A Computational Method of Defining Potential Biomarkers based on Differential Sub-Networks

Xin Huang^a, Xiaohui Lin^a*, Jun Zeng^b, Lichao Wang^b, Peiyuan Yin^b, Lina Zhou^b, Chunxiu Hu^b, Weihong Yao^a

^a School of Computer Science & Technology, Dalian University of Technology, 116024 Dalian, China.

^b CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

* Corresponding person:

Prof. Xiaohui Lin, School of Computer Science & Technology, Dalian University of Technology, 116024 Dalian, China.

E-mail: datas@dlut.edu.cn.

The descriptions of the datasets and the definitions of training and test set

For the gene expression data, the 63 training samples included both tumor biopsy material (13 EWS and 10 RMS) and cell lines (10 EWS, 10 RMS, 12 NB and 8 Burkitt lymphomas (BL; a subset of NHL)). The test samples contained both tumors (5 EWS, 5 RMS and 4 NB) and cell lines (1 EWS, 2NB and 3 BL). Filtering for a minimal level of expression reduced the number of genes to 2308 [1].

For the metabolomics training data [2], week 0 was defined as the starting time point of the experiment. The collection of time-serial sera set was conducted from week 8 to week 20 once every 2 weeks. The serial progression of hepato-carcinogenesis in the model group was divided into three stages: week 8 (hepatitis (H) stage, S_1), week 10-14 (CIR stage, S_2 - S_4) and week 16-20 (HCC stage, S_5 - S_7) according to histological examination. S_1 , S_4 , and S_7 were the typical time points of the corresponding liver disease stages, whereas S_2 and S_5 were the first time points of the corresponding liver disease stages. The time-serial sera training set, including 7 rats from model group and 10 rats from control group. In the test set, there were 36 sera from another 6 model rats. These 6 rats were sacrificed for histological examination with the affirmance of HCC at week 18. Therefore, their sera were collected from 6 monitoring time points (i.e., S_1 - S_6). Histological examinations to validate HCC reveal that S_1 - S_4 were the pre-cancer stage, whereas S_5 - S_6 were the HCC stage.

In many areas of information science, finding classifying or predictive relationships from data is a very important task. Initial discovery of relationships is usually done with a training set while a test set is used for evaluating whether the discovered relationships hold. More formally, a training set is a set of data used to discover potentially classifying or predictive relationships. A test set is a set of data used to assess the strength and utility of a classifying or predictive relationship.

Fig. S1 The workflow of PB-DSN

Table S1 The top five ratios based on the degrees in SG_{EWS}

Node	Numerator	Denominator	Degree
Ratio 1	f_{509}	f_{2199}	370
Ratio 2	f_{187}	f_{417}	367
Ratio 3	f_{1803}	f_{2050}	365
Ratio 4	f_{1975}	f_{1980}	365
Ratio 5	f_{831}	f_{2235}	363

Table S2 The top five ratios based on the degrees in SG₅

Numerator	Denominator	Degree
N,N-dimethylglycine	Threonic acid	36
N,N-dimethylglycine	Mucic acid	33
3-Hydroxybutyric acid	Ethanolamine phosphate	33
Betaine	Mucic acid	32
Mucic acid	Imidazole-4-acetic acid	32

Metabolite 1	Metabolite 2	<i>p</i> -value						
(Numerator)	(Denominator)	C8 vs. M8	C10 vs. M10	C12 vs. M12	C14 vs. M14	C16 vs. M16	C18 vs. M18	C20 vs. M20
N,N-dimethylglycine	Threonic acid	8.57E-10	8.30E-05	7.33E-05	4.27E-05	1.98E-03	4.36E-04	6.67E-04
N,N-dimethylglycine	Mucic acid	6.74E-06	2.63E-04	3.70E-04	6.62E-04	1.53E-03	3.25E-03	7.83E-03
3-Hydroxybutyric acid	Ethanolamine phosphate	1.02E-05	9.34E-04	2.09E-01	1.29E-01	5.53E-01	5.45E-01	7.23E-01
Betaine	Mucic acid	2.28E-07	1.36E-04	2.89E-04	1.37E-03	2.34E-03	8.09E-04	2.68E-03
Mucic acid	Imidazole-4-acetic acid	6.37E-03	1.78E-01	2.37E-03	2.53E-02	1.89E-02	1.54E-03	1.54E-02

Table S3 The significance test of the 5 identified metabolite ratios between control and age-matched model groups

Time noint	p-value								
Time point	M10	M12	M14	M16	M18	M20			
M8	1.37E-05	5.96E-04	3.10E-03	3.65E-05	8.12E-06	2.83E-05			
M10	NA	NA	NA	5.83E-03	1.27E-03	1.79E-03			
M12	NA	NA	NA	1.03E-02	2.63E-03	2.29E-02			
M14	NA	NA	NA	3.52E-03	1.78E-03	3.93E-03			

 Table S4 The significance test of N,N-dimethylglycine/threonic acid between two time points in different stages of liver disease

 Table S5 The significance test of N,N-dimethylglycine/mucic acid between two time points in

 different stages of liver disease

Time noint	p-value					
Time point	M10	M12	M14	M16	M18	M20
M8	3.72E-03	5.08E-02	1.34E-01	2.02E-03	1.18E-03	1.27E-03
M10	NA	NA	NA	7.94E-03	3.69E-03	6.23E-03
M12	NA	NA	NA	1.57E-02	7.65E-03	3.32E-02
M14	NA	NA	NA	1.49E-02	8.47E-03	2.68E-02

 Table S6 The significance test of betaine/mucic acid between two time points in different stages of liver disease

Time neint	p-value	<i>p</i> -value								
Time point	M10	M12	M14	M16	M18	M20				
M8	6.46E-02	5.50E-01	7.75E-03	5.87E-04	2.05E-04	2.48E-04				
M10	NA	NA	NA	8.84E-03	3.97E-03	5.67E-03				
M12	NA	NA	NA	1.17E-02	8.42E-03	1.11E-02				
M14	NA	NA	NA	2.98E-02	1.89E-02	2.75E-02				

	D. I	EWS vs. no	on-EWS	BL vs. nor	n-BL	RMS vs. n	on-RMS	NB vs. not	n-NB
Method	Parameter setting	Training set	Test set						
PB-DSN		1.000	1.000	1.000	1.000	0.965	1.000	1.000	1.000
	E-07	0.987	0.917	1.000	1.000	0.980	1.000	1.000	1.000
BioNet	5E-07	0.987	0.917	1.000	1.000	1.000	1.000	1.000	1.000
	E-06	0.987	0.917	1.000	1.000	1.000	1.000	1.000	1.000

 Table S7 The comparison between PN-DSN and BioNet for the different thresholds of false
 discovery rates (FDR) on the static dataset

Bold: The parameter setting used in the manuscript.

Table S8 The comparison between PN-DSN and SVM-RFE with different kernel functions and different values of *penalty factor* on the static dataset

	Daramatar	EWS vs. no	EWS vs. non-EWS		BL vs. non-BL		RMS vs. non-RMS		n-NB
Method	arameter	Training	Test	Training	Test	Training	Test	Training	Test
	seuing	set	set	set	set	set	set	set	set
PB-DSN		1.000	1.000	1.000	1.000	0.965	1.000	1.000	1.000
	Linear, 1	0.789	0.595	0.889	1.000	1.000	1.000	0.750	0.595
	Linear, 10	0.789	0.595	0.889	1.000	1.000	1.000	0.750	0.595
SVM-RFE	RBF, 1	0.789	0.595	0.889	1.000	1.000	1.000	0.750	0.595
	RBF, 10	0.789	0.595	0.889	1.000	1.000	1.000	0.750	0.595

Bold: The parameter setting used in the manuscript. Linear: linear kernel function. RBF: radial base kernel function.

 Table S9 The comparison between PN-DSN and MEBA for different top k features on the time-series dataset

Method	k	N <i>vs</i> . M Training set	HCC vs. non- Training set	-HCC Test set	H vs. CIR Training set	Test set
PB-DSN		0.898	0.954	0.948	0.966	0.972
	top 1	0.826	0.934	0.917	0.912	0.787
MEBA	top 2	0.901	0.952	0.913	0.898	0.843
	top 3	0.987	0.956	0.903	1.000	0.917

Bold: The parameter setting used in the manuscript.

Method	Parameter setting	N vs. M Training set	HCC vs. non-He Training set	CC Test set	H vs. CIR Training set	Test set
PB-DSN		0.898	0.954	0.948	0.966	0.972
	0.7	0.699	0.808	0.965	0.776	0.870
ATSD-DN	0.75	0.699	0.808	0.965	0.776	0.870
	0.8	0.699	0.808	0.965	0.776	0.870

 Table S10 The comparison between PN-DSN and ATSD-DN with different thresholds of non-overlapping ratios (NOR) on the time-series dataset

Bold: The parameter setting used in the manuscript.

 Table S11 The comparison between PN-DSN and BioNet with different thresholds of false
 discovery rates (FDR) on the time-series dataset

	Parameter	N vs. M	HCC vs. non-	НСС	H vs. CIR		
Method	setting	Training set	Training set	Test set	Training set	Test set	
PB-DSN		0.898	0.954	0.948	0.966	0.972	
	E-07	0.915	0.934	0.917	0.959	0.889	
BioNet	5E-07	0.915	0.934	0.917	0.959	0.889	
	E-06	0.915	0.934	0.917	0.959	0.889	

Bold: The parameter setting used in the manuscript.

Table S12 The comparison between log-fold change of 2 and log-fold change of 3 in PB-DSN

on the static dataset

Parameter	Number of	EWS vs. no	on-EWS	BL vs. nor	n-BL	RMS vs. n	on-RMS	NB vs. nor	1-NB
acttina	retained	Training	Test	Training	Test	Training	Test	Training	Test
setting	features	set	set	set	set	set	set	set	set
log(fold-change)	81	1.000	1.000	1.000	1.000	0.965	1.000	1.000	1.000
=3									
log(fold-change)	254	0.940	0.774	1.000	1.000	0.973	1.000	0.941	1.000

Bold: The parameter setting used in the manuscript.

dataset											
Parameter setting	EWS vs. non-EWS		BL vs. non-BL		RMS vs. non-RMS		NB vs. non-NB				
	Training	Test	Training	Test	Training	Test	Training	Test			
	set	set	set	set	set	set	set	set			
0.5	0.878	0.857	1.000	1.000	0.708	0.880	1.000	1.000			
0.6	0.996	1.000	1.000	1.000	0.921	1.000	1.000	1.000			
0.7	1.000	1.000	1.000	1.000	0.965	1.000	1.000	1.000			
0.8	0.975	1.000	0.895	1.000	0.934	1.000	0.845	0.786			
0.9	0.953	1.000	0.964	1.000	0.935	1.000	0.685	0.810			

Table S13 The influence of the threshold of *PCC* on the performance of PB-DSN on the static

Bold: The parameter setting used in the manuscript.

Table S14 The influence of the threshold of *PCC* on the performance of PB-DSN on the time-series dataset

Parameter setting	N vs. M Training set	HCC <i>vs.</i> non-HCC Training set Test set		H vs. CIR Training set	Test set
0.5	0.766	0.639	0.774	0.517	0.833
0.6	0.924	0.923	0.903	0.748	0.824
0.7	0.898	0.954	0.948	0.966	0.972
0.8	0.913	0.685	0.656	0.639	0.611
0.9	0.843	0.878	0.889	0.741	0.935

Bold: The parameter setting used in the manuscript.

Reference

[1] Khan, J. *et al.* Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. *Nat. Med.* 7, 673-679 (2001).

[2] Zeng, J. *et al.* Metabolomics identifies biomarker pattern for early diagnosis of hepatocellular carcinoma: from diethylnitrosamine treated rats to patients. *Sci. Rep.* 5, (2015).