
Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
Rustichini A et al., Neuronal adaptation and optimal coding in economic decisions  
 
The authors present a detailed study of the tuning properties of OFC offer value neurons and their 
relationship to optimal encoding for decisions. They show that OFC neurons encode offer values 
approximately linearly, and that they rescale according to the range of values. The rescaling does not 
lead to biased decision making, and it improves decision accuracy.  
 
This paper address several important issues and does so within a well-developed, straightforward and 
clearly presented analytical framework. I have no overall concerns with the study, although I do have 
a number of specific comments that may help clarify the results and interpretation.  
 
Comments  
1. It might be worth laying out the definition of optimality upfront, descriptively. It’s given in the 
equations. Optimality is not conveying the most information about the offers. In this sense the tuning 
functions of the neurons are not quite consistent with the CDF of the offer distribution. Optimality is 
defined as the animals consistently choosing their most preferred option. In this sense, the optimal 
tuning functions just encode the animal’s choices in a binary fashion in several of the experimental 
cases considered (Fig. 6a-c). This is briefly addressed in the paragraph on page 7 where the sentence, 
“In retrospect, this finding…” Maybe just bring this to the front and use it to frame the approach in 
general.  
 
2. To some extent, this optimality argument feels a bit circular, since it’s not defined relative to an 
external variable. Rather it’s defined relative to the subjective preferences of the animal. If we believe 
the brain is controlling behavior, then the activity (perhaps in OFC offer value cells, but maybe in 
combination with some other activity somewhere) must be sufficient to drive the animal’s choices. If 
neurons were “more optimal” then a smaller population could drive the animal’s choices? Or perhaps 
the animal’s choice functions would have steeper slopes?  
 
3. The curve fits in Fig. 1 c, d, f, g and the population fits reported in Fig. 2 only have a few degrees of 
freedom. In some cases only 4. I realize that many trials go into each point, but those are not true 
degrees of freedom of the actual function that generates the data, and therefore the fit of the function 
to the data is also limited. This is a picky point, but were there any differences in the fits of the 2nd 
and 3rd order terms when there were more degrees of freedom (for example, in 1g compared to 1d)? 
If one only has 4 degrees of freedom, and a linear fit has 2, the higher order terms are unlikely to 
contribute much.  
 
4. I wasn’t sure why the indices in equation 1 were superscript on X and subscript on K? For 
consistency maybe use super for all?  
 
5. For the analysis that shows that the offer value cells, “…did not adapt to maximize the payoff in 
each session.” How much was actually lost? How much better, in terms of milliliters/trial or some 
related metric, would an ideal population have done? Again, maybe this is not a well posed question 
because it would depend on the population size.  
 
Supplemental methods  
These seem like they should be published separately in a more technical journal with referees that 



would correspondingly be more appropriate to this material.  
 
6. “This a setup…” -> “This setup…”  
 
7. Just under equation 7, in Assumption 2.2, X_A = X_A def X should be X_A = X_B def X.  
 
8. Page 6. “We clarify now of the details…” -> “We clarify now the details…”  
 
 
 
Reviewer #2 (Remarks to the Author):  
 
This manuscript by Rustichini and colleagues examines the nature of adaptation in value coding of 
monkey OFC neurons and the relationship between this adaptation and optimal coding for choice 
behavior. This work follows a body of work from Padoa-Schioppa’s group examining linear value 
coding and range adaptation in the orbitofrontal cortex. The key question this paper addresses is the 
potential optimality/purpose of value range adaptation: in sensory coding, adaptation that 
approximates the cumulative distribution of sensory variables is optimal in terms of efficiently 
encoding the available information; however, decision systems must implement choice and optimality 
can be thought of in terms of decision outcomes rather than coding alone.  
 
Here, the authors report a series of theoretical and empirical results:  
(1) Reanalyzing previously reported data, the authors show that offer value neurons show quasi-linear 
responses despite the experimental distribution of rewards being typically highly non-uniform.  
(2) Using new experimental data, the authors show that despite linear range adaptation - which can 
introduce a choice bias as the coding one of two potential rewards changes with the range of 
presented offers - monkey choice behavior exhibits stable relative reward preferences. From these 
results, the authors conclude that the effects of range adaptation are corrected in the decision circuit.  
(3) They present a theoretical argument - primarily in the Supplementary Material - that assuming 
linear response functions range adaptation maximizes expected payoff, even if the subsequent circuit 
rescales to remove adaptation-induced choice biases.  
(4) They show that - in monkey behavior - received payoff is inversely related to the range of 
presented rewards.  
(5) Finally, they show that the observed quasi-linear response functions do not resemble the step-
function ORFs predicted for offer value cells, under the assumption of coding the joint distribution of 
rewards. Instead, they suggest that the observed response functions most closely resemble that 
predicted for symmetric uniform rewards.  
 
These studies address a question of much interest: what is the relationship between PFC value coding 
and choice behavior, and can the form of this coding be understood in terms of efficient coding? The 
authors raise a salient and important point: that sensory systems are optimized for efficiency given 
stimulus statistics, but value coding neurons may be optimized with different constraints (payoff, or 
joint reward statistics). I think this paper has promise, but there are a few issues in the current 
version that need to be addressed. The two biggest issues are the assumption that OFC value coding 
neurons are involved in the decision process (which is the basis for concluding that there is corrective 
rescaling downstream in the circuit), and the validity of examining payoff-range relationships across 
sessions with different goods. Additionally, there are several areas where details can be cleared up by 
the authors.  
 
Major points  
 



(1) One of the major points of the paper is that OFC neurons exhibit range adaptation, but that 
monkey choice behavior does not exhibit the resulting, problematic choice biases that arise from the 
non-stationary value coding implied by range adaptation. The authors conclude that the decision 
circuit compensates for the effects of OFC range adaptation, perhaps by adjusting downstream 
synaptic efficacies (“We also showed that range adaptation is corrected within the decision circuit to 
avoid arbitrary choice biases.”).  
 
However, there is a rather large caveat to this conclusion: it assumes that OFC neurons exhibiting 
range adaptation are causally involved in the choice process, but as far as I know this has yet to be 
demonstrated. One could argue that an equally plausible possibility is that 1) OFC neurons are range 
adapting but *not* involved in choice, but 2) the value coding and decision circuit neurons are not 
adapting and thus do not fall prey to arbitrary choice biases.  
 
The data from Experiment 2 are still interesting, since they reaffirm the notion that the relative 
preference of goods is not dependent on the ranges of offered rewards. However, without causal 
evidence that OFC neurons drive choice, the link between range adaptation and behavior is unknown 
and the suggestion that correction occurs in the decision circuit is unfounded. I think the authors could 
argue that the relationship between value range and payoff (Fig. 5) suggests that range adaptation is 
part of the decision process, but see point(2) below about problems with that data interpretation.  
 
(2) Perhaps the most interesting and potentially important data from the paper is the finding that 
monkey choice behavior is value range-sensitive. Past papers have documented range adaptation in 
OFC neurons but no clear corresponding behavioral correlates (Padoa-Schioppa 2009; Kobayashi et al 
2010). However, there is a critical point of analysis that confounds the argument that payoff (or the 
inverse of sigma) is related to the value range.  
 
Figure 5 and the accompanying analyses aim to compare payoffs (or equivalently choice curve slopes, 
or sigma) across different sessions with different value ranges. However, in the data (from Padoa-
Schioppa and Assad, 2006), there were ~12 juice types and individual sessions presented single pairs 
of these types. The fundamental issue: how can the behavior in different sessions be compared when 
different juices are used across sessions? Specifically, how are the x axes in Fig. 5 co-aligned for 
different sessions? Similarly, how can the sigmoid fits be compared across different sessions with 
different juice types?  
 
Both Fig. 5 and the sigmoid fits are performed with each session analyzed in objective units of q_B 
(drops of juice B). But this assumes that a given change in juice B in one session is equivalent to a 
given change in juice B in a different session, in *subjective* terms. However, there is no reason to 
think that the subjective change in value of a given quantity change in grape juice is equivalent to 
that of the same objective quantity change in peppermint tea. One could argue that utilizing ratios of 
goods (in equivalent B units) as the authors do could alleviate the problem, but this approach 
assumes that the linear scaling of utility for separate goods are the same. If the x axes in Fig. 5a,b 
cannot be aligned across sessions, then it is impossible to compare payoff/choice stochasticity across 
different sessions.  
 
On a related note, I’m not sure that value ranges can be compared across sessions either. For 
example the correlational analyses in Fig. 5c,d rely on a measure of mean value range, defined as 
(rho*Q_A+Q_B)/2. This means that each session range is defined in objective units (drops) of a 
particular good (good B). I don’t see how ranges across sessions can be compared when they are in 
different objective (different goods) and subjective (the utility of those goods, which are not 
compared) units.  
 



Given these caveats, the data from Expt. 2 (Fig. S5) *can* be analyzed because they address offer 
range changes without changing goods. The Supplementary Material provides some evidence that 
there is such a relationship in a limited set of the data. However, to make the argument that there is a 
relationship between payoff and value range, the authors would have to do a fuller analysis of all the 
data from the experiment (i.e. including the sessions where A changes).  
 
(3) The discussion raises several issues that are currently unaddressed, and the authors should clear 
up for the reader. First, it’s not clear to me which optimization goal is being served by range 
adaptation: the paper argues that decision model maximizes payoff at different value ranges, but also 
presents results that suggest that quasi-linearity mimics ORF for joint uniform reward distributions. In 
the former, optimization is for decision outcomes, whereas in the latter, optimization is - as for 
sensory systems - for input (reward) coding.  
 
Second, the relationship between joint reward distribution-based response functions and menu 
independence (Discussion, pg 8-9) is puzzling to me. The authors note that OFC value coding is menu 
invariant, and that each neuron adapts to its own value range, suggesting that “neurons associated 
with one particular good are blind to every aspect of the other good”. However, an ORF that is tuned 
to the *joint* uniform distribution of rewards must take into account the range of the other good. This 
seems like a contradiction to me, perhaps the authors can clear this up?  
 
Other points  
 
(1) The abstract stated that “we show that neuronal responses are quasi-linear even when optimal 
tuning functions would be highly non-linear.”. It’s crucial here that the authors state what is meant by 
optimal: is it optimal in the classic sensory CDF sense, or optimal in terms of expected choice payoff?  
 
(2) Clarity of the model and theoretical predictions. In the synopsis of model results (pg 5-6), the 
main point is that maximal expected payoff occurs when there is complete range adaptation. In other 
words, given a range of offer values, maximum payoff occurs with complete adaptation of firing rates. 
However, the prediction in the next section that payoff and value range are inversely related is not 
addressed and it is not clear from where it arises.  
 
(3) How does a nonlinear value function of quantity (drops) affect these interpretations? One of the 
points of the paper is that there is a functional rigidity to OFC responses: linear coding of offered 
rewards (in drops). However, much work in the economics literature suggests that people and animals 
have nonlinear utility functions. One wonders if the linearity in response to rewards here is an 
experimental byproduct of the quantization of juice delivery in drops; if juices were delivered as 
different volumes rather than different numbers of drops, perhaps value coding would be nonlinear? I 
certainly don’t expect the authors to provide different experimental data, but could they address the 
relationship between linear value coding and nonlinear utililty functions?  
 
(4) How rho (relative value) is defined is not clear from the text. I understand that it is quantified as 
the slope of the indifference line (Fig. 4a) between offer A and offer B, and essentially measures the 
tradeoff between objective amounts of A and B, but it should be clarified in the text when first 
discussed (pg 5?).  
 
(5) Can the authors clarify what they mean by “payoff” in the main text? It is never clearly defined, 
but presumably this is a measure of how often the animal chooses the higher subjectively valuable 
reward (which itself is defined by the animal’s behavior in the block).  
 
(6) Figure 5. Can the authors clarify what the blue-green shading depicts? Does it represent the size 



of the mean value range? Please either state explicitly in the legend, or provide a visual colorbar.  
 
(7) Figure 6e. The legend describes the case where rho=2, but the dashed line in panel (e) depicts 
rho=1.  
 
(8) Optimal response functions (Fig 6).  
- Not sure how they are derived. The idea that sensory neural tuning curves approximate the CDF of 
the encoded statistic makes specific certain assumptions, such as the desire for a uniform utilization of 
output FRs (maximizing entropy/information). Can the authors be clearer about how the ORFs are 
derived?  
 
(9) In the presentation summarizing the model implications (pg 6), the authors discuss symmetric and 
asymmetric cases, but it would help the reader if the explicit difference between the two are stated in 
plain terms. I believe symmetric describes instances when the range of the two goods are equivalent 
(in good B-equivalent units), and asymmetric describes when they are not.  
 
 
 
Reviewer #3 (Remarks to the Author):  
 
In this manuscript, Rustichini et al. present deeper investigations of data and results related to a 
series of publications from the Padoa-Schioppa lab, in which orbitofrontal (OFC) neurons in monkeys 
are found to encode decision parameters in choices involving quantity-quality trade-offs. The authors 
conducted a series of analyses collectively aimed at elucidating the nature of value coding in OFC 
neurons, particularly in the context of range adaptation.  
 
The previous studies from this group report three coding schemes common among OFC neurons (offer 
value, chosen value, chosen juice), and the present manuscript focuses on those encoding ‘offer 
value’, referring to the value of one of two juice rewards available in a given task session. These 
neurons are believed to encode pre-decision variables, such that a choice can be made by comparing 
the relative firing rates of two ‘offer value’ populations coding for each option. It has previously been 
reported that they exhibit range adaptation. That is, their firing rates do not faithfully reflect the 
absolute quantity of juice, but rather adapt so that baseline and maximal firing rates roughly map 
onto the minimum and maximum quantities available in a given session, with intermediate values 
linearly related.  
 
Given this background, the authors first show that firing rates of offer value neurons adapt based on 
the range of values available in a session, but not the frequency with which these values are 
encountered (i.e. their firing rates are “quasi-linear” with respect to value). This result is novel if not 
entirely surprising. Indeed, it could provide interesting support for recent ideas that OFC neurons form 
“cognitive state space maps”, in that the neurons appear to respond based on stored knowledge of the 
range of possible values (i.e. 'maps') rather than being influenced by the statistics of individual trials.  
 
This result is loosely tied to the final part of the paper, in which the authors reanalyzed their data to 
assess non-linear explanations of firing rates, none of which outperformed the linear models. Only 
explanatory variables based on uniform joint distributions of the two offered values performed 
comparably to the linear models. However, whether a joint distribution of offer values provides a 
better description of neuron firing is not precisely resolved here, as both models fit the neural data 
well and were not statistically distinguishable.  
 
A second theme of the paper was investigating an apparent paradox of adaptive coding among these 



neurons, which can be paraphrased as follows: if offer value neurons adapt their firing rates based on 
the available value range of one juice, and if we assume that the choice is a result of a comparison of 
offer value A vs. offer value B firing rates, then the indifference point in choices would shift depending 
on the range of values available. Because this shift is not observed behaviorally, it might be concluded 
that the choice is not strictly based on the relative firing rates of offer value neurons. This is an 
interesting observation. To drive this home, the authors tested monkeys in a nearly identical task, in 
which daily sessions were blocked so that the range of values in block 2 either increased or decreased. 
They showed that, behaviorally, the indifference point did not shift with different value ranges, 
implying there must be a correction somewhere in the decision circuitry. The authors hypothesize a 
downstream correction mechanism. While this explanation is speculative and not entirely satisfying, I 
think it is beyond the scope of this paper to find and demonstrate such a corrective mechanism.  
 
The final piece of the story was a demonstration that range adaptation maximized expected payout. 
This argument was difficult to follow, in part because much of it was relegated to supplementary 
material, and also because it was not immediately clear how the authors defined and quantified 
‘payoff’. I gather that it’s based on the value obtained as an abstract quantity not tied to the actual 
juice (i.e. ‘chosen value’?), but this isn’t really spelled out anywhere. If this interpretation is correct, 
shouldn’t it be closely tied to the maximum value available in a session, not just the value range?  
 
Further comments  
 
(1) Overall I found this a challenging paper. There are interesting investigations here, but the 
manuscript as written relies heavily on self-referential ideas and terms making it difficult for the 
reader to parse what exactly was hypothesized and how it was addressed, even more so if they do not 
specialize in the area. It would be significantly improved by making it more accessible to a general 
audience.  
 
(2) The authors seem to expect that these neurons should behave in a manner that is optimized for 
performing binary choices, for example in assuming that the optimal coding strategy is a step function 
that relates to the value of one juice option, with the step at the indifference point. This would, 
indeed, be optimal in the case of a familiar 2-option choice. But in how many other situations would 
this be optimal? It seems that having more parametric information, as provided by a response that 
varies more linearly with value (as was actually observed in the neurons), would be optimal for a 
wider range of behaviors. So in effect, is the argument that the neurons “should” respond via a step 
function something of a straw man?  



Introductory remarks on this revision 

We sincerely thank the three Reviewers for their time and for their thoughtful comments. 
Addressing them has significantly improved the manuscript and we are grateful for it.  

One recurrent comment from the Reviewers was that we did not introduce and clearly spell out 
the concepts of expected payoff and optimality, which are both central to this study. We 
completely agree with this critique, and we realize that this issue generated some confusion in 
the original ms. To address this point we revised several sections of the ms.  

First, we added at the beginning of the Results the section Relative value, choice variability and 
expected payoff, where we provide both an intuition and a formal definition for the expected 
payoff. In a nutshell, the behavior in any given session is fitted with a sigmoid function. The flex 
of the sigmoid reveals the relative value (i.e., the quantity ρ of juice B that makes the animal 
indifferent between 1A and ρB). The width of the sigmoid provides a measure of choice 
variability. If the sigmoid is steep (low choice variability), the animal always chooses the higher 
value; if the sigmoid is shallow (high choice variability), there is a significant fraction of trials in 
which the animal chooses the lower value. On any given trial, the payoff is equal to the chosen 
value. Thus given a set of offers and a sigmoid function, the expected payoff is equal to the 
chosen value averaged across trials. Importantly, the expected payoff is closely related to the 
sigmoid width: the wider the sigmoid, the lower the expected payoff. The two central paragraphs 
of this new section (p.4) are as follows: 

Choice patterns often presented some variability. For example, consider in Fig.1b offers 6B:1A. 
In most trials, the animal chose juice B, consistent with the fact that the value of 6B was higher 
than the value of 1A. However, in some trials, the animal chose the option with the lower value. 
Similarly, in some trials, the animal chose 3B over 1A. In each session, the width of the fitted 
sigmoid, referred to as σ, quantified choice variability (Methods). 

In any given trial, we define the payoff as the value chosen by the animal. Thus given a set of 
offers and a sigmoid function, the expected payoff is equal to the chosen value averaged across 
trials. Importantly, the expected payoff is inversely related to choice variability, and thus 
inversely related to the sigmoid width. When the sigmoid is steeper, choice variability is lower, 
and the expected payoff is higher; when the sigmoid is shallower, choice variability is higher, 
and the expected payoff is lower. Notably, the relative value of two juices is entirely subjective. 
In contrast, a key aspect of the expected payoff is objective: Given a set of offers, a relative value 
and two sigmoid functions, the steeper sigmoid yields higher expected payoff. 

Second, we revised the Introduction to define optimal coding for economic decisions. In a 
nutshell, neurons encoding the offer values are optimally tuned if they ensure maximal expected 
payoff. The key passage of the Introduction (p.3) is as follows: 

Because they constitute the input layer of the decision circuit, [offer value cells] are in some 
ways analogous to sensory cells. However, the behavioral goal subserved by offer value cells 
differs from that subserved by neurons in sensory systems. For the purpose of accurate 
perception, sensory neurons are optimally tuned if they transmit maximal information about the 

 1



external world(Barlow, 1961; Laughlin, 1981; Simoncelli and Olshausen, 2001). This goal is 
achieved if tuning functions match the cumulative distribution of the encoded stimuli(Brenner et 
al., 2000; Laughlin, 1981). In contrast, the purpose of a subject performing economic decisions is 
to maximize the payoff (i.e., the chosen value). Thus offer value cells are optimally tuned if they 
ensure maximal expected payoff. 

Other changes made to address the specific comments of the three Reviewers are detailed in the 
following pages.  
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Reviewer #1 (Remarks to the Author): 

The authors present a detailed study of the tuning properties of OFC offer value neurons and 
their relationship to optimal encoding for decisions. They show that OFC neurons encode offer 
values approximately linearly, and that they rescale according to the range of values. The 
rescaling does not lead to biased decision making, and it improves decision accuracy.  

This paper address several important issues and does so within a well‐developed, 
straightforward and clearly presented analytical framework. I have no overall concerns with the 
study, although I do have a number of specific comments that may help clarify the results and 
interpretation. 

We thank Reviewer 1 for the overall evaluation and for the specific comments.  

Comments 

1. It might be worth laying out the definition of optimality upfront, descriptively. It’s given in the 
equations. Optimality is not conveying the most information about the offers. In this sense the 
tuning functions of the neurons are not quite consistent with the CDF of the offer distribution. 
Optimality is defined as the animals consistently choosing their most preferred option. In this 
sense, the optimal tuning functions just encode the animal’s choices in a binary fashion in 
several of the experimental cases considered (Fig. 6a‐c). This is briefly addressed in the 
paragraph on page 7 where the sentence, “In retrospect, this finding…” Maybe just bring this to 
the front and use it to frame the approach in general. 

We completely agree with this comment and we extensively revised the ms accordingly. For 
details, please see the first two pages of this document (Introductory remarks on this revision).  

2. To some extent, this optimality argument feels a bit circular, since it’s not defined relative to 
an external variable. Rather it’s defined relative to the subjective preferences of the animal. If 
we believe the brain is controlling behavior, then the activity (perhaps in OFC offer value cells, 
but maybe in combination with some other activity somewhere) must be sufficient to drive the 
animal’s choices. If neurons were “more optimal” then a smaller population could drive the 
animal’s choices? Or perhaps the animal’s choice functions would have steeper slopes?  

Optimality in economic decisions is essentially synonymous of consistency. If the animal is 
offered 1A:3B, there is no correct answer. However, if the animal is indifferent between 1A and 
3B, it should choose 4B over 1A. Failure to do so is suboptimal. In other words, the behavior 
becomes closer to optimal as choice variability becomes closer to zero (i.e., the sigmoid becomes 
steeper). 

Multiple factors contribute to choice variability (Padoa-Schioppa, 2013). The present study 
focuses on neuronal noise in the encoding of offer values. In the framework of a linear decision 
model and under reasonable assumptions, the theory presented in the Supplementary Material 
provides explicitly the slope of the sigmoid as a function of the value ranges, the maximum 
firing rate and the noise correlation between pairs of offer value cells (Eq.28). This equation 
contains the answer to the Reviewer's question. For given value ranges, neurons would be "more 
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optimal" if the maximum firing rate (ν) was larger and/or if noise correlations (χ = ξ/4) were 
lower. This is actually very intuitive: If neurons had a larger range of possible firing rates, or if 
they were less correlated with each other, their signal would be more reliable and decisions 
would improve. However, we emphasize that this statement and the whole theory takes into 
account (i.e., does not overlook) the challenges posed by adaptation.  

All this assumes that the number of neurons is very large (n→∞). If the number of neurons was 
significantly smaller, the behavior would be less optimal. However, practically speaking, the 
limits imposed by noise correlation are more stringent than those imposed by the fact that the 
number of cells is not infinite (Shadlen et al., 1996). This is true even though noise correlation in 
OFC is significantly lower than that in area MT (ξ ≈ 0.01 versus ξ ≈ 0.14).  

3. The curve fits in Fig. 1 c, d, f, g and the population fits reported in Fig. 2 only have a few 
degrees of freedom. In some cases only 4. I realize that many trials go into each point, but those 
are not true degrees of freedom of the actual function that generates the data, and therefore 
the fit of the function to the data is also limited. This is a picky point, but were there any 
differences in the fits of the 2nd and 3rd order terms when there were more degrees of 
freedom (for example, in 1g compared to 1d)? If one only has 4 degrees of freedom, and a linear 
fit has 2, the higher order terms are unlikely to contribute much. 

The short answer is that the result illustrated in Fig.2 does not depend on the number of offer 
values. To elaborate, the number of values offered varied from cell to cell, as indeed noted by 
Reviewer 1 in Fig.1. In fact, the number of offer values was typically lower for juice A than for 
juice B. To address the Reviewer's question, we repeated the analysis of Fig.2 dividing responses 
in two groups, depending on whether the number of offer values was low (# offer values ≤ 5) or 
high (# offer values ≥ 6). Fig.S1gh shows the result of this analysis. Notably, departures from 
linearity were present in both groups, but they were more pronounced for the first group of 
responses (# offer values ≤ 5). The reason for this last observation is that low-value offers were 
predominant for both juices, but even more so for juice A than for juice B.  

4. I wasn’t sure why the indices in equation 1 were superscript on X and subscript on K? For 
consistency maybe use super for all? 

No profound reason, just consistency with the Supplementary Material. The variable K in Eq.1 
of the main text corresponds to variable J in Eq.1 of the Supplement. For J we use a subscript 
because we also need to write J2 (Supplementary Material, Eq.3) and it makes the notation 
graphically easier. For this reason, we elected to leave the notation as in the original submission.  

5. For the analysis that shows that the offer value cells, “…did not adapt to maximize the payoff 
in each session.” How much was actually lost? How much better, in terms of milliliters/trial or 
some related metric, would an ideal population have done? Again, maybe this is not a well 
posed question because it would depend on the population size. 

Very interesting question -- thanks! We addressed it based on the data and we included in the 
revised ms a new section that describes our results (see p.9-10, section The cost of rigidity and 
the benefit of adaptation).  
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In a nutshell, we defined a metrics named fractional lost value (FLV), which normally varies 
between 0 and 1. Specifically, FLV = 0 if the animal always chooses the higher value and FLV = 
1 if the animal always chooses randomly. Thus FLV quantifies the fraction of value lost to 
choice variability. We find that the FLV due to suboptimal response functions was relatively 
small (≤ 0.05). In contrast, the FLV expected under incomplete range adaptation would be quite 
large. For example, if the inverse temperature (parameter a1 in Eq.4) was 10 times smaller than 
observed experimentally, FLV = 0.52. These results suggest that a quasi-linear, but range 
adapting encoding of offer values is sufficient to ensure close-to-optimal behavior. 

Supplemental methods 

These seem like they should be published separately in a more technical journal with referees 
that would correspondingly be more appropriate to this material.  

We had considered turning the Supplementary Material into a separate paper before the original 
submission, and we gave more thought to this issue now. In the end, we think that the main text 
and the Supplementary Material are very intimately linked, and that having the former without 
the latter would impoverish this paper. One strength of this paper is that theory and data go hand 
in hand, and loosing it seems like a shame. Thus we decided to leave the Supplementary Material 
here. 

6. “This a setup…” ‐> “This setup…” 

Corrected 

7. Just under equation 7, in Assumption 2.2, X_A = X_A def X should be X_A = X_B def X. 

Corrected 

8. Page 6. “We clarify now of the details…” ‐> “We clarify now the details…” 

Corrected
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Reviewer #2 (Remarks to the Author): 

This manuscript by Rustichini and colleagues examines the nature of adaptation in value coding 
of monkey OFC neurons and the relationship between this adaptation and optimal coding for 
choice behavior. This work follows a body of work from Padoa‐Schioppa’s group examining 
linear value coding and range adaptation in the orbitofrontal cortex. The key question this paper 
addresses is the potential optimality/purpose of value range adaptation: in sensory coding, 
adaptation that approximates the cumulative distribution of sensory variables is optimal in 
terms of efficiently encoding the available information; however, decision systems must 
implement choice and optimality can be thought of in terms of decision outcomes rather than 
coding alone. 

Here, the authors report a series of theoretical and empirical results: 

(1) Reanalyzing previously reported data, the authors show that offer value neurons show quasi‐
linear responses despite the experimental distribution of rewards being typically highly non‐
uniform. 

(2) Using new experimental data, the authors show that despite linear range adaptation ‐ which 
can introduce a choice bias as the coding one of two potential rewards changes with the range 
of presented offers ‐ monkey choice behavior exhibits stable relative reward preferences. From 
these results, the authors conclude that the effects of range adaptation are corrected in the 
decision circuit. 

(3) They present a theoretical argument ‐ primarily in the Supplementary Material ‐ that 
assuming linear response functions range adaptation maximizes expected payoff, even if the 
subsequent circuit rescales to remove adaptation‐induced choice biases. 

(4) They show that ‐ in monkey behavior ‐ received payoff is inversely related to the range of 
presented rewards. 

(5) Finally, they show that the observed quasi‐linear response functions do not resemble the 
step‐function ORFs predicted for offer value cells, under the assumption of coding the joint 
distribution of rewards. Instead, they suggest that the observed response functions most closely 
resemble that predicted for symmetric uniform rewards. 

These studies address a question of much interest: what is the relationship between PFC value 
coding and choice behavior, and can the form of this coding be understood in terms of efficient 
coding? The authors raise a salient and important point: that sensory systems are optimized for 
efficiency given stimulus statistics, but value coding neurons may be optimized with different 
constraints (payoff, or joint reward statistics). I think this paper has promise, but there are a few 
issues in the current version that need to be addressed. The two biggest issues are the 
assumption that OFC value coding neurons are involved in the decision process (which is the 
basis for concluding that there is corrective rescaling downstream in the circuit), and the validity 
of examining payoff‐range relationships across sessions with different goods. Additionally, there 
are several areas where details can be cleared up by the authors. 
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We thank Reviewer 2 for the overall evaluation and for the specific comments.  

Major points 

(1) One of the major points of the paper is that OFC neurons exhibit range adaptation, but that 
monkey choice behavior does not exhibit the resulting, problematic choice biases that arise 
from the non‐stationary value coding implied by range adaptation. The authors conclude that 
the decision circuit compensates for the effects of OFC range adaptation, perhaps by adjusting 
downstream synaptic efficacies (“We also showed that range adaptation is corrected within the 
decision circuit to avoid arbitrary choice biases.”). 

However, there is a rather large caveat to this conclusion: it assumes that OFC neurons 
exhibiting range adaptation are causally involved in the choice process, but as far as I know this 
has yet to be demonstrated. One could argue that an equally plausible possibility is that 1) OFC 
neurons are range adapting but *not* involved in choice, but 2) the value coding and decision 
circuit neurons are not adapting and thus do not fall prey to arbitrary choice biases. 

The data from Experiment 2 are still interesting, since they reaffirm the notion that the relative 
preference of goods is not dependent on the ranges of offered rewards. However, without 
causal evidence that OFC neurons drive choice, the link between range adaptation and behavior 
is unknown and the suggestion that correction occurs in the decision circuit is unfounded. I think 
the authors could argue that the relationship between value range and payoff (Fig. 5) suggests 
that range adaptation is part of the decision process, but see point(2) below about problems 
with that data interpretation.  

Reviewer 2 makes a valid and important point. The gold standard for establishing a causal link 
between the activity of a neuronal population and a decision process is to bias decisions using 
electrical stimulation (or optogenetics), and it is true that no such link has yet been established 
between the activity of offer value cells in OFC and economic decisions. (Incidentally, 
establishing such link in this case is technically difficult due to the lack of columnar organization 
in OFC.) Thus it cannot be ruled out that economic decisions are based on entirely different 
populations of cells that do not adapt to the value range. In the remaining of this response, we 
refer to this scenario as the "alternative hypothesis".  

The alternative hypothesis would explain the lack of choice bias in Exp.2. However, several lines 
of evidence argue against it.  

First, clear evidence from clinical and lesion studies indicates that a well functioning OFC is 
necessary for economic decisions and goal-directed behavior. Indeed, OFC lesions result in 
choice deficits in various domains and in increased violations of choice transitivity (Camille et 
al., 2011; Fellows, 2004; Rahman et al., 2001). Furthermore, experiments using the reinforcer 
devaluation paradigm indicate that deficits following OFC lesions are due to the inability to 
compute values (Gallagher et al., 1999; Padoa-Schioppa and Schoenbaum, 2015; Rudebeck and 
Murray, 2011; Rudebeck et al., 2013; West et al., 2011). To reconcile the alternative hypothesis 
with this literature, one would have to imagine a scenario in which (a) OFC is necessary to 
compute values, (b) OFC is necessary to make economic decisions, but (c) OFC neurons 
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encoding offer values during economic decisions are not involved in the decision. Practically 
speaking, this scenario seems somewhat unlikely.  

Second, previous work found a correlation between trial-by-trial fluctuations in the neuronal 
activity of offer value cells and the decision made on any given trial (Conen and Padoa-
Schioppa, 2015; Padoa-Schioppa, 2013). For each cell, this correlation is quantified with an 
ROC analysis, which provides a choice probability (CP). Compared to the CPs measured in area 
MT during perceptual decisions (Britten et al., 1996; Britten et al., 1992), the CPs of offer value 
cells are relatively small. However, CPs are linearly related to noise correlations (Haefner et al., 
2013; Shadlen and Newsome, 1998), and noise correlations in offer value cells are much lower 
than those found in area MT (Zohary et al., 1994). Simulations based on Haefner's equation 
showed that the noise correlations measured for offer value cells combined with a linear decision 
model closely reproduced the experimental measures of CPs (Conen and Padoa-Schioppa, 2015). 
In other words, given the level of noise correlation in OFC, the CPs of offer value cells are just 
as large as one would expect under the assumption that decisions are primarily based on their 
firing rates.  

Third, as noted by Reviewer 2, the relation between choice variability and the value ranges 
observed in Exp.1 and Exp.2 argues against the alternative hypothesis described above (the 
Reviewer's comments on that relation are addressed below).  

Lastly, it is not clear where in the brain one might find the putative non-range-adapting offer 
value cells assumed under the alternative hypothesis. Indeed, while value signals exist in 
numerous brain regions, most of the evidence outside OFC is about neurons encoding the chosen 
value, not the offer value (Amemori and Graybiel, 2012; Cai et al., 2011; Cai and Padoa-
Schioppa, 2012, 2014; Lau and Glimcher, 2007; Roesch et al., 2009). One candidate might be 
the ventromedial prefrontal cortex (vmPFC). However, fMRI studies that focused on signals 
associated with individual goods or options (i.e., offer values) generally found such signals in 
OFC as opposed to vmPFC (Howard et al., 2015; Howard and Kahnt, 2017; Klein-Flugge et al., 
2013). Another candidate might be the amygdala (Grabenhorst et al., 2016; Paton et al., 2006). 
However, neurons in the amygdala do undergo range adaptation (Bermudez and Schultz, 2010). 
Finally, one candidate might be the lateral intraparietal (LIP) area and other areas where neurons 
encode action values (Louie and Glimcher, 2010; Platt and Glimcher, 1999). However, it is 
generally understood that these areas receive offer value signals computed elsewhere (Cisek, 
2012; Louie et al., 2014).  

In conclusion, while causal links in the gold-standard sense discussed above have not yet been 
established, a broad spectrum of evidence supports the hypothesis that offer value cells in OFC 
provide a primary input for economic decisions. Indeed, most current neuro-computational 
models embrace this view (Cisek, 2012; Friedrich and Lengyel, 2016; Kable and Glimcher, 
2009; Rustichini and Padoa-Schioppa, 2015; Solway and Botvinick, 2012; Song et al., 2017). 
(Note that these models include both action-based and good-based models.)  

In the revised ms, we included a new paragraph in the Discussion (p.10) to discuss the important 
point raised by Reviewer 2:  
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The rationale for this study rests on the assumption that offer value cells in OFC provide the 
primary input for the neural circuit that generates economic decisions. Support for this 
assumption comes from lesion studies(Camille et al., 2011; Gallagher et al., 1999; Rudebeck and 
Murray, 2011), from the joint analysis of choice probability and noise correlation(Conen and 
Padoa-Schioppa, 2015) and from the relation between choice variability and value range shown 
here. Indeed, current neuro-computational models of economic decisions embrace this 
view(Cisek, 2012; Friedrich and Lengyel, 2016; Kable and Glimcher, 2009; Rustichini and 
Padoa-Schioppa, 2015; Song et al., 2017). However, we note that causal links between the 
activity of offer value cells and the decision have not yet been demonstrated with the gold-
standard approach of biasing choices using electrical or optical stimulation. Future work should 
fill this important gap. 

 (2) Perhaps the most interesting and potentially important data from the paper is the finding 
that monkey choice behavior is value range‐sensitive. Past papers have documented range 
adaptation in OFC neurons but no clear corresponding behavioral correlates (Padoa‐Schioppa 
2009; Kobayashi et al 2010). However, there is a critical point of analysis that confounds the 
argument that payoff (or the inverse of sigma) is related to the value range. 

Figure 5 and the accompanying analyses aim to compare payoffs (or equivalently choice curve 
slopes, or sigma) across different sessions with different value ranges. However, in the data 
(from Padoa‐Schioppa and Assad, 2006), there were ~12 juice types and individual sessions 
presented single pairs of these types. The fundamental issue: how can the behavior in different 
sessions be compared when different juices are used across sessions? Specifically, how are the x 
axes in Fig. 5 co‐aligned for different sessions? Similarly, how can the sigmoid fits be compared 
across different sessions with different juice types?  

Both Fig. 5 and the sigmoid fits are performed with each session analyzed in objective units of 
q_B (drops of juice B). But this assumes that a given change in juice B in one session is 
equivalent to a given change in juice B in a different session, in *subjective* terms. However, 
there is no reason to think that the subjective change in value of a given quantity change in 
grape juice is equivalent to that of the same objective quantity change in peppermint tea. One 
could argue that utilizing ratios of goods (in equivalent B units) as the authors do could alleviate 
the problem, but this approach assumes that the linear scaling of utility for separate goods are 
the same. If the x axes in Fig. 5a,b cannot be aligned across sessions, then it is impossible to 
compare payoff/choice stochasticity across different sessions. 

Throughout the analysis we assume linear indifference curves (Fig.4a). If we indicate with qX the 
quantity of juice X and with V(qX) its value, one can generally write V(qA) = qA

α and V(qB) = qB
β. 

Assuming linear indifference curves means assuming α = β. Given that the quantities offered in 
our experiments are relatively small (0-10 drops), this assumption is relatively mild. In practice, 
and especially since the tuning of offer value cells is quasi-linear, it would seem safe to make the 
stronger assumption α = β = 1. However, in generating Fig.5ab, we make a weaker assumption, 
namely α / β = constant across sessions. Under this assumption, the x-axis in Fig.5ab is 
proportional to the log value ratio. (It is equal to the log value ratio if α / β = 1.)  

Following on these considerations, Reviewer 2 is correct that the subjective value of juice B 
(likely) varies from session to session. However, using the value ratio (a pure number) makes it 
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possible to align sigmoid functions across sessions under relatively weak assumptions. Note also 
that Fig.5ab is mostly illustrative – the actual statistical analysis is done in Fig.6 (see below). 

On a related note, I’m not sure that value ranges can be compared across sessions either. For 
example the correlational analyses in Fig. 5c,d rely on a measure of mean value range, defined 
as (rho*Q_A+Q_B)/2. This means that each session range is defined in objective units (drops) of 
a particular good (good B). I don’t see how ranges across sessions can be compared when they 
are in different objective (different goods) and subjective (the utility of those goods, which are 
not compared) units.  

As a clarification, the x-axis in Fig.6ab (formerly Fig.5cd) is a geometric mean, although the 
figure generated using the simple mean is almost identical (because ρ QA ≈ QB in the 
experiments). We clarified this point in the figure legend.  

Apart from that, the point raised by Reviewer 2 is well taken, and we had not given this issue 
sufficient thought – so thank you! It is true that the subjective value of a unit quantity of juice B 
(uB) likely differs from session to session, and thus putting on the same axis value ranges from 
different sessions is tricky. We formalize this issue as follows. Lets say there was some good G 
such that the subjective value of a unit quantity of G (uG) remains fixed across sessions. We 
could express uBs = cs uG, where s indicates the session, and cs is a proportionality factor. In 
building Fig.6ab we acted as though cs was constant, but in reality cs likely varies from session to 
session. However, the figure remains essentially valid if we assume that variations in the sigmoid 
width (σ) are independent of variations in cs. This assumption is actually fairly conservative. If 
anything, we would expect that when cs is smaller, the monkey is less motivated to work, and 
thus σ increases. If so, variability in cs would induce a correlation in the direction opposite to that 
observed in the data. 

To acknowledge this important issue, we added the following paragraph in the Methods (p.23): 

Importantly, Δ in Fig.6ab is expressed in value units of juice B and the figure pools data from 
different sessions. However, the subjective value of a unit quantity of juice B (uB) likely differs 
from session to session, and thus pooling data must be done with caution. To formalize this 
point, imagine there was a good G such that the subjective value of a unit quantity of G (uG) 
remains fixed across sessions. We could express uBs = cs uG, where s indicates the session, and 
cs is a proportionality factor. In building each panel of Fig.6, we essentially ignored the fact that 
cs may vary from session to session. More precisely, we assumed that variations in the sigmoid 
width (σ) are independent of variations in cs. This assumption seems fairly conservative. If 
anything, one might expect that when cs is smaller, the monkey is less motivated to work, and 
thus σ increases. If so, variability in cs would induce a correlation in the direction opposite to that 
observed in the data. 

Given these caveats, the data from Expt. 2 (Fig. S5) *can* be analyzed because they address 
offer range changes without changing goods. The Supplementary Material provides some 
evidence that there is such a relationship in a limited set of the data. However, to make the 
argument that there is a relationship between payoff and value range, the authors would have 
to do a fuller analysis of all the data from the experiment (i.e. including the sessions where A 
changes). 
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We revised Fig.S6 (formerly Fig.S5) and included data from sessions in which QA was 
manipulated. When these sessions were considered alone, the change in sigmoid width (σ) was 
not significant. However, when all sessions were pooled together, the change in sigmoid width 
was statistically significant (p<0.05, sign test; p<0.05, t-test). 

We are not completely sure of why the effect was not significant when we only manipulated QA. 
Our current thinking is as follows: Because juice A was always preferred, we generally used 
smaller quantities. In value space, this means that the values of juice A were sampled more 
coarsely. Furthermore, given our joint distributions of offers (see Fig.S7), animals split decisions 
only when juice A was offered in quantity 1. These two factors combined may have helped the 
animal and reduce the predicted behavioral effect. (This is why we originally excluded these 
sessions from the figure.) 

 (3) The discussion raises several issues that are currently unaddressed, and the authors should 
clear up for the reader. First, it’s not clear to me which optimization goal is being served by 
range adaptation: the paper argues that decision model maximizes payoff at different value 
ranges, but also presents results that suggest that quasi‐linearity mimics ORF for joint uniform 
reward distributions. In the former, optimization is for decision outcomes, whereas in the latter, 
optimization is ‐ as for sensory systems ‐ for input (reward) coding. 

The tuning curves of offer value cells are quasi-linear and they are range adapting. The first 
question is: Why range adaptation? The answer is that, given linear tuning functions, range 
adaptation maximizes the expected payoff. The second question is: Why quasi-linearity? The 
answer here is more articulated. First, it is clear that quasi-linearity does not maximize 
information transmission in our experiments (ntrialsCDF would, but see Fig.1), so there is no 
analogy with sensory systems. Second, for the purpose of maximizing the expected payoff, given 
the joint distributions of offers used in our experiments, quasi-linearity was not optimal (Fig.7b-
d). This observation suggests that quasi-linearity is a property of offer value tuning functions that 
is not subject to contextual adaptation. If so, it is reasonable to ask: Is there a joint distribution of 
offers for which quasi-linearity would be optimal? The answer is that quasi-linearity would be 
optimal if the joint distribution was uniform (with equal value ranges). Thus, in layman terms, 
one might say that offer value cells implicitly "assume" that the joint distribution of offers is 
uniform with equal value ranges. The last question is: Why would the economic decision circuit 
make such "assumption"? Here the answer is admittedly speculative (this is a Discussion point):  

Consider an offer value B cell, and assume strict menu invariance. In other words, the cell "sees" 
only the marginal distribution of B values and "knows nothing" about good A. In particular, the 
cell doesn't know how desirable A is (i.e., it doesn't know the relative value ρ) and it doesn't 
know the actual distribution of A values. The cell can "assume" that the joint distribution of 
offers is uniform with equal value ranges without having any knowledge of ρ or of the actual 
joint distribution. This is because the information about the range of B values is sufficient to 
make that assumption. (This addresses the next comment of Reviewer 2.) This line of reasoning 
motivates the speculation that tuning functions are quasi-linear because, by being menu 
invariant, they facilitate preference transitivity.  

Second, the relationship between joint reward distribution‐based response functions and menu 
independence (Discussion, pg 8‐9) is puzzling to me. The authors note that OFC value coding is 
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menu invariant, and that each neuron adapts to its own value range, suggesting that “neurons 
associated with one particular good are blind to every aspect of the other good”. However, an 
ORF that is tuned to the *joint* uniform distribution of rewards must take into account the 
range of the other good. This seems like a contradiction to me, perhaps the authors can clear 
this up? 

This issue is addressed in the second part of the previous response. Basically, knowing one of the 
two value ranges and nothing else is sufficient to define a joint distribution of offer values that is 
uniform with equal value ranges. Thus a neuron that "sees" only one juice can be optimally tuned 
for such a uniform distribution. 

Other points 

(1) The abstract stated that “we show that neuronal responses are quasi‐linear even when 
optimal tuning functions would be highly non‐linear.”. It’s crucial here that the authors state 
what is meant by optimal: is it optimal in the classic sensory CDF sense, or optimal in terms of 
expected choice payoff? 

In the context of economic decisions, optimality is always meant in the sense of the expected 
payoff. We have limited space to clarify this point in the Abstract, but we do so in the 
Introduction and in a new, dedicated section (see above, Introductory remarks on this revision). 

 (2) Clarity of the model and theoretical predictions. In the synopsis of model results (pg 5‐6), 
the main point is that maximal expected payoff occurs when there is complete range 
adaptation. In other words, given a range of offer values, maximum payoff occurs with complete 
adaptation of firing rates. However, the prediction in the next section that payoff and value 
range are inversely related is not addressed and it is not clear from where it arises. 

Thanks for pointing out this issue. In essence, the probability of choosing juice A (Eq.2 in the 
main text) is the sigmoid function that represents choices. The width of the sigmoid is captured 
by its slope on the indifference line, which we can compute explicitly (Eq.28 in the 
Supplementary Material). In the revision, we added a short paragraph to discuss this point (p.7): 

Notably, Eq.2 expresses the sigmoid surface describing choices. By computing the slope of this 
surface on the indifference line, we show that under optimal coding the sigmoid width is directly 
related to the value ranges (see Supplementary Material, Eq.28). 

 (3) How does a nonlinear value function of quantity (drops) affect these interpretations? One of 
the points of the paper is that there is a functional rigidity to OFC responses: linear coding of 
offered rewards (in drops). However, much work in the economics literature suggests that 
people and animals have nonlinear utility functions. One wonders if the linearity in response to 
rewards here is an experimental byproduct of the quantization of juice delivery in drops; if juices 
were delivered as different volumes rather than different numbers of drops, perhaps value 
coding would be nonlinear? I certainly don’t expect the authors to provide different 
experimental data, but could they address the relationship between linear value coding and 
nonlinear utililty functions? 
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This is a very interesting question, for which we don't have a definite answer. However, we can 
make a few considerations.  

In the economics literature, statements about the non-linearity of utility functions come mostly 
from observations of choices under risk. Human subjects are usually described as risk averse, 
while most experiments in neurophysiology settings found that rhesus macaques are risk seeking. 
Taking seriously the curvature observed in our offer value cells – in particular, the quadratic term 
β2 (Fig.2a) – one would predict that these monkeys would be risk seeking. This is indeed what 
we observed in a previous study (Raghuraman and Padoa-Schioppa, 2014). In another study, 
Stauffer et al. (2014) found that monkeys are risk seeking for low values and risk averse for 
higher values. If so, and if risk attitudes are ultimately due to the curvature of the tuning 
functions of offer value cells, then one would expect to observe slightly S shaped tuning in these 
neurons. Interestingly, our data conform to this prediction (Fig.2b). We should also note that the 
theory presented in the SM accounts for the quadratic term (the ORF in Fig.6e is convex). 
However, in our theory ORF does not depend on the value range, provided that the two ranges 
are the same (symmetric case). Thus this theory does not account for risk attitudes in general.  

Are the results observed here a byproduct of quantization? Technically, juices in Exp.1 were 
delivered to the animals in continuous boluses (i.e., the solenoid opened and closed only once), 
although we did play brief sounds according to the number of drops (e.g., the same sound was 
repeated 6 times when the animal was delivered 6 "drops" of juice). In later experiments, we 
changed this aspect of the experimental design (i.e., we opened and closed the solenoid for each 
drop of juice chosen by the monkey) and we did not notice any difference. Our hunch is that the 
tuning curvature of offer value cells does not depend on quantization per se.  

(4) How rho (relative value) is defined is not clear from the text. I understand that it is quantified 
as the slope of the indifference line (Fig. 4a) between offer A and offer B, and essentially 
measures the tradeoff between objective amounts of A and B, but it should be clarified in the 
text when first discussed (pg 5?). 

We clarified this point on p.4 (and added Fig.1b) as follows: 

In each session, the choice pattern was fitted with a sigmoid function, and the flex of the sigmoid 
provided a measure for the relative value of the two juices, referred to as ρ (Methods, Eq.5). The 
relative value allows to express quantities of the two juices on a common value scale. In one 
representative session, we measured ρ = 4.1 (Fig.1b). 

(5) Can the authors clarify what they mean by “payoff” in the main text? It is never clearly 
defined, but presumably this is a measure of how often the animal chooses the higher 
subjectively valuable reward (which itself is defined by the animal’s behavior in the block). 

See above, Introductory remarks on this revision. The expected payoff is defined as the chosen 
value averaged across trials.  

 (6) Figure 5. Can the authors clarify what the blue‐green shading depicts? Does it represent the 
size of the mean value range? Please either state explicitly in the legend, or provide a visual 
colorbar. 
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Different shades of color (from blue to green) indicate the ordinal ranking of sessions according 
to the mean value range (Δ). We clarified this point in the figure legend.  

 (7) Figure 6e. The legend describes the case where rho=2, but the dashed line in panel (e) 
depicts rho=1. 

We corrected the figure -- thanks!  

 (8) Optimal response functions (Fig 6). Not sure how they are derived. The idea that sensory 
neural tuning curves approximate the CDF of the encoded statistic makes specific certain 
assumptions, such as the desire for a uniform utilization of output FRs (maximizing 
entropy/information). Can the authors be clearer about how the ORFs are derived? 

We include in the submission the Matlab script used to compute the ORF. In words, the program 
estimates the optimal response function (ORF) by setting the domain of the function as a discrete 
grid of dimension G, and representing the RF as a vector. The function to be maximized is the 
expected payoff, calculated as the probability of choosing the good A times the value of good A, 
plus the probability of choosing the good B times the value of good B. The RF is constrained to 
take values in the unit interval [0,1]. The program then implements the non-linear constrained 
maximization of the expected payoff under the constraints. Parameters are chosen as described in 
the main text, to be consistent with the physiological values identified there.  

(9) In the presentation summarizing the model implications (pg 6), the authors discuss 
symmetric and asymmetric cases, but it would help the reader if the explicit difference between 
the two are stated in plain terms. I believe symmetric describes instances when the range of the 
two goods are equivalent (in good B‐equivalent units), and asymmetric describes when they are 
not. 

The understanding of Reviewer 2  is correct, and we clarified this point on p.7 as follows: 

In the symmetric case, defined by  ρ QA = QB (equal value ranges), the expected payoff is 
maximal [...]. In the asymmetric case, (unequal value ranges), there is a small choice bias [...]. 
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Reviewer #3 (Remarks to the Author): 

In this manuscript, Rustichini et al. present deeper investigations of data and results related to a 
series of publications from the Padoa‐Schioppa lab, in which orbitofrontal (OFC) neurons in 
monkeys are found to encode decision parameters in choices involving quantity‐quality trade‐
offs. The authors conducted a series of analyses collectively aimed at elucidating the nature of 
value coding in OFC neurons, particularly in the context of range adaptation. 

The previous studies from this group report three coding schemes common among OFC neurons 
(offer value, chosen value, chosen juice), and the present manuscript focuses on those encoding 
‘offer value’, referring to the value of one of two juice rewards available in a given task session. 
These neurons are believed to encode pre‐decision variables, such that a choice can be made by 
comparing the relative firing rates of two ‘offer value’ populations coding for each option. It has 
previously been reported that they exhibit range adaptation. That is, their firing rates do not 
faithfully reflect the absolute quantity of juice, but rather adapt so that baseline and maximal 
firing rates roughly map onto the minimum and maximum quantities available in a given session, 
with intermediate values linearly related.  

Given this background, the authors first show that firing rates of offer value neurons adapt 
based on the range of values available in a session, but not the frequency with which these 
values are encountered (i.e. their firing rates are “quasi‐linear” with respect to value). This result 
is novel if not entirely surprising. Indeed, it could provide interesting support for recent ideas 
that OFC neurons form “cognitive state space maps”, in that the neurons appear to respond 
based on stored knowledge of the range of possible values (i.e. 'maps') rather than being 
influenced by the statistics of individual trials. 

This result is loosely tied to the final part of the paper, in which the authors reanalyzed their 
data to assess non‐linear explanations of firing rates, none of which outperformed the linear 
models. Only explanatory variables based on uniform joint distributions of the two offered 
values performed comparably to the linear models. However, whether a joint distribution of 
offer values provides a better description of neuron firing is not precisely resolved here, as both 
models fit the neural data well and were not statistically distinguishable.  

A second theme of the paper was investigating an apparent paradox of adaptive coding among 
these neurons, which can be paraphrased as follows: if offer value neurons adapt their firing 
rates based on the available value range of one juice, and if we assume that the choice is a result 
of a comparison of offer value A vs. offer value B firing rates, then the indifference point in 
choices would shift depending on the range of values available. Because this shift is not 
observed behaviorally, it might be concluded that the choice is not strictly based on the relative 
firing rates of offer value neurons. This is an interesting observation. To drive this home, the 
authors tested monkeys in a nearly identical task, in which daily sessions were blocked so that 
the range of values in block 2 either increased or decreased. They showed that, behaviorally, the 
indifference point did not shift with different value ranges, implying there must be a correction 
somewhere in the decision circuitry. The authors hypothesize a downstream correction 
mechanism. While this explanation is speculative and not entirely satisfying, I think it is beyond 
the scope of this paper to find and demonstrate such a corrective mechanism. 
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The final piece of the story was a demonstration that range adaptation maximized expected 
payout.  

We thank Reviewer 3 for the overall evaluation and for the specific comments.  

[A] This argument was difficult to follow, in part because much of it was relegated to 
supplementary material, and also because it was not immediately clear how the authors defined 
and quantified ‘payoff’. I gather that it’s based on the value obtained as an abstract quantity not 

tied to the actual juice (i.e. ‘chosen value’?), but this isn’t really spelled out anywhere. [B] If this 
interpretation is correct, shouldn’t it be closely tied to the maximum value available in a session, 
not just the value range?  

[Square brackets are ours] 

[A] We apologize for the confusion, and we extensively revised the ms to clarify the concept of 
expected payoff. Please see above the Introductory remarks on this revision. 

[B] For each juice, the value range is defined as the difference between the max value and the 
min value, the latter of which is always zero in these experiments. So value range is indeed equal 
to max value. In this respect, the Reviewer is correct. A different question is whether neurons 
adapt to the max value across juices. For example lets express all values in the same units and 
lets say that max value A = 8 and max value B = 10. In principle, offer value A cells might adapt 
to the global max, namely 10. This would actually solve the problem raised in the Introduction, 
in the sense that there would be no choice bias. However, we previously showed that this is not 
the case, and that each neuron adapts to its own value range (Padoa-Schioppa and Rustichini, 
2014).  

Further comments 

(1) Overall I found this a challenging paper. There are interesting investigations here, but the 
manuscript as written relies heavily on self‐referential ideas and terms making it difficult for the 
reader to parse what exactly was hypothesized and how it was addressed, even more so if they 
do not specialize in the area. It would be significantly improved by making it more accessible to 
a general audience. 

We are sorry that the ms came across as challenging. In the revision, we tried to simplify the 
exposure as much as possible. Also, introducing and clarifying the concept of expected payoff 
early on should make the paper much easier to read.  

(2) The authors seem to expect that these neurons should behave in a manner that is optimized 
for performing binary choices, for example in assuming that the optimal coding strategy is a step 
function that relates to the value of one juice option, with the step at the indifference point. 
This would, indeed, be optimal in the case of a familiar 2‐option choice. But in how many other 
situations would this be optimal? It seems that having more parametric information, as provided 
by a response that varies more linearly with value (as was actually observed in the neurons), 
would be optimal for a wider range of behaviors. So in effect, is the argument that the neurons 
“should” respond via a step function something of a straw man? 
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This is an interesting observation, and it is very much in line with our understanding. The bottom 
line of this study is that value coding in OFC is functionally rigid (i.e., neuronal responses are 
quasi-linear independent of the behavioral context) but parametrically plastic (the gain adapts 
optimally). Why is there functionally rigidity? We speculate that it facilitates choice transitivity. 
As Reviewer 3 suggests, it is also possible that quasi-linearity in offer value cells is optimal for 
other behaviors. However, the role of these neurons in other behaviors has not yet been 
examined. Furthermore, since our present focus is on binary economic decisions we think that 
bringing up other behaviors in this paper would ultimately confuse the reader. For these reasons 
we chose not to raise this point in the Discussion.  
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Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
The authors have addressed all of my concerns. I have no further comments.  
 
 
Reviewer #2 (Remarks to the Author):  
 
Rustichini et al present a revised manuscript with theoretical/empirical work examining value 
adaptation in OFC neurons, the functional form of value coding, and the relationship between value 
coding, adaptation, and payoff maximization. Their revisions nicely address a number of previous 
concerns, and have improved the manuscript. I appreciate and accept their arguments re: the 
putative causal role of OFC value coding in the choice process, and the added points in the discussion 
help clear up the authors’ viewpoint.  
 
However, I still have some concerns about the experimental work examining the relationship between 
choice variability and value range. I realize that demonstrating the variability-range relationship is not 
the central point of the paper, but there are some points the authors should address. My concerns are 
threefold:  
 
(1) Correctness of aligning value ranges and relative value axes across sessions (different juices, 
different days). I still am unsure that the authors can reasonably compare across sessions in their 
primary dataset (Expt 1), where the juice pairings are different from day to day. In their reply, the 
authors point out that the log value ratio scale (Fig. 5) is equivalent to assuming that the alpha/beta 
ratio is constant across days (where V(qA) = qA^alpha and V(qB) = qB^beta). While this is true, the 
experimental setup is such that different juices are paired on different days - meaning, I presume, 
that a juice could be juice A on one day and juice B on another. This makes assuming a constant 
alpha/beta ratio a little less well founded.  
 
This is also an issue for comparing value ranges across days with different juice pairs. Consider an 
example where day 1 pairs orange and apple (orange preferred to apple) and day 2 pairs apple and 
grape (apple preferred to grape). If the same range of apple is given each day (10 drops), it will 
contribute QB=10 to the value range on day 1 but rho*QA=30 (if rho=3) on day 2. The problem is 
that everything is scaled to the non-preferred juice, but the identities of juices are not the same 
across sessions.  
 
In their reply, the authors point out that you can think of a unit quantity of some good G (uG) as 
having a variable value session-to-session where uB_s = c_s*uG, and that c_s is likely independent of 
variability. However, this approach is for a given good - the real issue is that different goods are used 
indifferent sessions, and their is no reason to expect uB(apple) = uB(grape) [the value of 1 drop of 
apple has no relationship to the value of 1 drop of grape]. The authors rightly point out that they *do* 
observe a relationship between sigma and value range, and that it is only an issue if c_s (or the 
scaling of different goods, but same idea) varies with sigma. This is a difficult assumption to address 
in the data, so perhaps a more important point to address is the following: is there another potential 
explanation for the relationship between sigma and value range? This is my next point below.  
 
(2) Controlling for other explanations for the range-variability relationship. In looking at the definition 
of the logistic fit parameters (rho and sigma), it is clear that they both depend on the same parameter 
(a1). The issue of concern is that the relationship the authors wish to show (Fig. 6) is a relationship 
between choice variability and value range; choice variability is defined as sigma, which has some 



relationship to rho (they both depend on a1), and value range also depends on rho 
([rho*Qa*Qb]^.5).  
 
So the key question is: is their a relationship between rho and sigma? In other words, do the animals 
show greater variability in sessions where the relative values of the goods are more disparate? A 
simple way to check is simply to see if their is a correlation between the quantified rho and sigma 
parameters across sessions. If their is a relationship, then I am concerned that it is driving the 
apparent relationship between sigma and value range (since both would be a function of rho). Even if 
their is a relationship between sigma and rho, the authors could examine the variability-range 
relationship while controlling for rho (either by regression or by stratifying by rho).  
 
(3) Within day range-variability relationship (Expt. 2). As discussed in the last round of reviews, the 
data in Expt. 2 offer a way around the issues of comparing across different goods, since the 
comparisons are made within day. However, it is a bit concerning that all the data don’t show the 
intended effect (Fig. S6). Do the authors have any idea why there is such a marked difference 
between the A and B manipulations?  
 
Other points  
 
(1) In Fig. 4A, the authors show the indifference line for goods A and B, and refer to the slope of the 
line as rho (the relative value, defines as the number of B units equivalent to 1 unit of A). I think that 
- as plotted - the slope of the line is actually 1/rho (since the plot depicts A vs B). By definition, the 
line can only get shallower than the unity line, but rho is >= 1.  
 
(2) Minor detail re: Fig. 3A. The legend describes the blue line as depicting rho = 3, but the actual 
figure shows a rho ~2.5.  
 
(3) Another suggestion for Fig. 3: the intuition outlined in 3A-B is difficult to apply to 3C due to the 
way the authors chose to denote their value range ratios. In 3A-B, the authors show that increasing 
the range of B should (in the uncorrected case) increase the relative value of A:B. However, the axes 
in C show deltaA/deltaB and plot the ratio=X case vs. ratio=2X. Seems to me that it would be easier 
for the reader if the graph were labelled as deltaB/deltaA, with the x-axis being “X” and the y-axis 
being “2X”. I realize these are equivalent, but it would match the intuition depicted in 3A-B.  
 
(4) I’m not sure I understand the necessity of Fig. S5. Isn’t the inverse temperature just a 
transformed version of sigma?  
 
 
Reviewer #3 (Remarks to the Author):  
 
I have reviewed the revised manuscript. My main concern in the previous version was that it was 
difficult to follow. I think that the authors' revisions and additional comments have adequately 
addressed these concerns. In particular, fleshing out the idea of expected payoff as it relates to the 
preference function helped significantly. My only comment is that there is a typo in the first paragraph 
of the Results ("allows to express"). I have no other significant concerns.  



Reviewer #2 (Remarks to the Author): 

Rustichini et al present a revised manuscript with theoretical/empirical work examining value 
adaptation in OFC neurons, the functional form of value coding, and the relationship between 
value coding, adaptation, and payoff maximization. Their revisions nicely address a number of 
previous concerns, and have improved the manuscript. I appreciate and accept their arguments 
re: the putative causal role of OFC value coding in the choice process, and the added points in 
the discussion help clear up the authors’ viewpoint. 

However, I still have some concerns about the experimental work examining the relationship 
between choice variability and value range. I realize that demonstrating the variability‐range 
relationship is not the central point of the paper, but there are some points the authors should 
address.  

We thank Reviewer 2 for carefully reading our ms and for the additional comments. We 
appreciate the concerns raised here, and we recognize that the relation between choice variability 
and value range deserved more attention. In this revision, we conducted new analyses that 
address all the key points. We also revised the ms as suggested by the Reviewer, and included 
other relatively minor corrections. 

My concerns are threefold: 

(1) Correctness of aligning value ranges and relative value axes across sessions (different juices, 
different days). I still am unsure that the authors can reasonably compare across sessions in 
their primary dataset (Expt 1), where the juice pairings are different from day to day. In their 
reply, the authors point out that the log value ratio scale (Fig. 5) is equivalent to assuming that 
the alpha/beta ratio is constant across days (where V(qA) = qA^alpha and V(qB) = qB^beta). 
While this is true, the experimental setup is such that different juices are paired on different 
days ‐ meaning, I presume, that a juice could be juice A on one day and juice B on another. This 
makes assuming a constant alpha/beta ratio a little less well founded. 

This is also an issue for comparing value ranges across days with different juice pairs. Consider 
an example where day 1 pairs orange and apple (orange preferred to apple) and day 2 pairs 
apple and grape (apple preferred to grape). If the same range of apple is given each day (10 
drops), it will contribute QB=10 to the value range on day 1 but rho*QA=30 (if rho=3) on day 2. 
The problem is that everything is scaled to the non‐preferred juice, but the identities of juices 
are not the same across sessions. 

In their reply, the authors point out that you can think of a unit quantity of some good G (uG) as 
having a variable value session‐to‐session where uB_s = c_s*uG, and that c_s is likely 
independent of variability. However, this approach is for a given good ‐ the real issue is that 
different goods are used indifferent sessions, and their is no reason to expect uB(apple) = 
uB(grape) [the value of 1 drop of apple has no relationship to the value of 1 drop of grape]. The 
authors rightly point out that they *do* observe a relationship between sigma and value range, 
and that it is only an issue if c_s (or the scaling of different goods, but same idea) varies with 
sigma. This is a difficult assumption to address in the data, so perhaps a more important point to 
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address is the following: is there another potential explanation for the relationship between 
sigma and value range? This is my next point below. 

(2) Controlling for other explanations for the range‐variability relationship. In looking at the 
definition of the logistic fit parameters (rho and sigma), it is clear that they both depend on the 
same parameter (a1). The issue of concern is that the relationship the authors wish to show (Fig. 
6) is a relationship between choice variability and value range; choice variability is defined as 
sigma, which has some relationship to rho (they both depend on a1), and value range also 
depends on rho ([rho*Qa*Qb]^.5). 

So the key question is: is their a relationship between rho and sigma? In other words, do the 
animals show greater variability in sessions where the relative values of the goods are more 
disparate? A simple way to check is simply to see if their is a correlation between the quantified 
rho and sigma parameters across sessions. If their is a relationship, then I am concerned that it is 
driving the apparent relationship between sigma and value range (since both would be a 
function of rho). Even if their is a relationship between sigma and rho, the authors could 
examine the variability‐range relationship while controlling for rho (either by regression or by 
stratifying by rho). 

Before addressing the most important issues, lets us call attention to a specific point. The choice 
pattern measured in any session is fitted with a sigmoid function: 
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From the fitted parameters we compute the relative value ρ = exp(-a0/a1), which captures the 
indifference point. In turn, choice variability may be quantified in several ways. In the original 
ms, we presented most of the results in terms of the sigmoid width, defined as σ = exp(1/a1). 
However, some of the analyses were more naturally presented in terms of the sigmoid steepness, 
defined as η = a1 (a1 is also referred to as "inverse temperature"). Partly to address a comment of 
Reviewer 2 (see below), in this revision we found it preferable to analyze all the data in terms of 
the sigmoid steepness. Thus throughout the ms we now discuss choice variability in terms of the 
sigmoid steepness.  

With this premise, let us summarize the two main concerns of Reviewer 2 as follows. Fig.6 
demonstrates the relation between choice variability and value range. More precisely, we 
illustrate a negative correlation between the sigmoid steepness (η) and the mean value range (Δ). 
Reviewer 2 correctly pointed out that this correlation might not be direct, and might instead 
reflect other sources of variability. There are two specific issues:  

(1) Fig.6 includes sessions with different juice pairs, with different typical values of ρ. In 
principle, choice variability could vary from juice pair to juice pair in a way that induces the 
relation observed in Fig.6.  
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(2) For any given juice pair, sigmoid steepness (η), relative value (ρ) and value range (Δ) are all 
inter-related by definition (main text, Eq.6) and because in the experiments we often chose value 
ranges not independently of ρ (in many sessions we set QA = 3 and chose QB such that QB ≈ ρ 
QA). Thus the relation between η and Δ (Fig.6) might reflect fluctuations in ρ. 

To address these concerns, we divided sessions in different sets based on the animal and on the 
juice pair. We only considered sets with at least 5 sessions, and our data included 12 such sets (6 
sets from each monkey). We then analyzed each set of sessions separately. We addressed the two 
issues as follows: 

(1) We examined the relation between Δ and η for individual juice pairs. Confirming the 
population results, we found that the negative correlation between η and Δ was present in each of 
the 12 data sets. This result is illustrated in Fig.S5 and summarized in Fig.S6a . 

(2) To assess whether the relation between Δ and η simply reflected fluctuations in ρ, we took the 
advice of Reviewer 2 and used multilinear regression. For each set of sessions, we regressed η on 
ρ and then on Δ in a stepwise way. The coefficient obtained from the second regression (βη) 
quantified the correlation between η and Δ not explained by fluctuations of ρ. For most sets, we 
found βη < 0, indicating that the residual η after regressing on ρ was still negatively correlated 
with Δ. Considering the 12 sets, the distribution of βη was significantly displaced from zero 
(mean(βη) = -0.31, p = 0.01, one-tailed t test). In other words, the negative correlation between η 
and Δ was above and beyond the correlation explained by fluctuations of ρ. The results of this 
analysis are illustrated in Fig.S6a. 

We believe that these new results fully address the concerns of Reviewer 2. The revised ms 
discusses these issues in the Methods (p.26) and includes two new figures (Fig.S5 and Fig.S6). 

 (3) Within day range‐variability relationship (Expt. 2). As discussed in the last round of reviews, 
the data in Expt. 2 offer a way around the issues of comparing across different goods, since the 
comparisons are made within day. However, it is a bit concerning that all the data don’t show 
the intended effect (Fig. S6). Do the authors have any idea why there is such a marked 
difference between the A and B manipulations?  

As we wrote in our previous response, we are not completely sure of why the effect was not 
significant when we only manipulated QA. One possibility is as follows: Because juice A was 
always preferred, we generally offered smaller quantities of A (typically 0, 1, 2, 3; see Fig.1). In 
value space, this means that offer values for juice A were sampled more coarsely. Furthermore, 
given our joint distributions of offers (Fig.S8), in practice animals split decisions only when juice 
A was offered in quantity 1. These two factors combined may have helped the animal and reduce 
the predicted effect on choice variability. 

Other points  

(1) In Fig. 4A, the authors show the indifference line for goods A and B, and refer to the slope of 
the line as rho (the relative value, defines as the number of B units equivalent to 1 unit of A). I 
think that ‐ as plotted ‐ the slope of the line is actually 1/rho (since the plot depicts A vs B). By 
definition, the line can only get shallower than the unity line, but rho is >= 1. 
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Good point -- thanks. We corrected the figure.  

 (2) Minor detail re: Fig. 3A. The legend describes the blue line as depicting rho = 3, but the 
actual figure shows a rho ~2.5. 

Good point -- thanks. We corrected the legend.  

 (3) Another suggestion for Fig. 3: the intuition outlined in 3A‐B is difficult to apply to 3C due to 
the way the authors chose to denote their value range ratios. In 3A‐B, the authors show that 
increasing the range of B should (in the uncorrected case) increase the relative value of A:B. 
However, the axes in C show deltaA/deltaB and plot the ratio=X case vs. ratio=2X. Seems to me 
that it would be easier for the reader if the graph were labelled as deltaB/deltaA, with the x‐axis 
being “X” and the y‐axis being “2X”. I realize these are equivalent, but it would match the 
intuition depicted in 3A‐B. 

We inverted the axes in the figure.  

 (4) I’m not sure I understand the necessity of Fig. S5. Isn’t the inverse temperature just a 
transformed version of sigma? 

We agree with Reviewer 2. In the revised ms we discuss all the results in terms of the inverse 
temperature (referred to as "sigmoid steepness" for clarity). 

 

 



REVIEWERS' COMMENTS:  
 
Reviewer #2 (Remarks to the Author):  
 
The authors have done a thorough job of addressing my past concerns, and I think the paper merits 
publication.  
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