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Figure S1. Outputs of the piecewise linear models in the case of a lateral root (rtcs A2) for which the 
2-zone model selected by the slope heuristic does not fit biological assumptions (lack of the elongation 
zone). (A) Optimal 2- and 3-segment piecewise linear functions and first root hair position; (B) 
Posterior segmentation probabilities highlighting the prediction of a 2-zone model by the 6th 
segmentation in 3 zones −division zone (DZ), elongation zone (EZ) and mature zone (MZ)−. 
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Figure S2. Outputs of the selected piecewise linear model in the case of a probably arrested 
lateral root (rtcs B15) for which the optimal 2-segment piecewise linear function does not fit 
biological assumptions (piecewise linear function not approximately continuous). (A) Optimal 
2-segment piecewise linear function, sub-optimal 2-segment piecewise linear function 
corresponding to the 2nd segmentation and first root hair position; (B) Posterior elongation 
zone (EZ) and mature zone (MZ) probabilities. The uncertainty interval for the EZ-MZ limit 
is in gray. 
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Figure S3. Outputs of the piecewise linear models in the case of a lateral root (wild-type A13) for which 4 
zones were identified. (A) Optimal 3- and 4-segment piecewise linear functions and first root hair 
position; (B) Details of the piecewise linear functions in the division zone; (C) Posterior division zone 1st 
and 2nd segment (DZ1, DZ2), elongation zone (EZ) and mature zone (MZ) probabilities. The uncertainty 
intervals for the DZ1-DZ2, DZ2-EZ and EZ-MZ limits are in gray. 
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Figure S4. Relationships between the elongation zone-mature zone (EZ-MZ) limit and the 
first root hair position: The linear trends for wild type and mutants, respectively in blue and 
red, are computed excluding the 6 outlier individuals (wild-type A8, A9, A10, A11, A31 and 
rum-1 A6). 
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Table S1. Split of the division zone (DZ) for wild-type A13, B33 and B32. The parameters of the first two zones of the selected piecewise linear 
function (slope x 1000 in µm/mm, correlation coefficient for each zone –n.s. for non-significant−, residual standard deviations –s.d.–  and limits 
between zones –elongation zone (EZ)– in µm with associated 0.05-uncertainty intervals) are given. 
 
 Division zone 1  Division zone 2  
 Slope Correlation s.d. No. cells DZ1-DZ2 limit Slope Correlation s.d. No. cells DZ-EZ limit 
A13 −17.2 −0.79 1.4 66 332 (212, 361) 14.3 0.4 1.7 44 511 (501, 608) 
B33 −35.4 −0.59 1.2 20 146 (131, 191) 13.3 0.67 1.2 84 439 (428, 451) 
B32 −41.4 −0.54 2.6 59 201 (139, 214)   6.2 0.24 n.s. 1 51 411 (340, 411) 
 
Table S2. Split of the division zone (DZ) for wild-type A13, B33 and B32. The first two zones of the selected piecewise linear function (cell 
lengths predicted at both ends of a zone linked by an arrow and limits between zones –elongation zone (EZ)– in µm) with associated rootward 
and shootward confidence intervals at each limit between zones (between brackets) are given. 
 
 Division zone 1   Division zone 2   
 Linear function Confidence intervals DZ1-DZ2 limit Linear function Confidence intervals DZ-EZ limit 
A13   9.3 → 3.7 (3.1, 4.2 | 4.3, 6.4) 332 5.4 → 7.9    (6.8, 9 | 3.8, 9.2) 511 
B33   9.3 → 6.2 (4.8, 7.6 | 3.6, 4.6) 146 4.1 → 8 (7.4, 8.6 | 4, 15.1) 439 
B32 11.1 → 5 (3.6, 6.5 | 4.6, 5.9) 201 5.3 → 6.6 (5.6, 7.5 | 6.1, 13.8) 411 
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Table S3. Selection of the six 3-zone individuals the most inconsistent regarding the elongation zone-mature zone (EZ-MZ) limit: difference 
between the MZ slope and the EZ slope x 1000 (in µm/mm), overlap between the confidence intervals of the EZ and MZ slopes (in % of EZ 
slope confidence interval), distance between the EZ-MZ limit and the first root hair position (in µm), numbers of cells between the EZ-MZ limit 
and the first root hair position and beyond the first root hair position. 
 
   Overlap between  Number of cells 
  MZ slope EZ and MZ slope  First hair position EZ-MZ limit Beyond 
Genotype Root − EZ slope confidence intervals − EZ-MZ limit → first hair position first hair position 
wild type A8 −9.8   65.3   762 26 11 
wild type A9   0.7 100 1099 32 35 
wild type A10 −9.9   48.4   628 35 33 
wild type A11 −8.4 100   510 34 16 
wild type A31 15.4   45.7   324 25 45 
rum-1 A6 30.6   72   742 24   7 
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Methods S1. Statistical Methods for Heteroscedastic Piecewise Gaussian 

Linear Models and Gaussian Change in the Variance Models 

 

Let θ  denote the set of within-zone parameters (and global mean parameter for Gaussian 

change in the variance models). For heteroscedastic piecewise Gaussian linear models ( linearM  

models), { }2
111

2
000 ,,,,,, −−−= JJJ σβασβαθ 2  while for Gaussian change in the variance models 

( varianceM  models), { }2
1

2
0 ,,, −= Jσσαθ 2 . Let )ˆ;,( θxsJf  denote the likelihood of the 

segmentation s in J developmental zones of the observed cell length series T,x,x 1=x . The 

estimation of the 1−J  change points 11 ,, −Jττ  , which corresponds to the optimal 

segmentation *s  into J developmental zones, is obtained as follows 

)ˆ;,(logmaxargˆ,,ˆ 11 θττ xs
s JJ f=− , 
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For this optimization task, the additivity in j of the maximized log-likelihoods for each zone, 

allows us to use a dynamic programming algorithm (Auger and Lawrence, 1989) whose 

computational complexity is )( 2JTO  in time. 

 

Regarding the inference of multiple change-point models, one key question is to select the 

number of developmental zones. In a model selection context, the purpose is to estimate J by 

maximizing a penalized version of the log-likelihood defined as follows 

{ })Penalty()(logmaxargˆ JfJ JJ
−= x , 

where 

∑=
s

xsx )ˆ;,()( θJJ ff  

is the log-likelihood of all the possible segmentations in J developmental zones of the 

observed cell length series x of length T. The principle of this kind of penalized likelihood 
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criterion consists in making a trade-off between an adequate fitting of the model to the data 

(expressed by the log-likelihood) and a reasonable number of parameters to be estimated 

(controlled by the penalty term). The most popular information criteria such as AIC and BIC 

are not adapted in this particular context since they tend to underpenalize the log-likelihood 

and thus select a too large number of developmental zones (Rigaill et al., 2016). We thus 

applied the slope heuristic (SH) given by (Guédon, 2015) 

{ })(penˆ2)(log2SH shape JfJJ κ−= x , 
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and κ̂  is the slope of the linear relationship between )(log xJf  and )(penshape J  for 

overparameterized models estimated by the data-driven slope estimation method (Baudry et 

al., 2012). The posterior probability of the J-developmental-zone model JM , given by 

( ) ,
SH

2
1exp

SH
2
1exp

|
max

1∑ = 















=
J

K K

J

JMP x  

can be used to assess the relative merits of the models considered. 

 

The posterior probability of the optimal segmentation *s  given by 

∑=
s

xsxsxs )ˆ;,(/)ˆ;,();|( ** θθ JJ ffJP , 

can be efficiently computed by the smoothing algorithm proposed by Guédon (2013). The 

assessment of multiple change-point models thus relies on two posterior probabilities: 

• posterior probability of the J-developmental-zone model JM , ( )x|JMP  deduced 

from the slope heuristic computed for a collection of multiple change-point models for 

max,,1 JJ = , i.e. weight of the J-developmental-zone model among all the possible 

models between 1 and maxJ  developmental zones, 

• posterior probability of the optimal segmentation *s  for a fixed number of 

developmental zones J );|( * JP xs , i.e. weight of the optimal segmentation among all 

the possible segmentations for a fixed number of developmental zones. 
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It is often of interest to quantify the uncertainty concerning change-point position. To this 

end, we computed the posterior change-point probabilities for each change point j and each 

position t using the smoothing algorithm proposed by Guédon (2013). We define the 

α-uncertainty interval for change point j as the interval such that 
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jt tt JjSjSPt x  In this uncertainty interval, );|1( JjSP t x−=  is 

monotonically decreasing as a function of t while );|( JjSP t x=  is monotonically increasing 

and );|1(1);|( JjSPJjSP tt xx −=−==  if there is no overlap between uncertainty intervals 

for consecutive change points; see illustrations in Figs 2b, 3b, 4b, 5b, 7b, S2b and S3c. 

 

Other posterior probability profiles of interest can be obtained using the forward-backward 

dynamic programming algorithm (Guédon, 2013). Rather than summarizing all the possible 

segmentations as in the posterior zone probability profiles 
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These posterior segmentation probability profiles are illustrated in Figs 4c, 5c and S1b. 
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