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ABSTRACT

The unwelcome evolution of malignancy during cancer progression emerges through a selection process in a complex hetero-
geneous population structure. In the present work, we investigate evolutionary dynamics in a phenotypically heterogeneous
population of stem cells (SCs) and their associated progenitors. The fate of a malignant mutation is determined not only by
overall stem cell and non-stem cell growth rates but also differentiation and dedifferentiation rates. We investigate the effect
of such a complex population structure on the evolution of malignant mutations. We derive exactly calculated results for the
fixation probability of a mutant arising in each of the subpopulations. The exactly calculated results are in almost perfect
agreement with the numerical simulations. Moreover, a condition for evolutionary advantage of a mutant cell versus the wild
type population is given in the present study. We also show that microenvironment-induced plasticity in invading mutants
leads to more aggressive mutants with higher fixation probability. Our model predicts that decreasing polarity between stem
and non-stem cells’ turnover would raise the survivability of non-plastic mutants; while it would suppress the development of
malignancy for plastic mutants. The derived results are novel and general with potential applications in nature; we discuss
our model in the context of colorectal/intestinal cancer (at the epithelium). However, the model clearly needs to be validated
through appropriate experimental data. This novel mathematical framework can be applied more generally to a variety of
problems concerning selection in heterogeneous populations, in other contexts such as population genetics, and ecology.

Appendix A - Characteristic equation

Starting from the master equation of the given model (where for N = NS +ND, we assume that 1/N is the duration of each
updating time)

∂ p(nS,nD; t)
N ∂ t

= W+
S (nS−1,nD) p(nS−1,nD; t)+W−S (nS +1,nD) p(nS +1,nD; t)

+W+
D (nS,nD−1) p(nS,nD−1; t)+W−D (nS,nD +1) p(nS,nD +1; t)

−
(
W+

S (nS,nD)+W+
D (nS,nD)+W−S (nS,nD)+W−D (nS,nD)

)
p(nS,nD; t), (1)

the generating equation can be derived by assuming the probability generating function (PGF) in which coefficients define the
probabilities of being at different possible states after a given time.

Starting from the master Eq. (1) discussed in the previous section, we can analyze the probability of absorption (fixation
or extinction) using generating function techniques recently developed for the constant population birth-death processes1.
Defining the probability generating function (PGF) of the probability density function p(nS,nD; t) of having nS mutant SCs and
nD mutant DCs at time t. Then the PGF is

F(zS,zD; t) = ∑
nS,nD

znS
S znD

D p(nS,nD; t) (2)



Using the PGF one can rewrite the master equation (the latter equation) for PGF to derive the characteristic equations as follows

∂F
N ∂ t

= (z−1
S −1)

〈
(W−S − zS W+

S )znS
S znD

D

〉
+(z−1

D −1)
〈
(W−D − zD W+

D )znS
S znD

D

〉
, (3)

where the operators W±S and W±D are

W+
S (nS,nD) = Prob(nS,nD→ nS +1,nD)

=

(
r2 (1−u2)nS + r̃2 η2 nD

r1 (NS−nS)+ r2 nS + r̃1(ND−nD)+ r̃2 nD

)
NS−nS

NS
,

W−S (nS,nD) = Prob(nS,nD→ nS−1,nD)

=

(
r1 (1−u1)(NS−nS)+ r̃1 η1 (ND−nD)

r1 (NS−nS)+ r2 nS + r̃1(ND−nD)+ r̃2 nD

)
nS

NS
,

(4)
W+

D (nS,nD) = Prob(nS,nD→ nS,nD +1)

=

(
r̃2 (1−η2)nD + r2 u2 nS

r1 (NS−nS)+ r2 nS + r̃1(ND−nD)+ r̃2 nD

)
ND−nD

ND
,

W−D (nS,nD) = Prob(nS,nD→ nS,nD−1)

=

(
r̃1 (1−η1)(ND−nD)+ r1 u1 (NS−nS)

r1 (NS−nS)+ r2 nS + r̃1(ND−nD)+ r̃2 nD

)
nD

ND
.

W±D (nS,nD) and W±D (nS,nD) define the transition probabilities for increase/decrease in the number of mutant SCs and DCs
respectively Acquiring these probabilities with those for no change in the number of mutant cells in either compartments, one
can define the transition matrix which incorporates random walks among various states prior to fixation.

Substituting Eqs. (4) into generating equation (3), we obtain:

∂F
N ∂ t

=
〈 (z−1

S −1)(r2 (1−u2)nS + r̃2 η2 nD)(NS−nS)

(r1 (NS−nS)+ r2 nS + r̃1(ND−nD)+ r̃2 nD)NS

〉
+
〈 (1− zS)(r1 (1−u1)(NS−nS)+ r̃1 η1 (ND−nD))nS

NS(r1 (NS−nS)+ r2 nS + r̃1(ND−nD)+ r̃2 nD)

〉
+
〈 (z−1

D −1)(r̃2 (1−η2)nD + r2 u2 nS)(ND−nD)

(r1 (NS−nS)+ r2 nS + r̃1(ND−nD)+ r̃2 nD)ND

〉
+
〈 (1− zD)(r̃1 (1−η1)(ND−nD)+ r1 u1 (NS−nS))nD

(r1 (NS−nS)+ r2 nS + r̃1(ND−nD)+ r̃2 nD)ND

〉
(5)

Defining n̂S = zS
∂

∂ zS
, n̂D = zD

∂

∂ zD
, we conclude

∂F
N ∂ t

=
{
(z−1

S −1)W−S (n̂S, n̂D)+(zS−1)W+
S (n̂S, n̂D)+(z−1

D −1)W−D (n̂S, n̂D)+(zP−1)W+
D (n̂S, n̂D)

}
F. (6)

For large – NS (ND), we can simplify the latter equation for the probability generating function by keeping the linear derivative
terms to leading order in NS (ND). This tends to

∂F
N ∂ t

' (zS−1)

{
r2(1−u2)zS

∂F
∂ zS

+ r̃2 η2 zS
∂F
∂ zD

N̂r
−

r1 (1−u1)NS
∂F
∂ zS

+ r̃1 η1 ND
∂F
∂ zS

N̂r NS

}

+(zD−1)

{
r̃2(1−η2)zD

∂F
∂ zD

+ r2 u2 zS
∂F
∂ zS

N̂r
−

r̃1 (1−η1)ND
∂F
∂ zD

+ r1 u1 NS
∂F
∂ zD

N̂r ND

}
, (7)

where the operator

N̂r = r1 (NS− n̂S)+ r2 n̂S + r̃1(ND− n̂D)+ r̃2 n̂D, (8)

can be considered constant when NS and ND are set to be large, NS,ND� 1.
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Setting the coefficients of the derivatives ∂F
∂ zS

and ∂F
∂ zD

to zero, we obtain approximate quasi-stationary points of this constant
population dynamics at the large–t limit. This relates to the corresponding martingales for NS,ND→ ∞ branching process limit.
Denoting the solutions with z?S and z?P, one attains

(z?S−1) [r2(1−u2)z?S− r1(1−u1)− r̃1 η1]+ (z?D−1)z?S r2 u2 = 0
(9)

(z?D−1) [r̃2 (1−η2)z?D− r̃1 (1−η1)− r1 u1]+ (z?S−1)z?D r̃2 η2 = 0.

Appendix B - Fixation probability
Taking advantage of the generating function, an exactly calculated approach for the fixation probability can be derived even in
the presence of plasticity (when mutation and mutation–back do not occur). The results are obtained for a BD Moran process;
however, a similar calculation can be performed for a Voter (DB) Model with presumably different fixed points for the same
initial conditions. The boundary and initial conditions for the corresponding generating function are respectively as follows

F(zS = 1,zD = 1, t) = 1, for any t > 0, (10)

F(zS,zD, t = 0) = zi
S z j

D, (11)

where i and j are the initial number of cancer SCs and DCs respectively. For the following special cases, the system has two
absorbing states at equilibrium which signify fixation and extinction for mutant cells in either compartments. We denote the
probability of reaching extinction and fixation states by B0 and B1 respectively Thus we obtain the following result from the
PGF at steady state

F(zS,zD, t→ ∞) = p(nS = 0,nD = 0, t→ ∞)+ p(nS = NS,nd = ND, t→ ∞)zNS
S zND

D

= B0 +B1 zNS
S zND

d , (12)

based on the boundary condition (10), B0 +B1 = 1. Biologically, since the mutant DCs are produced by cancer SCs, extinction
of cancer SCs will result in replenishment of mutant DCs. Moreover, the co-operation between SCs and DCs suggests that it is
impossible to have mutant SCs fixate while DCs become completely extinct. We conclude that

F(zS,zD, t→ ∞) = 1−B1

(
1− zNS

S zND
D

)
. (13)

Finally, applying the initial condition, F(zS,zD, t = 0) = zi
S z j

D and the boundary condition, F(zS = 1,zD = 1, t) = 1, the
fixation probability for an initial population of i malignant stem cells and j progenitors is derived as

ρi j =
1− (z?S)

i (z?D)
j

1−
(
z?S
)NS

(
z?D
)ND

, (14)

where (z?S,z
?
D) is the nontrivial fixed point of the generating Eq. (9).

Now one can conclude the fixation probability of a newborn mutant in the SC compartment, which means that in relation 14
(i = 1 and j = 0) to take over the entire population as follows:

ρS ≡ ρ10 =
1− z?S

1−
(
z?S
)NS
(
z?D
)ND

. (15)

On the other hand, one can obtain the fixation probability that an imposed malignant mutation in the DC compartment which
eventually take over the whole population (i = 0, j = 1):

ρD ≡ ρ01 =
1− z?D

1−
(
z?S
)NS
(
z?D
)ND

. (16)

In general, the imposed mutation can occur randomly in the population. Assuming a uniform distribution for the occurrence of
the mutation to give an equal chance to each of individuals within the population to get the malignant mutations. Then the
average fixation probability of the mutant arising either in the SC or DC compartment is given by

ρ =
1− (NS/Ntot)z?S− (ND/Ntot)z?D

1−
(
z?S
)NS
(
z?D
)ND

. (17)

with Ntot = NS +ND.
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Appendix C - Finding the quasi–fixed points and the associated survival probabilities
An interesting scenario occurs when the normal component is not plastic, i.e. η1 = 0, in which case the above equations can be
simplified to the following expression of z?S,z

?
D 6= 1

z?D =

(
r1 (1−u2)(r̃1 + r1 u1)

)
z?S + r1 (1−u1)(r̃1 + r1 u1)(

r1 r2 (1−u2)(1−η1)− r̃2 r2 u2 η2

)
z?S− r1 r2 (1−u1)(1−η2)

. (18)

Eqs. (??) can be reduced to the following closed form(
A− B

z?S

)(
E− F

z?D

)
=C .G, (19)

where

A = r2 (1−u2), B = r1 (1−u1)+ r̃1 η1, C = r2 u2, (20)
E = r̃2 (1−η2), F = r̃1 (1−η1)+ r1 u1, G = r̃2 η2.

The latter equations together with the original system suggest the following solution for zS and thus represent another fixed
point of the problem:

(A2E−ACG) (z?S)
3 +(ACF +C2G+BCG+ACG−2ABE−A2E−ACE) (z?S)

2

+(B2E +BCE +2ABE−BCG−BCF)z?S = B2E. (21)

Now let us consider the following particular cases which give rise to some interesting consequences of the model.

C1. Standard Moran process
Assume that there is no transition (migration) between SC and DC compartments (two islands), that is, ui,η j� 1 for i, j = 1,2.
Then each compartment will follow the mass–action BD Moran model with the fixed points for z?S and z?D where the overall
behavior is akin to two disjoint Moran processes. The solutions to Eqs. (9) are

(1) z?S = 1, z?D = 1,

(2) z?S = 1, z?D = r̃1
r̃2
,

(3) z?S = r1
r2
, z?D = 1,

(4) z?S = r1
r2
, z?D = r̃1

r̃2
.

where the solution (4) accounts for the fixed points of two separated Moran models in SC and Dc groups. Therefore, the fixation
probabilities of starting from one imposed mutant in SC and DC groups respectively are

ρ1 =
1− r1

r2

1−
(

r1
r2

)NS
, ρ2 =

1− r̃1
r̃2

1−
(

r̃1
r̃2

)ND
. (22)

Another interesting limit that results in a well-mixed Moran model in the SC class occurs when r̃1,2 ' 0 where SCs are also
committed to reach a stationary state. Then the solutions to Eqs. (9) are given by

(1) z?S = 1, z?D = 1,

(2) z?S = r1
r2
, z?D = 1.

Compared with the result from the previous case, the second solution relates to the solution of a well–mixed model occurring in
the SC compartment where the only absorbing state for mutant DCs is to take over the whole population where the evolutionary
scenario accounts for cancer DCs domination. In this scenario, the average fixation probability is

ρ =
NS

(
1− r1

r2

)
Ntot

(
1−
(

r1
r2

)NS
) , (23)
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C2. Invasion in hierarchical model (no plasticity)
Now we consider the case where no plastic potential is taken into account during the whole process, we assume that r1 = r̃1 = 1,
r2 = r̃2 = r, u1 = u2 = u, and η1 = η2 = 0. in this situation, one obtains the following solutions

(1) z?S = 1, z?D = 1,

(2) z?S =
1

ueff
, z?D = 1

(3) z?S = −r+u1+u2 u1−1+u2+Γ

2r(−1+u2)
, z?D = u1+1

r .

where ueff =
r(1−u2)

1−u1
is the effective asymmetric division rate and

Γ
2 = 1−6ru2u1 +u2

1 +2ru2−2r−2u2−2u1 +2ru1 + r2 +2u2u2
1 +2u2

2u1 +u2
2 +u2

2u2
1. (24)

The third solution cannot be maintained in reality since there is no cooperation between the compartments, which could result
in support for the mutant SC by the mutant DC group. In such a case, the only possible outcome would be the fixation of the
mutant DCs. Collectively, we find

ρS =
1− 1−u1

r(1−u2)

1−
(

1−u1
r(1−u2)

)NS
, ρD = 0, ρ =

NS

Ntot
ρS. (25)

C3. Invasion with phenotypic plasticity (dedifferentiation)
Suppose that dedifferentiation only occurs for the mutant DCs at a rate η2 = η for η� η1 ≈ 0. Also let assume that r1 = r̃1 = 1,
r2 = r̃2 = r, u1 = u2 = u and η2 = η , then the solutions for z?S and z?D are

(1) z?S = 1, z?D = 1,

(2) z?S satisfies in the equation

(A2E−ACG) (z?S)
3 +(ACF +C2G+BCG+ACG−2ABE−A2E−ACE) (z?S)

2

+(B2E +BCE +2ABE−BCG−BCF)z?S = B2E,

where A = r(1−u), B = 1−u,C = ru, E = r(1−η), F = u+1, G = rη , and z?D =
(z?S+1)(1−u2)

r[(1−u−ruη)z?S−(1−u)(1−η)] .

The values for z?S and z?D, in this case, satisfy the following relations:(
A− B

z?S

)(
E− F

z?D

)
=C .G, z?D =

(z?S +1)(1−u2)

r[(1−u− ruη)z?S− (1−u)(1−η)]
, (26)

where A = r(1−u), B = 1−u,C = ru, E = r(1−η), F = u+1, G = rη .
The derived solutions introduce the possible fixed points of the characteristic equations. We investigate this case in more

detail later and through analyzing the phase diagram of the generalized model for non-zero plasticity in the replicator dynamics.

Appendix D - Phase diagram of the system
Now, acquiring the replicator dynamics of the four compartment model which depict the alterations in the the average
frequencies of mutant SCs and DCs, respectively. xS = 〈nS(t)/NS〉 and xD = 〈nD/ND〉, one obtains the following system of
equations:

dxS

dt
≈

〈
W+

S −W−S
〉

=
[r2 (1−u2)− r1 (1−u1)]xS (1− xS)+ r̃2 η2 xD (1− xS)− r̃1η1 xS (1− xD)

r1 (1− xS)+ r2 xS + r̃1 (1− xD)+ r̃2 xD
,

(27)dxD

dt
≈

〈
W+

D −W−D
〉

=
[r̃2 (1−η2)− r̃1 (1−η1)]xD (1− xD)+ r2 u2 xS (1− xD)− r1 u1 xD (1− xS)

r1 (1− xS)+ r2 xS + r̃1 (1− xD)+ r̃2 xD
.
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At equilibrium, the fraction of mutant stem and non-stem cell groups would lead to a specific states which are the pseudo–
fixed points of the problem. These type of fixed points can be attractive or repulsive, depending on the initial conditions of
the system. As we described in the paper, according to the cooperation between mutant SCs and DCs (and similarly between
normal SCs and DCs), the malignant individuals may become extinct or survive together. Now defining the fixed point as
(x?S,x

?
D), it may tend either to (0,0) or to (1,1). Such a criteria suggests two distinct phases for the fate of the malignant cells

which are separated by the phase boundary. At steady state, the following system can be derived for the fixed points x?S and x?D:

[r2 (1−u2)− r1 (1−u1)]x?S (1− x?S)+ r̃2 η2 x?D (1− x?S)− r̃1η1 x?S (1− x?D) = 0,
(28)

[r̃2 (1−η2)− r̃1 (1−η1)]x?D (1− x?D)+ r2 u2 x?S (1− x?D)− r1 u1 x?D (1− x?S) = 0.

To analyze the latter system, we may consider two important cases:

Case 1. At first, we assume u1 = u2 = η1 = η2 = 0, then the solutions to the system (28) results in the extinction or fixation
of mutant SCs and DCs. In this case, the phase diagram is simply divided to two advantageous (r > 1) and disadvantageous
(r < 1) cases.

Case 2. Suppose that r1 = r̃1 = 1,r2 = r̃2 = r,u1 = u2 = u,η1 = 0, and η2 =: η . This introduces an interesting scenario in
which plasticity occurs only for the cancerous cells but not for the WT individuals. These restrictions simplify system (28) to
the following possible cases for x?S and x?D

(1) x?S = 0, x?D = 0,

(2) x?S = 1, x?D = 1,

(3) x?S = 1, x?D = r u
1−r+r η

, and

(4) x?S = r η A M−1
1 , x?D = A M−1

2 ,

where

M1 = 3ru2 +3r+2u−3r2u2 +6r2u−6ru− rη−2r3u−2r2
ηu+ rηu+2r2

η

+r3
ηu−3r2 + r3 + r3u2− r3

η−1−u2,
(29)

M2 = r2u+ r2
η− r2−2ru− rη +2r−1+u,

A = 2r−1− rη + r2u+ r2
η +u2− ru− r2 + rηu− ru2.

Among the given solutions (1)-(4) of the present case, the only acceptable non–trivial solution is (4). The solution (3) does
not satisfy the condition 0≤ xD ≤ 1 for all possible values of r,u, and η . Moreover, as we described above, the cooperation
among mutant cells results in the fixation of both mutant SC and DC groups to the state (1,1).

The last solution, then, implies that having (xS,xD)→ (0,0) leads to the following solution

A = (u+η−1)r2 +
[
−u2 +(η−1)u+2−η

]
r−1+u2 = 0, (30)

which characterizes the advantageous and disadvantageous regions for mutants (see Fig. 6 for more details). Another limit
relates to the case where (xS,xD) approaches (1,1). One obtains

r η = (r−1)(u−1) (31)

This condition, which is not defined for r > 1, does not change the phase diagram and would not have any effect on the selection
pressure of the system on mutants.
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