Binding of Cobaltocenium-containing Polyelectrolytes with Anionic Probes

Parasmani Pageni, Mohammad Pabel Kabir, Peng Yang and Chuanbing Tang*

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States

E-mail: tang4@mailbox.sc.edu.

Supporting Information

Figure S1: (Left): isotherm describing the binding of 5(6)-carboxyfluorescein (CF) to cobaltocenium containing polymer, monitored through fluorescence intensity in a buffered water solution (pH 7.4). $[CF^{3-}] = 1.0 \times 10^{-6}$ M; (Right): structure and protonation states of CF when dissolved in a buffered aqueous solution at pH 7.4.

Figure S2. Fluorescence and absorbance isotherms from titration of a P-CFn complex with trianionic displacers with different shape. $[CF] = 1.0 \times 10^{-6} \text{ M}$, $[Co^+] = 4.0 \times 10^{-6} \text{ M}$ in buffered solution (50 mM Tris at pH 7.4), $\lambda \text{exc} = 494 \text{nm}$.

Figure S3. Fluorescence and absorbance isotherms from titration of a P-CFn complex with different size of displacers. $[CF] = 1.0 \times 10^{-6} \text{ M}$, $[Co^+] = 4.0 \times 10^{-6} \text{ M}$ in buffered solution (50 mM Tris at pH 7.4), $\lambda \text{exc} = 494 \text{nm}$.

Figure S4. ¹H NMR spectrum of cobaltocenium monomer CoAEMAPF₆ in CD₃COCD₃.

Figure S5. ¹H NMR spectrum of poly((2-dimethylamino)ethyl methacrylate).

Figure S6. ¹H NMR spectrum of poly(cobaltocenium methacrylate).

Figure S7. Model carboxylates used as anionic probes.

Figure S8. Polyelectrolytes used for this experiment.

Figure S9. The transmittance of various polyelectrolyte solutions: A) 1.0 mL 0.10 mM PCoCl solution with different concentration of 1.0 mL PSSNa; B) 1.0 mL 0.10 mM PDMAEMA solution with various concentrations of 1.0 mL PSSNa; C) Transmittance ratio (T_t/T_o) as a function of concentrations of PSSNa.