Supplementary Material

A Fully-Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of Overall Survival in Glioblastoma Multiforme

Qihua Li^{1,+}, Hongmin Bai^{2,+}, Yinsheng Chen^{3,+}, Qiuchang Sun¹, Lei Liu¹, Sijie Zhou², Guoliang Wang², Chaofeng Liang^{4,*}, and Zhi-Cheng Li^{1,+,*}

¹Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

²Department of Neurosurgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China.

³Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.

⁴Department of Neurosurgery, The 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, China

^{*}Corresponding author: Chaofeng Liang (lcfjeff@163.com) and Zhi-Cheng Li (zc.li@siat.ac.cn). ⁺Qihua Li, Hongmin Bai, Yinsheng Chen and Zhi-Cheng Li contributed equally to this work.

Supplementary Method 1

Automatic Segmentation of Multiregional GBM

Based on T1, T1C, T2 and FLAIR images, we aimed to segment the image into five classes: the non-tumor region (label 0) and four tumor subregions including necrosis (label 1), edema (label 2), non-enhancing area (label 3), and enhancing area (label 4). We used a voxel-wise random forest method to classify the images into five classes. Random forest is able to provide the feature importance measures directly [1]. The first step was feature extraction (for segmentation, not for radiomics analysis). For voxel $i \in P$ where P denote the voxel set, the features extracted from each MR modalities comprised 1 intensities, 6 first-order textures including mean, variance, skewness, kurtosis, energy and entropy, 16 Gabor texture features, 2 symmetric features, and 24 context features.

For each voxel i in four MR modalities we obtained a 196-dimensional feature vector \mathbf{x}_i as

$$\mathbf{x}_i = [\mathbf{x}_{i,T1}, \mathbf{x}_{i,T1C}, \mathbf{x}_{i,T2}, \mathbf{x}_{i,FL}],\tag{1}$$

where $\mathbf{x}_{i,T1}, \mathbf{x}_{i,T1C}, \mathbf{x}_{i,T2}$, and $\mathbf{x}_{i,FL}$ denoted the feature vectors extracted from the four MR modalities, respectively. Then, we used random forest as the classifier that output for every voxel *i* a probability $Pr(y_i|\mathbf{x}_i)$ corresponding to every tissue type $y_i \in \{0, 1, 2, 3, 4\}$.

During the classification, the importance of each feature $x_i \in \mathbf{x}_i$ can be used to assess their contributions to the classification task [2] and be computed as

$$w_{mod} = \frac{1}{W} \sum_{x \in \mathbf{x}_{mod}} w(x), \tag{2}$$

where mod denoted a specific MR modality, w(x) was the importance for feature x that belongs to \mathbf{x}_{mod} , and W was the sum of the importance for all features. Here we had $w_{T1} + w_{T1C} + w_{T2} + w_{FL} = 1$.

Then, the final segmentation can be formulated by minimizing a second-order CRF cost function as

$$E_i = \sum_{i \in P} D(y_i, \mathbf{x}_i) + \sum_{i \in P, j \in N_i} V(y_i, y_j, \mathbf{x}_i, \mathbf{x}_j),$$
(3)

where the singleton potential D and the pairwise potential V denoted respectively the data cost and the prior smoothness cost. (\mathbf{x}_i, y_i) was the feature-label pair for voxel i, and N_i was the neighbors of voxel i. Here we used 26-neighborhood system. The data cost D only depended on (\mathbf{x}_i, y_i) , representing the penalty of assigning label y_i to voxel i. D was defined as the local negative log-likelihood as

$$D(y_i, \mathbf{x}_i) = -\ln \Pr(y_i | \mathbf{x}_i). \tag{4}$$

The pairwise potential V posed spatial smoothness constrain in neighboring voxels. Taking into account the different importance of features from different modalities, V was given by a weighted sum of four smoothness functions corresponding to the four modalities as

$$V = w_{T1}V_{T1} + w_{T1C}V_{T1C} + w_{T2}V_{T2} + w_{FL}V_{FL}.$$
(5)

Inspired by the work given by Boykov et al. in [3], V_{T1} was defined as

$$V_{T1} = \lambda_{i,j} \cdot \exp\left(-\frac{(I_i - I_j)^2}{2\sigma^2}\right) \cdot \frac{\delta(y_i, y_j)}{\|i - j\|},\tag{6}$$

where

$$\delta = \begin{cases} A & \text{if } y_i = 0, y_j = 1, 4 \text{ or } y_j = 0, y_i = 1, 4 \\ 1 & \text{otherwise if } y_i \neq y_j \\ 0 & \text{otherwise} \end{cases}$$
(7)

In Eq.(6), $\lambda_{i,j}$ was a weighting factor. I was the intensity. σ was the intensity variance within the local neighborhood system. The function penalized a lot for feature discontinuous between neighbors with similar intensities when $|I_i - I_j| < \sigma$. If the intensity difference was large, i.e. $|I_i - I_j| > \sigma$, the penalty becomes small. The δ function penalized different labels between neighbors, especially for the case of necrosis or enhancing area neighboring healthy tissue (A = 3.5 here). Then, V_{T1C}, V_{T2}, V_{FL} can be defined in similar formulations. Finally, the CRF cost function in Eq.(3) was optimized using the graph-cuts method [4].

Supplementary Table 1: A Summary of The high-throughput radiomics features extracted. Here the high-order texture features were extracted using several different methods, including the gray-level co-occurrence matrix (GLCM), gray-level run length matrix (GLRLM), gray level size zone matrix (GLSZM) and neighborhood gray-tone difference matrix (NGTDM) methods. The calculation details of these features can be found in [5]. In total, 45792 features were extracted, consisting of 864 first-order features, 18144 GLCM features, 11232 GLRLM features, 11232 GLSZM features, and 4320 NGTDM features. The number of basic types of first-order, GLCM, GLRLM, GLSZM and NGTDM features were 12, 21, 13, 13, and 5, respectively. Note that there were two different calculations for both GLCM_Homogeneity and GLCM_Informational Measure of Correlation, which can be found in [5]. The number of features extracted in each class can then be calculated. For example, GLRLM features were extracted with 36 parameter combinations from 6 regions and 4 MR modalities, so in total we had $13 \times 36 \times 6 \times 4 = 11232$ GLRLM features.

Feat	ure Classes	Feature Names			
		MaxValue, MedianValue, MinValue, MeanValue, Energy, Entropy,			
First-order	• Texture Features	Variance, Kurtosis, Root Mean Square, Skewness, Standard Deviation,			
		Mean Absolute Deviation			
		Contrast, Correlation, Difference Entropy, Entropy,			
		Informational Measure of Correlation, Sum Average, Sum Entropy,			
	CI CM Fortune	Sum Variance, Variance, Difference Variance, Autocorrelation,			
High-order	GLCM Features	Cluster Prominence, Energy, Cluster Shade, Dissimilarity,			
Texture		Inverse Difference Normalized, Homogeneity, Maximum Probability,			
Features		Inverse Difference Moment Normalized			
		Short Run Emphasis, Long Run Emphasis, Gray-Level Non-uniformity,			
		Run-Length Non-uniformity, Low Gray-Level Run Emphasis,			
	GLRLM Features	High Gray-Level Run Emphasis, Short Run Low Gray-Level Emphasis,			
		Short Run High Gray-Level Emphasis, Gray-Level Variance,			
		Long Run Low Gray-Level Emphasis, Run-Length Variance,			
		Long Run High Gray-Level Emphasis, Run Percentage			
		Small Zone Emphasis, Large Zone Emphasis, Gray-Level Non-uniformity,			
		Zone-Size Non-uniformity, Low Gray-Level Zone Emphasis,			
	CI SZM Footuros	High Gray-Level Zone Emphasis, Small Zone Low Gray-Level Emphasis,			
	GLOZIN Features	Small Zone High Gray-Level Emphasis, Gray-level Variance,			
		Large Zone Low Gray-Level Emphasis, Zone-Size Variance,			
		Large Zone High Gray-Level Emphasis, Zone Percentage			
	NGTDM Features	Coarseness, Contrast, Busyness, Complexity, Strength			

Supplementary Figure 1: Extraction of high-throughput multiparametric radiomics features. To test the effects of image standardization parameters, the features were extracted at different combinations of voxel sizes (1, 2, and 3mm), quantization methods (uniform quantization, the equal-probability quantization, and the Lloyd-Max quantization) and gray levels (32, 64, 128 and 256).

Supplementary Table 2: Segmentation results on subset of BRATS2015 test data. For BRATS, three tumor regions were evaluated, including the whole tumor (tumor core and edema), the tumor core (necrosis, enhancing area and non-enhancing area) and the active tumor (enhancing area). For each tumor region, three metrics were calculated via the BRATS online evaluation system, including the Dice score, the sensitivity and the specificity. Each measure was given as median and range.

Tumor Region	DICE score	sensitivity	specificity	
whole tumor	0.824, 0.370	0.861, 0.329	0.929, 0.565	
tumor core	0.752, 0.281	0.809, 0.357	0.824, 0.352	
active tumor	0.709, 0.445	0.811, 0.292	0.845, 0.473	

Supplementary Table 3: A Summary of the Reproducible Features Selection. VS, QM and GL are short for voxel size, quantization method and gray level, respectively.

		Reproducible First-order	Reproducible high-order			
Featur	e Classes	Features Against	Features Against			
		VS	vs	$\mathbf{Q}\mathbf{M}$	\mathbf{GL}	Summary
	T1	47	48	94	70	156
MRI	T1C	49	53	117	63	182
Modalities	T2	50	50	126	68	193
	FLAIR	49	50	91	69	158
	Necrosis	30	1	111	75	120
	Enhancing	34	48	65	30	119
Tumor	Nonenhancing	28	0	79	69	106
Subregions	Edema	32	51	60	32	117
	Core	36	51	64	33	120
	Whole Tumor	35	50	49	31	107
	GLCM	-	120	128	140	291
Texture	GLRLM	-	49	112	52	172
Types	GLSZM	-	32	131	54	169
	NGTDM	-	0	57	24	57
Summary	-	195			689	

-1.0

Supplementary Figure 2: Heat map of the correlation coefficients of the selected 164 features. The coefficients (z-score: -1 to 1) were clustered. The brighter the red (blue) color, the higher (lower) the correlation.

Supplementary Figure 3: The optimal λ selection in LASSO Cox regression model for the multiparametric radiomics signature. The partial likelihood deviance was plotted versus $\log(\lambda)$. The corresponding numbers of nonzero regression coefficients were shown at the top. The dotted vertical line was plotted at the optimal λ of 0.179 ($\log(\lambda) = -1.720$), generating 4 nonzero coefficients.

Supplementary Table 4: The results for construction of all 36 fixed-parameter radiomics signatures. The image standardization parameters, the selected features and corresponding coefficients, the optimal λ (log(λ) shown) and the optimal cutoff values are listed. VS, QM, GL, Uf, Eq and Ld are short for voxel size, quantization method, gray level, uniform, equal-probability, and Lloyd-Max, respectively.

Index	Parameters			Selected Features	Coefficients	$\log(\lambda)$	Cutoff
mucx	VS	$\mathbf{Q}\mathbf{M}$	GL	Science Features	Coemercians	log(X)	outon
				T1c_wholetumor_Energy	0.13966959		
			_	T1_wholetumor_GLCM_IMC1	0.12650752		0.1857687
1	1	Ld	32	T1_wholetumor_GLSZM_GLN	0.03110558	-1.638711	
				T1c_solidcore_GLRLM_HGRE	0.04634942		
				T1c wholetumor Energy	0.13456567		
				T1 wholetumor GLSZM GLN	0.08175473		
2	1	Ld	64	T1 wholetumor GLSZM LZLCE	-0 13373673	-1.68363	0.138059
				T1c solidcore CLBLM CLV	0.04373785		
				The wholetymory Energy	0.12645975		
	1			T1 wholetumor CI S7M L7L CF	0.12045875		0.2654483
3		Ld	128	T1. nononhonoinn CLCM IMC2	-0.11988007	-1.619012	
				T1c_nonennancing_GLCM_IMC2	-0.00087409		
				The helder English	0.02427534		
				T1_L_L_C_C_C_C_L_C_L_C_L	0.16796891		0.2128367
4	1	Ld	256	T1_wholetumor_GLCM_IMCI	0.16682933	-1.716306	
				T1_wholetumor_GLSZM_GLV	0.03197865		
				T1c_solidcore_GLSZM_HGZE	0.06016187		
				T1c_wholetumor_Energy	0.20071218		
				T1_enhancing_GLSZM_LGZE	-0.07201398		
				T1_solidcore_GLRLM_LRLGE	-0.09984925		
5	1	Eq	32	T1_wholetumor_GLSZM_LZE	-0.07480986	-1.814275	0.3181752
				T1_wholetumor_GLSZM_GLN	0.01323686		
				$T1_wholetumor_GLSZM_GLV$	0.09717779		
				Flair_edema_GLSZM_LGZE	-0.13090631		
		Eq		T1c_wholetumor_Energy	0.26023195	I	0.2491751
			64	T1_necrotic_GLRLM_LRLGE	-0.14304322		
6	1			T1_wholetumor_GLCM_IMC1	0.02059894	-1.808891	
				$T1_wholetumor_GLSZM_GLV$	0.14805526		
				T1c_nonenhancing_GLCM_IMC2	-0.10845935		
		Eq	128	T1c_wholetumor_Energy	0.17893878		0.1963157
	1			T1_necrotic_GLRLM_LRLGE	-0.08442391		
7				T1_wholetumor_GLCM_IMC1	0.08609644	-1.676164	
				T1_wholetumor_GLSZM_ZSV	0.02661481		
				T1c_nonenhancing_GLCM_IMC2	-0.07298281		
				T1c_wholetumor_Energy	0.19638573	-	0.1842904
0		Eq		T1_necrotic_GLSZM_LZLGE	-0.08929799	1 ==0010	
8			256	T1_wholetumor_GLCM_IMC1	0.12728308	-1.779213	
				T1c_nonenhancing_GLCM_IMC2	-0.07714256		
				T1c_wholetumor_Energy	0.11009807		
				T1_wholetumor_GLCM_IMC1	0.12352298		
9	1	Uf	Uf 32	T1c solidcore GLBLM HGBE	0.04856732	-1.612271	0.1671703
				Flair nonenhancing GLSZM SZLGE	-0.02501661		
				T1c wholetumor Energy	0.00226204		
10	1	Uf	64	T1 wholetumor GLSZM LZLGE	-0.09709271	-1.400993	0.0466622
	<u> </u>			T1c wholetumor Energy	0 16931530		
		Uf	f 128	T1 wholetumor GLCM IMC1	0.10301039		
				T1 wholetumor CLSZM LZLCE	0.13625046		
11	1			T1a popophaneing CLCM IMC2	-0.13023040	-1.694605	0.1051175
				T1a solidooro CI PI M CIV	-0.00330023		
				Flain mealature on CLSZM CLV	0.000000044		
				Tian_wholetumor_GL52WI_GLV	0.03930029		
				T1_halter CLCM IMC1	0.10/0700074		
12	1	Uf	256	T1_wholetumor_GLCM_IMC1	0.196553074	-1.765753	0.2348514
				TIC_SONGCOPE_GLSZM_HGZE	0.067450291		
				Flair_wholetumor_GLSZM_GLV	0.006261932		l
13	2	Ld	.d 32	T1_wholetumor_GLSZM_GLN	0.10582461	-1.487693	-0.0619009
			52	T1_wholetumor_GLSZM_LZLGE	-0.09138091		
<u>.</u>	2	. .	Ld 64	T1_wholetumor_GLSZM_LZE	-0.14722439		0.0000
14		Ld		T1_wholetumor_GLSZM_GLN	0.07147063	-1.663237	-0.0038622
				T2_wholetumor_GLSZM_SZHGE	0.05892811		
				T1_wholetumor_GLCM_IMC1	0.14624762		
15	2	Ld	128	T1_wholetumor_GLSZM_GLV	0.05788211	-1.692613	0.1434881

				${\rm T1c_solidcore_GLSZM_SZHGE}$	0.07332463									
16	2	Ld	256	$T1_wholetumor_GLCM_IMC1$	0.16614230	-1.529756	-0.0739198							
											$T1_solidcore_GLSZM_SZE$	0.02810284		
17 2 Eq		$\mathbf{E}\mathbf{q}$	$\mathbf{E}\mathbf{q}$	$\mathbf{E}\mathbf{q}$	$\mathbf{E}\mathbf{q}$	32	$T1_wholetumor_GLCM_DE$	0.06280980	-1.495821	-0.0293177				
			T1_wholetumor_GLSZM_ZSN	0.07058818										
18	2	Eq	64	T1_wholetumor_GLCM_IMC1	0.10908774	-1.487193	-0.0376271							
		*		T1_wholetumor_NGTDM_Busyness	0.00633358									
10		F	1.00	T1_nonenhancing_Kurtosis	-0.01872059	1 =00000								
19		Eq	128	Flair_edema_Maxvalue	0.04697253	-1.789826	-0.0653533							
				T2_nonenhancing_NGTDM_Complexity	0.23484965									
00			050	T1_wholetumor_GLCM_IMC1	0.17961958	1 500.45	0.0004460							
20	2	Еq	200	T1_wholetumor_NGTDM_Busyness	0.04400307	-1.70845	0.2304469							
				T1 aslidana CLSZM SZE	0.09889509									
91	2	TIC	30	T1 wholetumer CI CM IMC1	0.07344509	1 544705	0.0758735							
21	2	01	52	T1 wholetumor CI SZM ZSN	0.04087577	-1.044750	0.0100100							
				T1 wholetumor GLCM IMC1	0.12505132									
22	2	Uf	64	T1 wholetumor GLSZM GLN	0.07565145	-1.460712	-0.0380348							
	_	01	01	T2 wholetumor GLSZM SZHGE	0.01821020	11100112	0.0000010							
				T1_wholetumor_GLCM_IMC1	0.15085597									
23	2	Uf	128	T1_wholetumor_GLSZM_GLV	0.02864715	-1.648166	0.1285013							
				T1c_solidcore_GLSZM_SZHGE	0.04619429									
				T1_wholetumor_GLCM_IMC1	0.20293481									
24	2	Uf	256	T1c_solidcore_GLSZM_SZHGE	0.08461751	-1.71608	0.2135739							
				T1_wholetumor_GLCM_IMC1	0.05291504									
25	3	Ld	32	T1_wholetumor_GLSZM_GLN	0.07348525	-1.391169	0.09705524							
		T 1		T1_wholetumor_GLCM_IMC1	0.109807322	1 440405	0.01001014							
26	3	Ld	64	T1_wholetumor_GLSZM_ZSN	0.003830265	-1.448495	-0.01081814							
27	3	Ld	128	T1_wholetumor_GLCM_IMC1	0.1338743	-1.427335	-0.05171302							
		та	050	T1_wholetumor_GLCM_DE	0.0222978	1 400700	0.00087700							
20 3	Ld	Ld 250	T1_wholetumor_GLCM_IMC1	0.1084716	-1.499722	-0.02281199								
		Eq	Eq 32	T1c_wholetumor_Energy	0.01077575		-0.1218425							
20	3			T1_wholetumor_GLCM_Entropy	0.08385488	1.677647								
29	3			$T1_wholetumor_GLSZM_ZSN$	0.04034700	-1.077047								
				$T1_wholetumor_GLSZM_GLV$	0.14960871									
				T1c_wholetumor_Energy	-0.003670024									
30	3	Ea	64	T1_wholetumor_GLCM_IMC1	0.115577276	-1 660156	0.349093							
00		ĽЧ		$T1_wholetumor_GLSZM_GLV$	0.119796561	1.000100	0.349093							
				T1_wholetumor_GLSZM_ZSV	0.095959059									
				T1c_wholetumor_Energy	-0.03077251									
				T1_wholetumor_GLCM_IMC1	0.26792819									
31	3	Eq	Eq 128	T1c_enhancing_GLCM_MP	0.08235977	-1.891824	0.1531937							
				T2_enhancing_GLRLM_GLV	-0.01645377									
				Flair_nonenhancing_GLCM_CP	0.28517042									
00		Б	050	T1_wholetumor_GLCM_IMC1	0.16734563	1 500504	0.00007700							
32	3	Еq	200	Flair_nonennancing_GLCM_CP	0.11115066	-1.590704	0.08607738							
				Tla wholetumer Energy	0.01557695									
				T1 wholetumor_Energy	-0.009092083									
33	3	Uf	32	T1 wholetumor CI SZM CI N	0.107654100	-1.745909	-0.1876991							
				T1c popenhancing GLSZM LZLGE	-0.004657622									
				Tic wholetumer Energy	0.00106018									
				T1 enhancing CLSZM CLV	0.17714579									
34	3	Uf	Jf 64	T1 edema GLCM Entropy	0.02147564	-1 911158	0.07763021							
01				T1 wholetumor GLCM IMC1	0.14247016	1.011100	0.01100021							
				T1 wholetumor GLSZM GLV	0.14396767									
				T1c_wholetumor Energy	-0.057636099									
35		Uf	f 128	T2_necrotic_Variance	-0.008142297									
	3			T1_wholetumor_GLCM_IMC1	0.192430202	-1.84632	-0.1414833							
				T1_wholetumor_GLSZM_GLV	0.133398890									
			1	T1c_wholetumor_Energy	-0.0064466764									
				T1_solidcore_GLCM_Energy	0.0396974940									
36	3	Uf	Uf 256	T1_wholetumor_GLCM_DE 0.0518395948 -1.		-1.685547	-0.02604202							
				T1_wholetumor_GLCM_IMC1	0.1651373593									
				$T1_wholetumor_GLSZM_GLV$	0.0008508749									
				*										

Supplementary Table 5: The prognostic value of all 36 fixed-parameter radiomics signatures. The image standardization parameters, C-Indices, logrank P values and hazard ratios for both training data set and validation data set are listed. VS, QM, GL, Uf, Eq, Ld, HR and CI are short for voxel size, quantization method, gray level, uniform, equal-probability, Lloyd-Max, hazard ratio and confidence interval, respectively.

Indon	Pε	ramet	ers		Training	Data Set	Validation Data Set		n Data Set
muex	\mathbf{vs}	$\mathbf{Q}\mathbf{M}$	\mathbf{GL}	C-Index	P Value	HR (95% CI)	C-Index	P Value	HR (95% CI)
1	1	Ld	32	0.731	< 0.001	3.324 (1.628, 6.787)	0.674	0.064	$2.347 \ (0.927, \ 5.941)$
2	1	Ld	64	0.716	< 0.001	$3.036\ (1.523,\ 6.051)$	0.701	0.179	$1.944 \ (0.724, \ 5.22)$
3	1	Ld	128	0.712	< 0.001	8.546 (3.498, 20.880)	0.688	0.502	$1.510 \ (0.450, \ 5.069)$
4	1	Ld	256	0.739	< 0.001	$6.240 \ (2.689, \ 14.480)$	0.690	0.490	$1.379 \ (0.551, \ 3.450)$
5	1	Eq	32	0.769	< 0.001	6.853 (2.931, 16.020)	0.699	0.018	3.585 (1.158, 11.090)
6	1	Eq	64	0.744	< 0.001	$7.127 \ (3.118, \ 16.290)$	0.672	0.024	2.673(1.101, 6.486)
7	1	Eq	128	0.732	< 0.001	$8.561 \ (3.727, \ 19.670)$	0.686	0.015	2.778(1.180, 6.539)
8	1	Eq	256	0.723	< 0.001	3.618(1.823, 7.183)	0.678	0.046	$2.394 \ (0.9885, \ 5.799)$
9	1	Uf	32	0.742	< 0.001	5.482(2.343, 12.832)	0.678	0.576	$2.400 \ (0.892, \ 6.458)$
10	1	Uf	64	0.645	< 0.001	$6.571 \ (2.582, \ 16.724)$	0.693	0.010	$13.370 \ (2.876, \ 62.140)$
11	1	Uf	128	0.706	< 0.001	4.853 (2.356, 9.997)	0.701	0.008	4.297 (1.879, 9.830)
12	1	Uf	256	0.725	< 0.001	5.017 (2.205, 11.421)	0.690	0.064	$2.347 \ (0.927, \ 5.941)$
13	2	Ld	32	0.662	0.001	4.355 (1.683, 11.272)	0.634	0.043	2.683 (0.997, 7.221)
14	2	Ld	64	0.678	0.002	3.402(1.488, 7.777)	0.611	0.030	2.683 (1.064, 6.764)
15	2	Ld	128	0.697	< 0.001	$3.484 \ (1.758, \ 6.908)$	0.672	0.105	$1.952 \ (0.858, \ 4.441)$
16	2	Ld	256	0.640	0.002	3.214 (1.459, 7.081)	0.665	0.031	3.119(1.054, 9.227)
17	2	Eq	32	0.655	0.003	2.975 (1.410, 6.281)	0.620	0.168	$1.798 \ (0.772, \ 4.188)$
18	2	$\mathbf{E}\mathbf{q}$	64	0.630	0.005	3.062(1.344, 6.979)	0.647	0.066	$2.342 \ (0.923, \ 5.938)$
19	2	$\mathbf{E}\mathbf{q}$	128	0.662	< 0.001	3.223 (1.666, 6.236)	0.543	0.384	$1.404 \ (0.652, \ 3.025)$
20	2	$\mathbf{E}\mathbf{q}$	256	0.670	< 0.001	$13.600 \ (4.269, \ 43.32)$	0.595	0.177	$1.951 \ (0.726, \ 5.242)$
21	2	Uf	32	0.664	0.003	3.248(1.423, 7.410)	0.613	0.080	$2.094 \ (0.901, \ 4.868)$
22	2	Uf	64	0.664	0.002	3.168(1.450, 6.923)	0.644	0.030	2.683 (1.064, 6.764)
23	2	Uf	128	0.677	0.001	3.065 (1.574, 5.968)	0.663	0.093	$1.998 \ (0.877, \ 4.549)$
24	2	Uf	256	0.688	0.002	$3.010\ (1.475,\ 6.145)$	0.674	0.255	$1.760 \ (0.657, \ 4.713)$
25	3	Ld	32	0.651	0.002	3.114 (1.465, 6.616)	0.596	0.196	$1.778 \ (0.734, \ 4.306)$
26	3	Ld	64	0.643	0.001	$3.422 \ (1.558, \ 7.515)$	0.678	0.149	$1.790 \ (0.803, \ 3.989)$
27	3	Ld	128	0.648	0.002	3.343 (1.518, 7.347)	0.676	0.006	$3.732 \ (1.379, \ 10.090)$
28	3	Ld	256	0.644	0.005	$2.828 \ (1.338, \ 5.978)$	0.644	0.039	$2.369\ (1.019,\ 5.508)$
29	3	Eq	32	0.663	0.002	$3.206\ (1.465,\ 7.013)$	0.626	0.057	$2.398\ (0.948,\ 6.608)$
30	3	$\mathbf{E}\mathbf{q}$	64	0.670	< 0.001	$10.07 \ (3.445, \ 29.450)$	0.632	0.809	$1.162 \ (0.345, \ 3.907)$
31	3	Eq	128	0.721	< 0.001	3.862 (1.993, 7.482)	0.593	0.519	$1.298 \ (0.586, \ 2.876)$
32	3	Eq	256	0.685	< 0.001	3.217 (1.701, 6.082)	0.663	0.314	1.513 (0.672, 3.407)
33	3	Uf	32	0.681	< 0.001	5.360 (2.081, 13.800)	0.603	0.765	$1.141 \ (0.481, \ 2.707)$
34	3	Uf	64	0.704	< 0.001	3.162 (1.661, 6.020)	0.684	0.153	$1.798 \ (0.795, \ 4.067)$
35	3	Uf	128	0.677	< 0.001	4.608 (1.979, 10.730)	0.634	0.064	2.252 (0.9346, 5.429)
36	3	Uf	256	0.682	< 0.001	3.912(1.811, 8.449)	0.649	0.117	$1.881 \ (0.8439, \ 4.194)$

Supplementary Figure 2: Kaplan-Meier curves for all 36 fixed-parameter radiomics models with patients in the validation data set. VS, QM, GL, Uf, Eq and Ld are short for voxel size, quantization method, gray level, uniform, equal-probability, and Lloyd-Max, respectively.

References

- Mahapatra, D. Analyzing training information from random forests for improved image segmentation. IEEE Transactions on Image Process. 23, 1504–1512 (2014).
- [2] Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for random forests. BMC bioinformatics 9, 307 (2008).
- [3] Boykov, Y. Y. & Jolly, M.-P. Interactive graph cuts for optimal boundary & region segmentation of objects in nd images. In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, vol. 1, 105–112 (IEEE, 2001).
- Boykov, Y., Veksler, O. & Zabih, R. Fast approximate energy minimization via graph cuts. IEEE Transactions on pattern analysis machine intelligence 23, 1222–1239 (2001).
- [5] Aerts, H. J. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. communications 5 (2014).