Table S3: Maxima and confidence intervals of $d_{\rm NC}$ taken from $p(d_{\rm NC}|D,K)$ of the single-state refinement of LBP. All interdomain distances $d_{\rm NC}$ in nanometer. Refining a single state against SAXS curves that, in truth, represent a heterogenous ensemble of open/closed states, yields posterior distributions that peak at the "mean" interdomain distance $\langle d_{\rm NC} \rangle = w_{\rm open} d_{\rm NC}^{\rm open} + (1 - w_{\rm open}) d_{\rm NC}^{\rm closed}$, where $d_{\rm NC}^{\rm open}$ and $d_{\rm NC}^{\rm closed}$ denote the mean interdomain distances of the open and closed states, in free simulations, respectively. The respective posteriors are shown in Fig. S1B. True $w_{\rm open}$ (%) mean $\langle d_{\rm NC} \rangle$ maximum 65% interval 95% interval

True w_{open} (%)	mean $\langle d_{\rm NC} \rangle$	maximum	65% interval		95% interval	
0	3	3.01	2.96	3.06	2.93	3.12
25	3.0625	3.12	3.07	3.16	3.03	3.19
50	3.125	3.14	3.10	3.20	3.06	3.24
75	3.1875	3.20	3.16	3.24	3.11	3.28
100	3.25	3.23	3.20	3.28	3.16	3.34