these can possibly

provide insights into their functional implications and hopefully

open novel therapeutic opportunities.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-AP3B1 Abnova Cat.#H00008546-B01P; RRID: AB_10714215

Rabbit monoclonal anti-AP3M1 Abcam Cat.#ab201227; RRID: AB_2715538

Rabbit monoclonal anti-GTF2E1/TFIIEalpha Abcam Cat.#ab140634; RRID: AB_2715539

Rabbit monoclonal anti-GTF2E2/TFIIEbeta Abcam Cat.#ab187143; RRID: AB_2715540

Rabbit monoclonal anti-GAPDH(D15H11) Cell Signaling Technologies Cat.#5174S; RRID: AB_10622025

Goat-anti-rabbit IgG (HRP-linked) Cell Signaling Technologies Cat.#7074S; RRID: AB_2099233

Horse-anti-mouse IgG (HRP-linked) Cell Signaling Technologies Cat.#7076S; RRID: AB_330924

Bacterial and Virus Strains

One Shot� TOP10 Chemically Competent E. coli Thermo Fisher Cat.#C404003

Chemicals, Peptides, and Recombinant Proteins

jetPEI transfection reagent Polyplus transfection Cat.#101-10N

Critical Commercial Assays

DC� protein assay Bio-Rad Cat.#500-0116

Deposited Data

CPTAC proteomics of BRCA, HGSC and COREAD CPTAC Consortium (Mertins et al., 2016;

Zhang et al., 2016 and Zhang et al., 2014)

https://cptac-data-portal.georgetown.edu/

cptacPublic/

TCGA transcriptomics RNA-seq raw counts TCGA Consortium (Rahman et al., 2015) GSE62944

TCGA copy-number GISTIC thresholded scores TCGA Consortium (Mermel et al., 2011) http://firebrowse.org/

Cell lines gene expression Iorio et al., 2016b E-MTAB-3610

Cell lines drug response Iorio et al., 2016b Table S4

Experimental Models: Cell Lines

Human: HCT116 ATCC – LGC standards Cat.# CCL-247; RRID: CVCL_0291

Human: HEK293 ATCC – LGC standards Cat.# CRL-1573; RRID: CVCL_0045

Recombinant DNA

psPAX2 – lentiviral packaging vector Didier Trono Lab Addgene plasmid

#12260

pMD2.G – lentiviral Envelope vector Didier Trono Lab Addgene plasmid

#12259

pLKO.1-shAP3B1 (TRCN0000286136) – shRNA Sigma Aldrich Cat.#SHCLND-NM_003664

pLKO.1-shAP3M1 (TRCN0000065101) – shRNA Sigma Aldrich Cat.#SHCLND-NM_012095

pLKO.1-shGTF2E1 (TRCN0000020722) – shRNA Sigma Aldrich Cat.#SHCLND-NM_005513

pLKO.1-shGTF2E2 (TRCN0000020775) – shRNA Sigma Aldrich Cat.#SHCLND-NM_002095

pLKO.1-shNT – shRNA Sigma Aldrich Cat.#SHC016-1EA

Software and Algorithms

Quantity One� Basic software Bio-Rad N/A (Freeware)

GraphPad Prism 5.03 software GraphPad https://www.graphpad.com/

JMP� 10 software SAS Institute Inc. https://www.jmp.com/en_us/home.html

Limma Ritchie et al., 2015 http://bioconductor.org/packages/release/

bioc/html/limma.html

edgeR Robinson et al., 2010 https://bioconductor.org/packages/release/

bioc/html/edgeR.html

SLAPenrich Iorio et al., 2016a https://github.com/francescojm/SLAPenrich

Sklearn Pedregosa et al., 2011 http://scikit-learn.org/
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Pedro

Beltrao (pedrobeltrao@ebi.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The human colon cancer cell line HCT116 (male donor) was cultivated in McCoys 5a medium supplemented with 10% FBS and 1%

penicillin/streptomycin under standard culture condition (at 37�C in a humidified 5% CO2 containing atmosphere). AP3B1, AP3M1,

GTF2E1, and GTF2E2 silencing was obtained by lentiviral short hairpin RNA (shRNA) delivery. shNT (‘‘non target’’) clones were used

as control cells. For protein sample isolation, 106 cells of shNT, shAP3B1, shAP3M1, shGTF2E1 or shGTF2E2 clones were plated in

10 cm culture dishes for 48h. Afterwards cells were lysed in RIPA buffer to obtain total protein samples. Protein content was deter-

mined by DC� protein assay as recommended by the manufacturer (Bio-Rad laboratories Inc, Cat.#: 500-0116, Hercules, CA USA).

METHOD DETAILS

Cell Lines Drug Response Analysis
Gene expression measurements (E-MTAB-3610) acquired with Affymetrix Human Genome U219 array for approximately 1,000 cell

lines was used in this analysis (Iorio et al., 2016b). Drug response measurements were obtained as the area under the curve (AUC) for

265 compounds (Iorio et al., 2016b). Cell lines proteome attenuation potential was calculated by performing pearson correlation

between their transcriptomics profile and the proteome attenuation potential signature derived from tumours. Cell line correlations

with the signature were then used as a feature in single linear regression models to systematically predict the response of each

compound in the screen.

shRNA Delivery via Lentiviral Transduction
The applied shRNA plasmids (pLKO.1) are part of the MISSION� shRNA product line of Sigma Aldrich (shAP3B1, Cat.#:

SHCLND-NM_003664, TRC clone: TRCN0000286136; shAP3M1, Cat.#: SHCLND-NM_012095, TRC clone: TRCN0000065101;

shGTF2E1, Cat.#: SHCLND-NM_005513, TRC clone: TRCN0000020722; shGTF2E2, Cat.#: SHCLND-NM_002095, TRC clone:

TRCN0000020775; shNT, Cat.#: SHC016-1EA) and were delivered via lentiviral transduction using a second generation lentiviral

packaging system. Therefore, HEK293T cells were co-transfected with the appropriate pLKO.1 transfer-vector (shRNA containing

vector), psPAX2 (the packaging vector, addgene #12260) and pMD2.G (the vector that encodes for the viral envelope protein,

addgene #12259) using jetPEI transfection reagent according to manufacturer’s recommendation (Polyplus transfection, Cat.#:

101-10N, Illkirch, France). Virus-containing supernatants were used for cell transduction.

Western Blot Validation
Predicted protein complex formations of AP3B1_AP3M1 and GTF2E2_GTF2E1 were validated by western blot technique. Total pro-

tein lysates (30 mg) were heat-denatured in NuPAGE LDS sample buffer containing dithiothreitol (Thermo Scientific, Cat.#: NP0008,

Waltham, MA USA) and loaded on 12% denaturing polyacrylamide gels for separation. SDS-PAGE was conducted with a 2-Step

protocol (Step1: 20min 50V constant, Step2: 120min 120V constant). Proteins were transferred to nitrocellulose membranes by

tank-blotting (140min at 70V constant). Afterwards membranes were blocked with 5% milk (MP) in TBS-T. All washing steps were

conducted with TBS-T. Membranes were incubated with primary antibodies mc mouse a-AP3B1 (abnova, Cat.#: H00008546-

B01P, Taipei City, Taiwan; 1:500), mc rabbit a-AP3M1 (abcam, Cat.#: ab201227, Cambridge, UK; 1:1000), mc rabbit a-GTF2E2/

TFIIEbeta (abcam, Cat.#: ab187143, Cambridge, UK; 1:10000) or mc rabbit a-GTF2E1/TFIIEalpha (abcam, Cat.#: ab140634,

Cambridge, UK; 1:1000) overnight at 4�C. Protein expression of GAPDH was used as loading control using a-GAPDH(D15H11)

antibody (CST, Cat.#: 5174S, Cambridge, UK; 1:2000). All primary antibodies were diluted in 5% MP TBS-T. Secondary antibodies

used in this work are: HRP-conjugated anti-rabbit IgG (CST, Cat.#: 7074S, Cambridge, UK) for the detection of AP3M1 (1:2000),

GTF2E2 (1:1000), GTF2E1 (1:2000) & GAPDH (1:2000), and HRP-conjugated anti-mouse IgG (CST, Cat.#: 7076S, Cambridge, UK)

for the detection of AP3B1 (1:5000). Secondary antibodies were diluted in TBS-T and incubated for 1h at room temperature. Quantity

One� software (Bio-Rad laboratories Inc., Hercules, CA USA) was used for densitometry.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data Compendium
Proteomics measurements at the protein level for the three tumour types analysed here were compiled from the CPTAC data portal

(Edwards et al., 2015) (accession date 2016/07/06) for the following publications: BRCA (Mertins et al., 2016), HGSC (Zhang et al.,

2016) and COREAD (Zhang et al., 2014). Transcriptomics RNA-seq raw counts were acquired from (Rahman et al., 2015) (GSE62944)

and processed using the Limma R package (Ritchie et al., 2015) with the voom transformation (Law et al., 2014). GISTIC (Mermel

et al., 2011) thresholded copy-number variation measurements and clinical data were obtained from the http://firebrowse.org/ portal

(accession date 2016/06/08).
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Data Processing and Normalisation
Transcriptomics raw counts were downloaded from (Rahman et al., 2015) (GSE62944). To ensure that lowly expressed transcripts

are removed, genes with average counts per million (CPM) across samples lower or equal to 1 were excluded. Data was normalised

by the trimmed mean of M-values (TMM) method (Robinson and Oshlack, 2010) using edgeR (Robinson et al., 2010) R package.

Finally, the log-CPM values derived from the voom (Law et al., 2014) function in Limma (Ritchie et al., 2015) package were extracted

for this analysis.

Coverage of the proteomics samples was assessed using the jaccard index for each sample with matching transcriptomics. Tran-

scriptomics and proteomics measurements were used at the gene symbol level annotation. For each sample it was only considered

transcripts passing the expression threshold, defined above, and proteins with matching measurement. The jaccard index for each

sample was calculated with the intersection over the union.

Considering that proteomics and transcriptomics principal component analysis (PCA) revealed associations with possible

confounding factors, i.e. age, gender, tumour type and measurement technology, we regressed them out from the original data-

sets using linear regression models (Figure S1). For each protein a multiple linear regression model was fitted with protein measure-

ments across the tumour samples as the dependent variable and the confounding factors mentioned above as independent discrete

variables, apart from the age which was represented with a continuous variable. Once the model was fitted the estimated weights of

the covariates were used to regress-out their impact in the protein measurement and thereby removing their effects (Figure S2). Due

to the sparseness of mass-spectrometry measurements for the proteomics data-set we only considered proteins that were consis-

tently measured in at least 50%of the samples, leaving a total of 6,734 proteins. The same procedure was performed in the transcrip-

tomics measurements. Transcript and protein measurements were normalised and centered across the samples using a gaussian

kernel density estimation function.

Proteome Attenuation Analysis
Agreement between the copy-number variation and the transcriptomics and proteomicswas calculated for each gene/protein across

the tumour samples using pearson correlation coefficient. Enrichment of biological processes for proteins displaying an attenuation

of the correlation at the protein level compared to the transcript level was performed using Gene Set Enrichment Analysis (GSEA)

(Subramanian et al., 2005). For the enrichment we used the protein attenuation level, which is calculated by the difference between

the pearson coefficient of the transcript correlation (correlation between copy-number variation and transcript measurements) and

the pearson coefficient of the protein correlation (correlation between copy-number and protein measurements). To ensure a normal

distribution centered around zero for the GSEA enrichments a gaussian kernel density estimation function was used to normalise the

protein attenuation distribution. Gene signatures of Gene Ontology (GO) (Ashburner et al., 2000; The Gene Ontology Consortium,

2015) terms for biological processes (BP) and cellular compartments (CC) were acquired from the MSigDB data-base (Subramanian

et al., 2005). Gene signatures of post-translational modifications (PTMs) were also used and acquired from Uniprot data-base

(The UniProt Consortium, 2015). The estimated enrichment scores were statistically assessed by performing 1,000 random

permutations of the signatures and p-values were then adjusted using false-discovery rate (FDR).

Proteins were classified according to their copy-number attenuation effect using a gaussian mixture model with 2 mixture

components. Proteins in the group with larger mean attenuation were considered highly attenuated. More stringent classification

of the attenuation effect was performed by only considering attenuated proteins with an absolute attenuation score higher than 0.3.

For samples the attenuation potential was estimated similarly as for proteins but instead correlations were calculated across the

proteins measured in the sample. Samples were then classified as before with a gaussian mixture model with 2mixture components.

Enrichment analysis of amplifications in protein complexes in tumour samples with high protein attenuation potential was performed

using SLAPenrich (Iorio et al., 2016a).

A gene expression signature of the sample attenuation potential was calculated by systematically correlating the samples

attenuation potential with each gene in the transcriptomics data-set.

Pairwise Correlation Analysis
Correlations between protein pairs, or genes, across samples were calculated using pearson correlation coefficient. Only proteins

that were alsomeasured at the transcript level were considered, i.e. 6,434. The systematic analysis of all unique pairwise correlations

generated a total of 41,389,922 correlation coefficients both at the protein and gene level.

Protein sets of known protein complexes were acquired from the CORUM data-base (Ruepp et al., 2010, 2008). A protein-protein

interaction list of the complexes was assembled by considering that two proteins interact if they are present within the same complex

at least once, this generated a total of 67,927 interactions. Indirect but functional associations were also considered by using the

STRING data-base (Franceschini et al., 2013). For STRING only interactions with the highest confidence score (900) were used

performing a total of 214,815 interactions. 9,273 protein interactions within signalling pathways were assembled from kinase/phos-

phatase-substrate interactions reported in SIGNOR data-base (Perfetto et al., 2016). Metabolic enzyme interactions associated with

metabolic pathwayswere extracted fromKEGGpathways (Kanehisa et al., 2016) reported inMSigDB (Subramanian et al., 2005). Two

enzymes were considered to be interacting if they were present in the same metabolic pathway, making a total of 121,134 interac-

tions. Enrichment of the different types of protein-protein interactions, i.e. complexes, functional, signalling andmetabolic, were esti-

mated using receiving operating characteristic (ROC) curves and by calculating the area under the ROC curve (AROC). True-positive

sets of protein interactions were defined as the ones reported in the different resources used. Due to the strong unbalance between
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the number of true positives and false positives the ROCcurveswere calculated using 5 different and randomised setswithin the false

positive group. The variability of the AROC score is represented by error bars in Figure 3C.

Proteogenomics Analysis to Identify Protein Complex Regulators
The identification of protein complex regulators only focused on protein-protein interactions reported in the CORUM data-base

(Ruepp et al., 2010, 2008) with a protein-protein interaction list assembled as described before.

For each protein-protein interaction reported within a complex, its association was tested using two linear regression models.

Given a pair Protein Y � Protein X (Py � Px), a first linear model is used to regress-out the transcript variability from the protein

measurement of Py. The dependent variable of the model is the proteomics measurements of Py and the independent variable is

the transcriptomics measurements (Ty) (Equation 1):
Py = b. Ty +c (Equatio
n 1)

Themodel is fit with an intercept (for simplicity omitted from Equation 1) and noise term, c. After fitting the estimated weight (b), the

residuals of Py (Py’) are calculated as (Equation 2):
Py’ = Py - b. Ty (Equatio
n 2)

Py’ represents the variability measured due to post-transcriptional and post-translational regulation. Then a second linear model is

performed to calculate the association between Py’ and the CNV of Px, (Px) (Equation 3):
Py’ = b. Px +c (Equatio
n 3)

Statistical significance is estimated by calculating an F statistic over an F-distribution, p-values are then adjusted using FDR

correction. A total of 58,627 tests are performed. The same analysis is performed using transcriptomics measurements instead of

the copy-number of Px, generating a total of 57,462 tests. Associations estimated with the copy-number variation that are significant

with the transcriptomics are highlighted with a red border in Figure 3A.

Logistic Classification of Samples Protein Attenuation Potential
The predictive power of the attenuation potential gene expression signature was benchmarked using logistic classification models.

This was performed using 1,000 randomised groups of 30% of samples for testing and 70% for training. Feature selection was per-

formed using ANOVA F-value following by FDR multiple hypothesis correction and features with FDR lower than 5% were kept for

training and testing. The regularisation term of the logistic classification models were optimised using a stratified cross-validation

approach.

Statistical Analysis of Experimental Data
Variance homogeneity was checked with the Bartlett test. The Shapiro-Wilk test was used to test normal distribution. The two-tailed

unpaired t-test was applied to analyze differences between shNT and the corresponding knockdown group. Data are shown as

mean + SEM, n = 3 (3 independent experiments). * p < 0.05 vs. shNT. Analyses were carried out with GraphPad Prism 5.03

(GraphPad, La Jolla, USA) and JMP 10 (Böblingen, Germany).

Code Availability
All the computational analyses were performed in Python version 2.7.10, apart from the transcriptomics RNA-seq processing which

as done in R version 3.3.1 with Limma package version 3.28.21 and edgeR 3.14.0, and are available under GNU General Public

License V3 in a GitHub project in the following url https://github.com/saezlab/protein_attenuation. Plotting was done using Python

modules Matplotlib version 1.4.3 (Hunter, 2007) and Seaborn version 0.7.0. Generalised linear models were built using Python

module Sklearn version 0.17.1 (Pedregosa et al., 2011). Data analysis and structuring was carried out using Python module Pandas

version 0.18.1 (McKinney, 2010).
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Supplementary	Figure	1.	Related	to	Figure	1.	Proteomics	data-sets	PCA	analysis	using	proteins	
consistently	measured	across	all	the	samples	and	pearson	correlation	coefficient	between	the	
first	10	principal	components	and	the	possible	confounding	factors,	 i.e.	age,	tumour	type	and	
gender.	A)	Analysis	performed	on	the	original	proteomics	data-sets.	B)	Analysis	performed	on	the	
proteomics	data-set	after	the	confounding	factors	were	regressed-out.	
	 	



	
Supplementary	Figure	2.	Related	to	Figure	1.	Transcriptomics	data-sets	PCA	analysis	and	pearson	
correlation	coefficient	between	the	first	10	principal	components	and	the	possible	confounding	
factors,	 i.e.	 age,	 tumour	 type	 and	 gender.	 A)	 Analysis	 performed	 on	 the	 voom	 transformed	
transcriptomics	measurements.	B)	Analysis	performed	on	the	transcriptomics	data-set	after	the	
confounding	factors	were	regressed-out.	
	
	 	



	
Supplementary	 Figure	 3.	 Related	 to	 Figure	 3.	 Protein	 complexes	 regulatory	 interactions	
identified	 using	 transcriptomics	 of	 the	 putative	 regulatory	 protein	 (Px).	 A)	 Volcano	 plot	
representing	 the	 effect	 size	 on	 the	 x	 axis	 and	 FDR	 adjusted	 p-value	 on	 the	 y	 axis.	 Diagram	
representing	 the	 linear	 model	 used	 to	 perform	 the	 associations.	 B)	 Overlap	 between	 the	
significant	regulatory	associations	found	using	the	copy-number	variation	and	transcriptomics	of	
the	Px	proteins.	C)	Number	of	significant	associations	with	a	Positive	or	Negative	effect	size.	
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Supplementary	Figure	4.	Related	to	Figure	7.	Tumour	and	cell	lines	samples	attenuation	potential	
analysis.	 A)	 Benchmark	 of	 the	 gene-signature	 protein	 attenuation	 potential	 of	 the	 tumour	
samples	 using	 a	 logistic	 classification	 model.	 B)	 &	 C)	 Tumour	 samples	 attenuation	 potential	
correlation	with	ploidy	and	purity,	respectively.	D)	Volcano	plot	of	the	drug	response	associations	
performed	 in	 the	 cell	 line	 panel	 using	 the	 cell	 lines	 putative	 attenuation	 potential	 as	 the	
predictive	feature.	Significant	associations	(FDR	<	5%)	of	chaperone	and	proteasome	inhibitors	
are	 labelled	and	marked	 in	 red.	Ubiquitin-protein	 ligase	MDM2	 inhibitors	 are	 labelled.	 E)	GO	
terms	enrichment	analysis	of	the	protein	attenuation	gene-expression	signature.	Top	30	positive	
and	 negative	 significantly	 enriched	GO	 terms	 are	 shown.	 Red	 background	 denotes	GO	 terms	
enriched	 for	genes	correlating	positively	with	 the	protein	attenuation	potential,	blue	denotes	
enrichments	 for	 negative	 correlations.	 F)	 Shows	 the	 genes	 more	 frequently	 present	 in	 the	
significantly	enriched	gene-signatures.	Top	30	most	frequent	genes	are	shown	for	the	negative	
(left)	and	positive	(right)	enriched	gene-sets.	
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