Supporting Information:

Patient-derived Airway Secretion Dissociation Technique to Isolate and Concentrate Immune cells using Closed-loop Inertial Microfluidics

Hyunryul Ryu¹, Kyungyong Choi^{1,2}, Yanyan Qu³, Taehong Kwon^{1,2}, Janet S. Lee^{3,5} and Jongyoon Han^{1,2,4}

¹Research Laboratory of Electronics,

²Department of Electrical Engineering and Computer Science,

⁴Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

³Department of Medicine, and the ⁵Vascular Medicine Institute, University of Pittsburgh, NW628 Montefiore University Hospital, 3459 Fifth Avenue, Pittsburgh, PA 15213, USA

Corresponding authors

Jongyoon Han (jyhan@mit.edu)

Supplementary Figure S1. Photograph images of (A) 4-parallel spiral microfluidics (top) with fluidic adaptor (down), and (B) experimental setup for closed-loop operation.

Supplementary Figure S2. (A) Photograph and (B) microscopic images of patient-derived airway secretions before and after the closed-loop separation.

Supplementary Figure S3. Flow cytometric comparison of resulting suspension by (A) closed-loop separation and (B) mucolytic (DTT) method.

Supplementary Figure S4. Comparison of closed-loop and mucolytic (DTT) separated PMNs with blood-borne neutrophils (A) without external stimulation and (B) with neutrophil elastase inhibitor.

Supplementary Figure S5. Photograph images of patient airway secretion samples used in NE release functional assays.

Supp. Figure S1

Supp. Figure S2

В

Α

Supp. Figure S3

Supp. Figure S5