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Supplementary Figure 1. Quasi-linear coding of offer values, control analyses. ab. Individual monkeys.
Both panels illustrate the same data shown in Fig.2, and different colors indicate neuronal responses from
the two monkeys. cd. Sign of the encoding. The neuronal encoding of value could be positive (higher firing
rates for higher values, or slope>0) or negative (higher firing rates for lower values, or slope<0). In this 
case, different colors indicate neuronal responses with the two slope signs. ef. Individual time windows. In
Fig.2ab, we pooled data from different time windows. Here different colors indicate responses from 
individual time windows. For clarity, we included in panels (ef) only responses from the four primary time
windows. gh. Number of offer values. The number of offer values varied for different responses, and was
typically lower for offer value A than for offer value B responses (see Fig.1). Here different colors indicate
that the number of value offered was low (≤5) or high (≥6).
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Supplementary Figure 2. Quasi-linear coding of chosen value. a-c. Example. Same format as in Fig.1.
de. Population analysis (N = 370). Same format as in Fig.2.
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Supplementary Figure 3. Range adaptation in OFC. ab. Individual responses and population averages.
Each line in (a) represents one neuronal response. Responses were baseline-subtracted and color-coded
according to the range of values offered for the encoded juice. Responses with positive encoding
(increasing firing rates for increasing values) and negative encoding (decreasing firing rate for increasing
values) were pooled. Each color group presented a wide distribution of firing rates. However, range
adaptation became clear once responses were averaged separately for each group (panel b). c. Distribution
of activity ranges. Each histogram illustrates the distribution of activity ranges recorded with the different
value ranges. de. Mean tuning slope. In (d), each symbol represents the tuning slope (y-axis) averaged
across all the neuronal responses recorded with a given value range (x-axis). The three colors indicate
different groups of cells (see legend). In (e), the same data points are plotted against the inverse value
range (x-axis). Reproduced from [6].
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Supplementary Figure 4. The theoretical argument showing that range adaptation ensures maximum payoff
assumes that noise correlations (ξ in Eq.2) do not depend on the slope of the encoding (t in Eq.2). In other
words, we assumed that range adaptation would not affect noise correlations. Noise correlations in Exp.1
were analyzed in a previous study, where we found a weak but significant relation between the baseline
firing rates and noise correlations (Fig.3c in [30]). In other words, pairs of neurons with higher firing rates
were slightly more correlated. However, this finding is not directly relevant to the issue of interest here,
namely whether noise correlation depends on the firing rates given a pair of cells. To address this issue, we
re-examined the same data set focusing on pairs of offer value cells recorded simultaneously, associated with
the same juice and with the same coding sign (N = 41 pairs; see [30] for detail). For each cell pair, we
divided trials based on whether the offer value was above or below the median offer value in that session.
(Trials in which the value was exactly equal to the median were excluded.) We then computed the noise
correlation separately for the two groups of trials. The scatter plot illustrates the results obtained for this
population. Each data point represents one cell pair, and the x- and y-axes represent the noise correlation
measured in low-value trials (ξlow) and in high-value trials (ξhigh), respectively. Notably, noise correlations
did not differ systematically between the two groups of trials (median(ξhigh - ξlow) = 0.001; p = 0.62, paired
t-test). Similar results were obtained by inverting the axes for pairs of cells with negative encoding 
(median(ξhigh - ξlow) = 0.006; p = 0.47, paired t-test) any by excluding pairs of cells from the same
electrode (median(ξhigh - ξlow) = 0.003; p = 0.33, paired t-test). 
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Supplementary Figure 5. Relation between sigmoid steepness (η) and value range (Δ), by juice pair. Fig.6 includes
sessions with different juice pairs, with different typical values for ρ. In principle, choice variability could vary from
juice pair to juice pair in a way that induces the relation between η and Δ. To address this issue, we divided sessions
in different sets based on the juice pair. Considering only sets with ≥5 sessions, our data included 12 viable sets (6
from each monkey). Here we illustrate the analysis restricted to individual data sets. For each set, the top panel
illustrates the fitted sigmoids (equivalent to Fig.5) and the bottom panel illustrates the relation between η and Δ
 (equivalent to Fig.6). For each set we indicate explicitly the juice pair, the animal (V or L) and the number of
sessions available. In the bottom panel, we also indicate the correlation coefficient with its p value (as in Fig.6).
Black lines illustrate the result of Deming's regressions. Notably, the negative correlation between η and Δ can be
observed for each set.
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L, 6 sessions

lemon k.a. : 1/2 apple
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grape : 1/3 cranberry
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Supplementary Figure 6. Relation between sigmoid steepness (η) and value range (Δ), controlling for
fluctuations in relative value (ρ). Because η, ρ and Δ are inter-related (see Methods), the relation between
η and Δ (Fig.6) might simply reflect fluctuations in ρ. To address this issue, we regressed η on ρ and then
on Δ in a stepwise way. The coefficient obtained from the second regression (βη) quantified the correlation
between η and Δ not explained by fluctuations of ρ. a. Relation between sigmoid steepness (η) and value
range (Δ). This panel recapitulates Supplementary Figure 5. Different colors indicate different juice pairs
(see legend). b. Relation between sigmoid steepness (η) and relative value (ρ). c. Results of stepwise
regression. For most sets, we found βη < 0, indicating that the residual η after regressing on ρ was still
negatively correlated with Δ. Error bars indicate S.E.M. Considering the 12 sets, the distribution of βη was
significantly displaced from zero (mean(βη) = -0.31, p = 0.01, one-tailed t test). In other words, the
negative correlation between η and Δ was above and beyond the correlation explained by fluctuations of ρ.
Color conventions in (b) and (c) are as in (a). 
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Supplementary Figure 7. Measures of sigmoid steepness in Exp.2. For each session, the two axes
represent the steepness of the sigmoid measured with a large value range (x-axis) and that measured with a
small value range (y-axis). Each data point represents one session. Different symbols represents the block
order (see legend) and data from the two monkeys are pooled. Data points are broadly scattered, but overall
they tend to lie above the identity line (p = 0.04, sign test). In other words, the sigmoid was steeper when
value ranges were smaller. This effect was statistically significant when the analysis was restricted to
sessions in which we varied the range of juice B (p = 1.5 10-4, sign test), but not when the analysis was
restricted to sessions in which we varies the range of juice A (p = 0.37, sign test). Sessions that presented
perfect separation (saturated choice patterns) were excluded from this analysis. 



Supplementary Figure 8. Joint distributions of offers in Exp.1. The six panels illustrate the joint
distribution of offers for six representative sessions (out of 208). For each session, gray dots represent
offer types presented in the session and the dotted line represents the indifference line (ρ calculated with
the sigmoid fit). The radius of each dot is proportional to #trials/max(#trials), where #trials is the
number of trials for the corresponding offer type and max(#trials) is the maximum of #trials across offer
types. For the six sessions, total number of trials was equal to 1,429 (session 1), 441 (session 41), 347
(session 81), 400 (session 121), 362 (session 161), and 228 (session 201). Note that the range of offer
values and the relative multiplicity of trials for different offer types varied from session to session. Each
session included forced choices for either juice. In the other trials, one of the two juices was always
offered in quantity 1.
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Variable X Variable Y R2X R2Y pval 
offer A|B linear offer A|B ntrialCDF 88.8 27.4 <10-8 

offer A|B linear offer A|B ntrialCDF VE 86.1 27.8 <10-8 
offer A|B linear offer A|B ORF 69.6 29.2 <10-5 
offer A|B linear offer A|B mean(ORF) 48.0 27.5 0.009 

Supplementary Table 1. Variable selection, post-hoc analysis. The variable selection analyses 
were conducted twice. This table refers to the analysis that did not include variables based on 
ORFuniform (see Methods). In this case, both stepwise and best-subset methods selected variables 
offer A linear, offer B linear, chosen value and chosen juice. The table indicates the results of the 
post-hoc analysis based on collapsed variables (see Methods). To test whether the explanatory 
power of offer A|B linear (column X) was statistically higher than that of other variables 
examined in the analysis (column Y), we calculated the marginal explanatory power of each 
variable. For example, considering variables X and Y, the marginal explanatory power of X 
(column R2X) was defined as the total R2 explained by X but not by Y. The two variables were 
then compared with a binomial test. The results (p value in the last) indicate that the explanatory 
power of linear offer value variables was significantly higher than that of any competing 
variable.  

 

 

Variable X Variable Y R2X R2Y pval 
offer A|B ORFuniform offer A|B linear 37.7 32.5 0.270 
offer A|B ORFuniform offer A|B ntrialCDF 114.3 47.8 <10-7 

offer A|B ORFuniform offer A|B ntrialCDF VE 111.4 48.0 <10-7 
offer A|B ORFuniform offer A|B ORF 93.2 47.7 <10-4 
offer A|B ORFuniform offer A|B mean(ORF) 78.0 52.5 0.013 

Supplementary Table 2. Variable selection, post-hoc analysis. This table refers to the analysis 
that included all the variables defined in this study, including those based on ORFuniform. In this 
case, both stepwise and best-subset methods selected variables offer A ORFuniform, offer B 
ORFuniform, chosen value and chosen juice (see Fig.9). Same format as Supplementary Table 1. 
Note that all comparisons are statistically significant except that between offer A|B ORFuniform 
and offer A|B linear. 

 

 



Optimal Coding and Neuronal Adaptation
in Economic Decisions

SUPPLEMENTARY NOTE

ALDO RUSTICHINI, KATHERINE E. CONEN, XINYING CAI,
AND CAMILLO PADOA-SCHIOPPA

Abstract. We formulate the general problem of optimal coding for a
linear model for the choice with two pools of neurons. Optimal coding
is defined as the problem of choosing the optimal response function for a
given environment, under physiological constraints (such as a maximum
firing rate), if one wants to maximize the expected value of the goods
selected.

We consider first the case of a linear response function, and analyze
the adjustment of the slope of the response to the distribution of offers
in a session. Our aim is to solve two problems at the same time: explain
why we observe adaptive coding (AC), and why AC does not induce a
choice bias (that is, a dependence of choice on the environment: this is
defined precisely in section 4.1).

We find:
(1) The optimal response requires adaptive coding (proposition 4.1

and theorem 5.2).
(2) If the firing rate and inputs have no upper limit, then the choice

does not exhibit bias depending on variation of the range of the
offers in different experimental sessions. There is no bias, but AC
improves the response (proposition 4.1).

(3) If the firing rate and inputs have upper limits, then as the range of
either good increases the stochastic choice becomes noisier (equa-
tion 26 in theorem 5.2).

(4) In both cases (upper bound or not) the consistency of choice is
not a constraint imposed on the process, but an outcome of the
optimization (proposition 4.1 and theorem 5.2).

In the second part we consider the general problem of characterizing the
best response function in the set of all functions, not necessarily linear.

1. Choice environment

Two goods, A and B are offered during an experimental sessions. We use
the index g ∈ {A,B}. In the main text we conducted the analysis in physical
goods space: thus, a quantity qA of good A and qB of good B are offered,
expressed in common physical units (say, ml), and qA ∼ qB (that is, the
animal is indifferent between qA and qB) if and only if ρqA = qB. This setup
is closer to the nature of the neural coding (see Padoa-Schioppa (2009), in
particular figure 4 of that paper), but is less natural for the analysis. So

Date: September 3, 2017.
Key words and phrases. Adaptive Coding, Economic Choice, Neuro-computational

Theory.
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in this supplementary material we work in value space, describing the two
offers x for good A and y for good B in terms of a common value; so in
this case x ∼ y if an only if x = y; so that we can take x to be ρqA, and
y to be qB. The joint distribution of offers in a session is described by a
π ∈ ∆(X × Y ); πg is the marginal over quantities of good g.

2. Linear Model: Neuronal coding within sessions

We first describe the response in a trial of a given experimental session.
There are two pools of neurons, one for each good g. Each set has the same
number n of neurons; we will take the limit as n → ∞ later. We consider
the output of the two pools as providing input current to a post synaptic
sets of neurons; so we will consider both the firing rate and the input to
the downstream neuron for every spike; the latter is regulated by synaptic
efficacy. We assume that all neurons in the pool fire at the same Poisson
rate:

Assumption 2.1. The spike process rg,i, g ∈ {A,B} for each neuron i =
1, . . . , n is Poisson with rate νg.

We consider the total firing occurring in a fixed time interval ∆t of ap-
proximate length 500 ms. There is no leak, thus all the spikes within this
interval are interchangeable. We write the input corresponding to each spike
of neurons of good g as Jg; this is the amount of positive charge entering
the membrane of the post-synaptic neuron due to one spike. Since ∆t does
not play a role in our analysis, we choose it as time unit: ∆t = 1. Now the
firing rate refers to this time unit, and rg,i indicates the number of spikes
per unit time. We define Dn as the random variable obtained as a weighted
sum of the contributions of the two pools:

(1) Xn
g ≡

n∑
i=1

wni rg,iJg

where wn is a vector of n-positive weights, adding up to 1; and

(2) Dn ≡ Xn
A −Xn

B

By the assumption 2.1

(3) E(rg,iJg) = νgJg, V ar(rg,iJg) = νgJ
2
g ≡ σ2

rgJ
2
g

We focus here on the simple case where

(4) ∀i, wni ≡
1

n
.

We want to take limits as n→∞, defining in the limit a random variable
D. Assuming stationarity (in the spatial dimension index) then by Birkhoff
ergodic theorem, a limit random variables D exists, which is the expectation
of the representative random variable rA,1JA − rB,1JB with respect to the
invariant σ-algebra.
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The expectation of this limit variable is:

(5) E(D) = νAJA − νBJB
The variance of Dn is

(6) V ar(Dn) =
1

n
(J2
AV ar(rA,1) + J2

BV ar(rB,1))+

(1− 1

n
)
(
J2
ACov(rA,1rA,2) + J2

BCov(rB,1rB,2)
)
− 2JAJBCov(rA,1rB,1)

We assume (on the basis of experimental evidence: see figure S4 of the
text) that the correlation among neurons is independent of the firing rate ν
and the vector of inputs J :

Assumption 2.2. Corr(rg,1rg,2) = χg, g = A,B and Corr(rA,1rB,1) = γ,
all independent of the vectors rate ν and input J .

Using 2.2 we get:

(7) V ar(D) = χAσ
2
rA
J2
A + χBσ

2
rB
J2
B − 2γσrAJAσrBJB

Note that when χA = χB ≡ χ and σ2
rA

= σ2
rB
≡ σ2 and JA = JB, then

χ ≥ γ, so correlation within pools is larger than the one across pools. In the
analysis below we set γ = 0 for simplicity of notation; introducing it back is
trivial.

We assume that good A is chosen if D ≥ 0, and B otherwise. This linear
decision model is a very reduced form of mutual and of pooled inhibition
models.

3. Adaptive coding across sessions

We consider the problem of the adjustment of the neuronal response from
one session to another. Neurons corresponding to a good respond in each
trial to the quantity offered of the corresponding good; the function describ-
ing this response can vary across sessions, depending on π. We now consider
different possible restrictions on this dependence.

3.0.1. Flexibility of parameters. First we assume that the input J does not
depend on the quantities offered in the trial:

Assumption 3.1. A choice of response in a session is a pair of functions
assigning rate response and input to a distribution, (νg(·|π), Jg(π)), where
νA(x|π) is the rate associated with the quantity x of A, and so on; Jg(π) is
a real number.

We justify this restriction arguing that the synaptic efficacy J can be
modified by learning during the session in a way that depends on π (for
example through Hebbian learning) but cannot adjust quickly enough to
trial by trial variations in the quantities offered.

A second restriction is that:
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Assumption 3.2. For both goods g, the rate function νg and input Jg only
depend on πg (and not on the marginal on the other good).

If this assumption holds, at the beginning of the session the pool of g-
neurons is “informed” of πg, can adjust to it, but its response cannot depend
on πg′ , g

′ 6= g.
We will assume both assumption 3.1 and assumption 3.2 in the following.

4. Maximization problem

Fix π and a choice (ν, J) = (νg, Jg)g∈{A,B}. For any given pair of quanti-
ties (x, y) we have a probability distribution on the real line, Q(·|(x, y), ν, J).
The problem we consider is the maximization of the expected payoff:

(8)

∫
X×Y

(Q(R+|((x, y), ν, J))x+Q(R−|((x, y), ν, J))y)dπ(x, y)

where R+ and R− are the sets of positive and strictly negative real numbers,
and π is the joint distribution defined at the end of section 1. So our problem
is:

(9) max
(ν,J)

∫
X×Y

(Q(R+|((x, y), ν, J))x+Q(R−|((x, y), ν, J))y)dπ(x, y)

where (ν, J) satisfies the appropriate restrictions, depending on assumptions
3.1 and 3.2. After a simple rearrangement we have that (ν, J) is a solution
of 9 if and only if it is a solution of 10:

(10) max
(ν,J)

∫
X×Y

(Q(R+|((x, y), ν, J))(x− y)dπ(x, y)

From our analysis in section 2, using the formula for expectation and
variance of D we obtain the crucial information that the mean and variance
of the limit random variable scale as in equations 5 and 7. We have then:

(11) Q(R+|((x, y), ν, J)) =

Pr

(
Z ≥ − νA(x|π)JA(π)− νB(y|π)JB(π)

(χAνA(x|π)J2
A(π) + χBνB(x|π)J2

B(π))1/2

)
where Z is a standardized random variable with mean 0 and variance 1.
We assume for computational convenience, particularly in the numerical
simulations, that the random variables D and Z are normal. A more detailed
description on D (beyond the information on mean and variance, which
are the key elements in our analysis below) requires a full model of the
the network, that will give account of the long distance correlation among
neurons. This full model, allowing for long distance positive correlation (and
not only asynchronous state, as in Renart et al. (2010) or Rosenbaum et al.
(2017)), is topic of current research.
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Noting that the lower bound in the equation above is homogeneous of
degree zero in J , we reformulate the problem as maximization in ν and
R ≡ JB

JA
where the probability in equation 11 has the form:

(12) Pr

(
Z ≥ − νA(x|π)− νB(y|π)R(π)

(χAνA(x|π) + χBνB(x|π)R2(π))1/2

)
.

4.1. Choice bias. Our analysis will provide a model for the probability that
the animal chooses good A if the pair offered is (x, y) and the probability
on goods in the session is π, call it P (Ch = A|x, y, π). We say that there is
no choice bias if two conditions are satisfied.

The first (equation 13) is that this probability only depends on the pair
(x, y) and not on π (as long as, of course, the pair (x, y) is in the support of
the distribution).

(13) ∀π, π′, x, y : P (Ch = A|x, y, π) = P (Ch = A|x, y, π′)
The condition 13 is not restrictive enough. For example, choosing A in all
trials of all sessions satisfies 13, so we add:

(14) ∀π : P (Ch = A|x, y, π) is increasing in x, decreasing in y and

equal to 1/2 if x = y.

4.2. Functional restrictions. So far we have constrained the response
functions ν only through their dependence on π. We now consider the
additional restriction of linearity:

(15) νA(x|π) = sA(π)x, νB(y|π) = sB(π)y

where sg(π) ∈ R+. The constraint 15 is very strong; we discuss its weakening
in section 6 below.

We define the largest value in the support of the distribution of a good:
Mg(π) ≡ max{z ∈ support(πg)}; we may drop the π in the notation if this
dependence is clear. Consistently with experimental evidence, we assume
that χA = χB = χ. With the linearity assumption 15 we say that there is
full linear adaptive coding if there is a single s > 0 such that sg = s

Mg
for

all g. In this case if MA = MB then νA(x|π) = sx, νB(y|π) = sy, and the
formula 11 above becomes:

(16) Q(R+|((x, y), s, J)) = Pr(Ch = A|x, s, J) =

Pr

Z ≥ − JAxsA − JBysB√
χ(J2

AxsA + J2
BysB)

|Z ∼ N(0, 1)

 .

which is equation (2) in the main text. Recall that x and y are value
units, so firing rate and synaptic efficacy for each good change accordingly.
Setting the correlation χ notionally equal to 0 clarifies the scaling in both
cases. When using physical units, we want the effective firing rate (firing
rate tg times synaptic efficacy (call it Kg) to be equal when the animal is
indifferent between the two offers, that is tAKAqA = tBKBqB if and only if
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ρqA = qB. This holds if and only if tA
ρ KA = tBKB. In value units we want

the effective firing rate to be equal (sAJAx = sBJBy) if and only if x ∼ y,
that is x = y, and this occurs if and only if sAJA = sBJB. Thus, the pair
(x, y) here corresponds to (ρqA, qB) in the main text; the pair (JA, JB) here

to (KA,KB) in the main text, the pair (sA, sB) to the pair
(
tA
ρ , tB

)
, and

finally the pair (MA,MB) to the pair (ρQA, QB).

Proposition 4.1. If the maximization problem satisfies equation 15 and
there is no constraint on the firing rate, then with full linear adaptive coding:

(17) sg ≡
s

Mg
, Jg = Mg

(1) As s→∞, the expected payoff tends to the maximum possible value
given by: ∫

X×Y
max{x, y}dπ(x, y),

so there is no choice bias (that is, both equations 13 and 14 hold).
(2) If JA = JB the expected payoff in strictly increasing in

√
s.

Proof. Under our assumption and functional form of the response the quan-
tities in 11 are equal to

(18) Pr(Ch = A|x, y, π) = Pr

(
Z ≥ −

(
s

χ(xMA + yMB)

)1/2

(x− y)

)
so as s→∞ the probability of choosing max{x, y} tends to 1 for all (x, y),
independently of π.

The statement (2) follows differentiating the expected payoff with respect
to
√
s; the derivative is the integral of a positive function. �

The restriction JA = JB is needed here because if JB
JA

> 1, say, and π is

concentrated on the sector of (x, y) such that JB
JA
y > x > y then the deriv-

ative with respect to
√
s may be negative (as intuitively clear: increasing√

s reduces the probability of the A choice (because JAx− JBy < 0), when
x > y.)

4.3. Re-scaling of χ. We clarify now the details linking the current anal-
ysis to the data, to justify setting χ = ξ/4 as in the main text, immediately
below equation (2). There are several different re-scalings that we use in
data analysis; they can all be conveniently represented by a multiplication
of the correlation coefficient χ by a constant c. There are two re-scalings in
particular that need attention.

The first re-scaling is produced by the fact that we use in the analysis the
time unit of the decision time (called ∆t in section 2). The crucial point
here is that the variable Dn defined in 2 considers the spikes in the time
interval ∆t, and not in 1 second units. This is convenient because we can
ignore this ∆t. Suppose this decision time is 0.5 seconds. Then if we use
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the firing rate in seconds (Hz), we have to adjust to compensate for the
different time units. For example if the firing rate in decision time units is
8, then the one in Hz is 16. If we replace the firing rate in ∆t units with the
one in units of seconds, we have a different formula, where the correlation
coefficient is multiplied by c = 2, or in general by a factor 1

∆t .
The second re-scaling is used in the numerical analysis of the linear re-

sponse model. Here we take νA = sAx, for example. We constrain the
slope sA to reflect the constraint that the firing rate cannot be larger than
a maximum ν for any quantity x, so we require

sAMA ≤ ν.

In our numerical simulations reported below we formulate the constraint for
convenience not sA ≤ ν

MA
but as sA ≤ 1. Again we can do this but we need

to re-scale the firing rate, because we are implicitly defining the new slope
as sA

MA
ν , and we need to introduce an adjustment by introducing a scaling

factor c. In the numerical analysis the MA is given by the maximum number
of units of the good presented; the maximum rate ν has to be estimated by
looking at the difference between the largest firing rate we observe and the
baseline firing rate, which in Hz is approximately 8 (see Padoa-Schioppa
(2013)). The multiplication by 2 and the division by 8 in the two re-scalings
explain the correction χ = ξ/4.

5. Constraints on the responses

Of course the limit in s → ∞ is biologically meaningless. In this section
we reconsider the maximization problem presented in section 4, but with
the assumption that the responses are linear, and introducing explicitly the
constraints on the responses. So we solve:

(19) max
(sA,JA,sB ,JB)

∫
X×Y

(∫ ∞
−L

φ(z)dz

)
(x− y)dπ(x, y)

(where

(20) L =
sAJAx− sBJBy

(χ(sAJ2
Ax+ sBJ2

By))1/2

φ is the density of the standard normal), subject to:

(21) ∀g, 0 ≤ sg ≤
ν

Mg
.

The constraint 21 insures that the firing rate at all quantities offered of the
good is smaller than a maximum firing rate ν. The following also may seem
natural:

(22) ∀g, 0 ≤ Jg ≤ J
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but as we noted the value of L in equation 20 is homogeneous of degree zero
in the J inputs; so re-scaling them by a common positive factor does not
affect choice. The lower integration L can be rewritten as:

(23) L =
sAx− sBRy

(χ(sAx+ sBR2y))1/2

where R ≡ JB
JA

, constrained only by:

(24) R ≥ 0.

The original problem is equivalent to maximize 19, with L as in 23, subject
to the two constraints 21 and 24. Once an optimal triple (sA, sB, R) has been
determined, pairs of 22-feasible inputs (JA, JB) can be found, the optimal
J ’s are indeterminate.

5.1. Symmetric distribution. We begin with a simple case, the symmet-
ric uniform distribution on offers.

Theorem 5.1. Let MA = MB ≡ M and π be the product of the uniform
distribution on [0,M ]2. The optimal linear response is:

(25) (sA, sB, R) =

(
ν

M
,
ν

M
, 1

)
The probability of choice of good A with offers (x, y) at the optimal solution
is

(26) Pr(Ch = A|x, y, π) = Pr

(
Z ≥ −

(
ν

χM(x+ y)

)1/2

(x− y)

)
Proof. Write the Lagrangean and solve. �

At sA = sB ≡ s the values of the net payoff (maximand in 19) for different
values of s and R is displayed in Supplementary Note Figure 1. The figure
confirms that (for s = 1) the local maximum at R = 1 is a global maximum.

5.2. Non-symmetric, uniform distribution. We consider here the more
general case of a uniform distribution but on two possibly different ranges.
To understand the shape of the optimal solution in this case it is first useful
to consider the basic trade-offs in the problem. To fix ideas we consider the
case in which MB > MA.

If we consider the lower integration term L in equation 20, we note that
the mean scales in the firing rate slope sA and sB linearly, whereas the
standard deviation (the denominator in L) scales as the square root; hence
we may want to make the slopes as large as possible. The slopes are bounded
by a maximum, and the maximum slope is decreasing in the range (equal to
ν/Mg); hence once we set them to a maximum we are introducing a potential
bias in the choice, making the probability of choosing the good B smaller
than it should be. The J inputs can correct this; as we noted their scale is
irrelevant (both mean and SD scale linearly in the inputs) so we can correct
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Supplementary Note Figure 1. Surface of the ex-
pected payoff as function of (s,R). Value of s satisfy
the constraint in (21); R is unconstrained above but trun-
cated at R ≤ 7. Here we set sA = sB ≡ s, MA = MB =
1, ν = 1, χ = 0.02. The optimal solution is at (s,R) = (1, 1).

entirely the bias, setting R = MB/MA. This describes an “almost optimal”
solution, depending on the value of χ. However, this is not necessarily the
optimal solution, and this depends on the value of the correlation χ.

To understand why the proposed solution is not precisely optimal, and
the role of the correlation χ, one can compare this solution to the policy of
“always choosing B”. This policy chooses the wrong option (hence possibly
inducing a loss compared to the “no-bias” policy) only when x > y, which,
as MB becomes large compared to MA, is unlikely; on the rest of the offers
region it chooses the right option for sure (hence a gain, compared to the
“no-bias” policy). When the noise is large, the gain overcomes the loss. The
true optimal solution adopts some of the “always choosing B”, introducing a
small bias in favor of the option B, by making R > MB

MA
. This is better than

the no bias solution, because in this way we balance the small cost of the
bias in the triangular region between y = x and y = RMB

MA
x, and the gain of

increasing the probability of the B choice over the entire region y > x.
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Theorem 5.2. Let π be the product of the uniform distribution on [0,MA]×
[0,MB]. The optimal linear response is:

(27) (sA, sB) =

(
ν

MA
,
ν

MB

)
If we let m ≡ MB

MA
, we note that the ratio R

m has a natural interpretation

of a bias. To see this, consider that a bias is absent only if the probability
of choice of A is equal to 1/2 when x = y; that is when the lower extreme
of integration is L = 0; this in turn is true if and only if x = R

my. So for
the probability of choosing A over B to be exactly 1/2 when x = y it is
necessary that R

m = 1.
In table 1 we report the bias in favor of the good B (a positive number

indicates that the good B is more likely to be chosen when x = y) at the
optimal values of R. The dependence of the optimal R on χ and MB is
illustrated in Supplementary Note Figure 2 for a range of χ closer to the
empirically relevant value or larger. The optimal R is 1 at MB = MA,
R > MB/MA for MB > MA, and R < MB/MA for MB < MA. As χ
becomes larger, the optimal R deviates more from MB/MA.

Table 1. Bias as function of ρ and MB. In the table
MA = 1, s = 1. The entries denote the bias in favor of the
B good, that is the value R

MB
− 1 (see the remarks after the

statement of the theorem 5.2). The values of χ (ranging from
0.008 to 0.013) are indicated in the top row; the values of MB

(ranging from 0.50 to 1.50) on the left column.

0.008 0.009 0.009 0.010 0.010 0.010 0.011 0.011 0.012 0.012 0.013

0.5 -0.04 -0.04 -0.04 -0.04 -0.04 -0.05 -0.05 -0.05 -0.05 -0.05 -0.06
0.6 -0.03 -0.03 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.05 -0.05 -0.05
0.7 -0.03 -0.03 -0.03 -0.03 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04
0.8 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.04 -0.04
0.9 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
1.2 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
1.3 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04
1.4 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.05
1.5 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05

5.3. Stochastic Choice. As ranges change, the slope of the stochastic
choice function changes. In the symmetric case (MA = MB), from equa-
tion 26, we have that (here π = 3.1415 . . . , not the distribution over goods):

(28) slope of the sigmoid at x = y is

(
ν

2πχx(MA +MB)

)1/2

.
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Supplementary Note Figure 2. Surface of the opti-
mal R as function of MB and χ. Here MA = 1, ν = 1.

We write explicitly MA and MB for ease of comparison with the non sym-
metric case.

In the non symmetric case we can compute the slope on the line in the
x − y space where the probability of choice is equal to 1/2, that is on the
line where

(29) JAsAx− JBsBy = 0.

because this is where we are going to compute the slope in the empirical
estimates. Due to the bias which is evident in Supplementary Note Figure
2, this is not the line y = x; the function giving the value y indifferent to x
as a function of x is flatter when MB > MA. In this case:

(30) slope at (x, y) where (29) holds is

(
ν

2πχx(1 +R)MA

)1/2

.

Note that by our results on the optimal R (see remarks after theorem (5.2),

the slope is less than
(

ν
2πχx(MA+MB)

)1/2
when MB > MA. The extent of

the flattening of the slope is provided by the equation 30, considering the
values of R given in Supplementary Note Figure 2.

This estimate of the slope provides an easy test of the model through the
dependence on the ranges of observed choices.

5.4. Payoff and Range. We now examine how the expected payoff changes
when the ranges of the two goods change.
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5.4.1. Re-scaling the range. In the symmetric case, consider first the effect
on the expected payoff of increasing the range, while keeping the symmetry
property. The expected payoff is homogeneous of degree one in the range: if
we write the expected payoff at the optimal solution in the range [0, TM ]2 as
Pay(TM) then Pay(TM) = TPay(M). Thus, doubling the range doubles
the payoff. This is clear from a change of variable, considering the formula
for the lower term of integration L in equation (20). Consequently also the
ratio between the expected payoff at the optimal solution and the maximum
payoff does not change as the range is re-scaled. This is clear by the fact that
the maximum payoff too is homogeneous of degree 1 in the scaling factor T .
Note that the slope of the response decreases when the range increases.

5.4.2. Conditional Payoff. Instead, the conditional payoff decreases as the
slope decreases. To be precise, let M ≡ MA = MB, and re-scale M by a
factor T ≥ 1. For any T we can compute the conditional expected payoff
from the choices made when x and y are in the range [0,M ]2, but with
the slope optimal for the range [0, TM ]2. The conditional expected payoff
is strictly decreasing in T for T > 1; as one can check the derivative with
respect to T is given by

− 1

2T 3/2M2

∫
[0,M ]2

φ(−L)
(x− y)2

(χ(x+ y))1/2
dxdy.

hence strictly negative. The payoff as T → +∞ tends of course to the ex-
pected payoff from the random choice with equal probability on each option.

5.4.3. Comparison with the maximum payoff. Supplementary Note Figure 3
displays the ratio of the expected payoff at the optimal choice of slopes and
R ratio over the expectation of the maximum payoff (obtained by choosing
the maximum of x and y at every point). Clearly the worst situation for the
optimal choice is the symmetric case, where the payoff is smallest for any
fixed value of χ. Note that for realistic values of χ close to the empirically
relevant value the deviations are very small. This is natural, as the payoff
from the constant policy “always choose the option with the largest range”
tends to the maximum payoff as the ratio between the two ranges increases
to infinity, and the optimal policy becomes close to the constant policy as
the range of one of the goods increases. As natural, the ratio decreases with
the correlation χ.

6. Non-linear response functions

If we take the point of view of section 3 that the slope is chosen to maxi-
mize expected payoff it is natural to enquire what the best response would be
if the variable is the function instead of the slope, with no other constraint
than the bound of the firing rate.

A similar optimization criterion underlies the alternative Barlow-Simon
(BS) hypothesis, that the response function is the cumulative distribution
function of probability distribution of the stimulus in the environment. It is
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Supplementary Note Figure 3. Ratio of the ex-
pected payoff at the optimal slope and optimal R
over the maximum payoff. Here MA = 1, ν = 1.

well known that this response function is the optimal solution of a clearly de-
fined information theoretic problem, namely maximizing the entropy of the
distribution of the output signal over the response functions. The statement
follows from two observations. First, the unconstrained maximum entropy
over the output space (that is, the maximum entropy over all distributions)
is achieved by the uniform distribution. Second, the uniform distribution
over the output space can be achieved precisely, by setting the response
function to be the cdf of the signal (when the density is no-where zero). If
the objective function is not the entropy but the expected payoff the answer
may well be different, and for a good reason, as we will see (section 6.1). The
problem we consider is the one presented in section 4, with no restriction on
the νg response functions.

6.1. Intuitive Properties of the Optimal Solution. To understand the
fundamental feature of the optimal solution we can consider a simple ex-
ample. The good A is offered in a fixed quantity of 1/2. The good B has
offers in quantity y ∈ {0, a, 1} with probabilities p1, p2 and p3. To recover
the case of a no-where zero density we can if necessary combine this with a
uniform distribution over the unit interval. A function f from the space Y of
quantities of B and the unit interval in the signal space Z can be chosen. A
signal equal to f(y) + ε is observed, where ε ∼ N(0, σ2

ε ). The optimal choice
policy is clearly described by a threshold value zth and the choice of B when
the observed signal is larger than the threshold. The optimal f is extreme
valued. First, it clearly sets f(0) = 0, f(1) = 1. If we think of σ2

ε as small,
it is clear that the optimal f(a) is 0 when a < 1/2 (so the probability of the
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signal crossing the threshold is minimal) and symmetrically 1 when a > 1/2.
Now, adding several intermediate points ai between 0 and 1 will not change
the general S-shaped feature: all values below 1/2 will be mapped to 0, and
those above to 1; in general, low values and high values are lumped into
similar signals, and the optimal function f is S-shaped. The BS solution is
very different: the function f has three sharp increases at each of the three
values of y, independently of the relative position of a and 1/2.

The example illustrates the fundamental difference between the BS prob-
lem and the problem stated in section 4. Even if one does not accept the
criterion we suggested in section 4, the BS solution has some revealing and
counterintuitive features. First, the BS solution is only trying to maximize
the sharpness of the local resolution, and is not interested in the global
property of the distribution. This is obvious if one considers that the BS so-
lution consists in setting the derivative of the response function equal to the
density, a completely local definition (the value of the density at one point
defines completely the derivative of the firing rate function at that point).
Second, the BS is defined only by the properties of the environment and is
not interested in the properties of the system that is making the choice, as
none of the properties of this system enters into the solution. For instance
it does not consider the signal to noise ratio, or the correlation coefficient χ
which is crucial instead to define the optimal solution to the problem stated
in section 4. These are obvious consequences of the fact that there is no
choice problem this policy is solving.

In summary, it should be clear that the BS solution is irrelevant in the
context of economic choice problems.

6.2. Results. Two main ideas describe the optimal response. One can iso-
late the first by considering first the symmetric case, where the distribution
on the product of space of the two goods is the product of the marginals,
and then proceeding to consider the non symmetric case in which the two
marginals are not the same.

6.2.1. Symmetric distributions. By symmetry, the optimal solution will have
νA = νB ≡ ν and R = 1. The optimal ν is displayed in Supplementary Note
Figure 4, for different values of the correlation coefficient. The best response
function has several main properties.

It is non-linear, S-shaped, with two almost flat regions at the low and
high level of offers, and an intermediate curve approximately convex. The
function depends on the correlation χ, becoming steeper in the intermediate
ranges as χ increases. For low values of χ the flat regions are absent, and the
function is monotonically strictly increasing, convex. Supplementary Note
Figure 4 illustrates these two properties.

6.2.2. Non-Symmetric distributions. When the distribution on the product
space is not the product of two identical distributions the value of R may be
different from 1. As we have seen in the case of the linear response function,
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Supplementary Note Figure 4. Optimal response
function and correlation coefficient. Here MA = MB =
1, ν = 1; the values of the correlation coefficient χ are indi-
cated in the window. Grid of 200 values in the offer space.

the difference sAJA − sBJB is a measure of the bias, in favor of good A if
the difference is positive.

For small values of χ and of the difference between the two distributions,
the optimal solution is of course close to the solution of a symmetric problem.
For larger values of both variables, R is substantially different from 1, but
the optimal firing rates and optimal R are adjusted so that in the region
of offers [0, 1] × [0, 1] the bias is minimal. Supplementary Note Figure 5
illustrates.
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Supplementary Note Figure 5. Best response func-
tions, asymmetric case. MA = 1,MB = 1.5, χ = 0.1. Top
panel: best responses; the range of values of the quantity
offered is limited to the interval between 0 and 1 (the range
for good A) to make the comparison between the two best
responses easier. Bottom panel: the sB function is multiplied
by the optimal R = 2.682.
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