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A Inference for θ2 under non-Gaussian design with known variance

The method of Section 2.1 also works asymptotically under more general conditions than the Gaussianity assumptions
of (1.4). Let z ∼ (µ,Σ) denote the statement that z has some distribution with mean µ and covariance matrix Σ.
Consider again the linear model (1.1) but with relaxed assumptions,

xi
i.i.d.∼ (µ, Ip − µµ>), εi

i.i.d.∼ (0, σ2),

again with σ2 known and X independent of ε. Under this model, we get that

y2i
i.i.d.∼ (θ2 + σ2, v1)

and the asymptotic distribution in (2.1) in turn becomes, by the CLT,

1√
n
‖y‖22 −

√
n
(
θ2 + σ2

) D−→ N(0, v1), (A.1)

as n→∞, where v1 does not depend on n but does depend on the unknown β, and is given by

v1 = E
(
ε4i
)

+ 4σ2
[
θ2 −

(
µ>β

)2]
+ 4E

(
ε3i
)
µ>β + E

[(
x>i β

)4]
− σ4 − θ4 −

(
µ>β

)4
+ 2θ2

(
µ>β

)2
In order to be less parametric, we can consider bootstrap confidence intervals based on the above calculations.

Corresponding to (A.1) we can get an unbiased statistic,

T1 :=
1

n
‖y‖22 − σ2,

E (T1) = θ2,

SD(T1) =
√
v1/n,

(A.2)

whose distribution we may hope to be close to Gaussian. T1 can be bootstrapped (potentially with standard bias-
correction and acceleration) to obtain bootstrap CIs, nonparametrically dealing with the unknown variance v1. We
ran simulations with n = 800, p = 1500, X having i.i.d. Bernoulli(0.05) entries (the columns of X were then
standardized to have mean 0 and variance 1), θ2 = σ2 = 10, and εi i.i.d. t5 (rescaled to have variance 10). We
generated a single β uniformly on the θ-radius sphere and ran 1000 simulations (so that β did not change across
simulations). Bias-corrected, accelerated 95% bootstrap CIs achieved 93.8% coverage (this is within statistical
uncertainty of the nominal 95%, as a 95% CI for the CI coverage is [0.923, 0.953]).

B Calculation of variance of EigenPrism estimator

In this section we calculate the variance of the statistic S =
∑n
i=1 wiz

2
i when conditioning on d. Here we treat w as

fixed, but note that since we condition on d, this includes values of w that are calculated as a function of d, as in
the EigenPrism method.
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Var(S|d) = Var

(
n∑
i=1

wiz
2
i

∣∣∣∣∣d
)

=

n∑
i=1

w2
i Var

(
z2i
∣∣d)+

n∑
i,j=1
i 6=j

wiwj Cov
(
z2i , z

2
j

∣∣d) .
We now calculate each term. Recall that λi := d2i /p for i = 1, . . . , n. Then

Var
(
z2i
∣∣d) = E

(
z4i
∣∣ d)− E

(
z2i
∣∣ d)2

= E
[
(di〈Vi,β〉+ εi)

4
∣∣d]− (λiθ2 + σ2

)2
Using εi ∼ N(0, σ2) (and the fact that ε ⊥⊥ V ),

= E
[
(di〈Vi,β〉)4

∣∣d]+ 6σ2E
[
(di〈Vi,β〉)2

∣∣d]+ 3σ4 −
(
λiθ

2 + σ2
)2

Using 〈Vi,β〉2 ∼ θ2 · Beta
(
1
2 ,

p−1
2

)
,

= d4i θ
4 · 1 · 3
p · (p+ 2)

+ 6σ2λiθ
2 + 3σ4 −

(
λiθ

2 + σ2
)2

= 2λ2i θ
4 p− 1

p+ 2
+ 4σ2λiθ

2 + 2σ4

Also, for i 6= j,

Cov
(
z2i , z

2
j

∣∣d) = E
(
z2i z

2
j

∣∣ d)− E
(
z2i
∣∣ d)E (z2j ∣∣ d)

= E
[
(di〈Vi,β〉+ εi)

2(dj〈Vj ,β〉+ εj)
2
∣∣d]− (λiθ2 + σ2

) (
λjθ

2 + σ2
)

Using εi, εj
iid∼ N(0, σ2) (and the fact that ε ⊥⊥ V ),

= E
(
d2i d

2
j 〈Vi,β〉2〈Vj ,β〉2

∣∣ d)+ σ2E
(
d2i 〈Vi,β〉2

∣∣ d)+ σ2E
(
d2j 〈Vj ,β〉2

∣∣ d)
+ σ4 −

(
λiθ

2 + σ2
) (
λjθ

2 + σ2
)

Using 〈Vi,β〉2, 〈Vj ,β〉2 ∼ θ2 · Beta
(
1
2 ,

p−1
2

)
,

= E
(
d2i d

2
j 〈Vi,β〉2〈Vj ,β〉2

∣∣ d)+ σ2λiθ
2 + σ2λjθ

2 + σ4

−
(
λiθ

2 + σ2
) (
λjθ

2 + σ2
)

= d2i d
2
jE
(
〈Vi,β〉2〈Vj ,β〉2

∣∣ d)− λiλjθ4
= d2i d

2
j Cov

(
〈Vi,β〉2, 〈Vj ,β〉2

∣∣d)
Using

(
〈Vi,β〉2, 〈Vj ,β〉2, θ2 − 〈Vi,β〉2 − 〈Vj ,β〉2

)
∼ θ2 · Dirichlet

(
1
2 ,

1
2 ,

p−2
2

)
,

=
−2

p+ 2
λiλjθ

4.

Then,

Var (S|d) =

n∑
i=1

w2
i

(
2λ2i θ

4 p− 1

p+ 2
+ 4σ2λiθ

2 + 2σ4

)
+

n∑
i,j=1
i 6=j

wiwj

(
−2

p+ 2
λiλjθ

4

)

=

n∑
i=1

w2
i

(
2λ2i θ

4 p

p+ 2
+ 4σ2λiθ

2 + 2σ4

)
+

n∑
i=1

n∑
j=1

wiwj

(
−2

p+ 2
λiλjθ

4

)

= 2σ4
n∑
i=1

w2
i + 4σ2θ2

n∑
i=1

w2
i λi + 2θ4

[
p

p+ 2

n∑
i=1

w2
i λ

2
i −

(
∑n
i=1 wiλi)

2

p+ 2

]
.
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C Proof of Asymptotic Normality of T2 and T3

Proof. First consider T2(y,X) as a deterministic function of the random y and X. Then for any constant c,

T2(cy,X) = c2T2(y,X). (C.1)

Note that cy also follows a linear model, only with θ2 replaced by c2θ2 and σ2 replaced by c2σ2. Thus by taking
c = 1/max{θ, σ} we may treat θ2 and σ2 as belonging to [0, 1] in order to prove asymptotic normality of T2(cy,X),
which by Equation (C.1) implies asymptotic normality of T2(y,X). The same argument holds for T3, and so
without loss of generality, in the remainder of the proof we assume θ2 and σ2 are both bounded. We have assumed
max{θ2, σ2} > 0, as the case θ2 = σ2 = 0 is immediately identifiable because y ≡ 0, and trivial.

Recall that because V is Haar-distributed,

(V >1 β, . . . ,V
>
n β)

d
= θ/‖u‖ · (u1, . . . , un),

where u ∼ N(0, Ip). From this, we can rewrite T2 as:

T2 − E (T2) =

n∑
i=1

wi

(√
λiθ

ui
‖u‖/√p

+ εi

)2

−
n∑
i=1

wi
(
λiθ

2 + σ2
)

=
1

‖u‖2/p
·
n∑
i=1

wi

(√
λiθui + εi + εi (‖u‖/√p− 1)

)2
−
(

1 +
1

‖u‖2/p
− 1

‖u‖2/p

) n∑
i=1

wi
(
λiθ

2 + σ2
)

=
1

‖u‖2/p
·

(
n∑
i=1

wi

(√
λiθui + εi

)2
−

n∑
i=1

wi
(
λiθ

2 + σ2
))

(C.2)

+
2

‖u‖2/p
(‖u‖/√p− 1)

n∑
i=1

wi

(√
λiθuiεi + ε2i − σ2

)
(C.3)

+
2σ2

‖u‖2/p
(‖u‖/√p− 1)

n∑
i=1

wi (C.4)

+
1

‖u‖2/p
(‖u‖/√p− 1)

2
n∑
i=1

wi
(
ε2i − σ2

)
(C.5)

+
σ2

‖u‖2/p
(‖u‖/√p− 1)

2
n∑
i=1

wi (C.6)

+

(
1− 1

‖u‖2/p

) n∑
i=1

wi
(
λiθ

2 + σ2
)
. (C.7)

Our goal is to show that the right-hand side of (C.2) converges to Gaussian, while (C.3)–(C.7) each converge to zero
in probability. In particular, using certain probabilistic properties of the λi’s and wi’s (which are independent of the
other random variables), we will show convergence conditional on the λi and wi. We first prove the result for T2 and
then explain the (minor) changes needed to prove the same for T3 (for which Equation (C.2)–(C.7) also holds).

Before either, however, we need a few tools, including the following Lemma:

Lemma 1. For both T2 and T3, there exist constants a and b such that,

P
{
∀i, n|wi| ≤

a+ bλi
min{λ2i , 1}

}
−→ 1.

Proof. We defer the proof to the end of this section.

Note that by convergence of the moments of the λi to those of the Marčenko–Pastur (MP) distribution, Lemma 1
implies that

n∑
i=1

|wi|3λri ∈ Op(n−2) (C.8)

for any r ∈ R. Note also that by the Cauchy-Schwarz inequality,

n∑
i=1

w2
i λ

r
i ≥

(
∑n
i=1 wiλi)

2∑n
i=1 λ

2(1−r)
i

=
1∑n

i=1 λ
2(1−r)
i

∈ Ωp(n
−1) (C.9)
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for any r ∈ R. Finally, note that ‖u‖/√p p−→ 1.

Starting from the bottom, (C.7) converges in probability to zero because
(

1− 1
‖u‖2/p

)
p−→ 0 and

∑n
i=1 wi

(
λiθ

2 + σ2
)

=

θ2, a constant. (C.6) and (C.4) equal zero because
∑n
i=1 wi = 0.

In (C.5), we seek to show that
∑n
i=1 wi

(
ε2i − σ2

)
converges in distribution, so that by Slutsky’s Theorem, (C.5)

converges to zero in probability. The summands wi
(
ε2i − σ2

)
are independent and mean-zero with variance 2σ4w2

i .
By Lyapunov’s central limit theorem (Billingsley, 1995, p. 362), we just need to establish the Lyapunov condition:∑n

i=1 E
(
|wi
(
ε2i − σ2

)
|3
)

(
∑n
i=1 Var (wi (ε2i − σ2)))

3/2
∝

∑n
i=1 |wi|3

(
∑n
i=1 w

2
i )

3/2
∈ Op(n−1/2),

where the ∈ follows from (C.8) and (C.9).
In (C.3), we similarly seek to show that the sum converges in distribution, allowing us to again use Slutsky’s

Theorem to show (C.3) converges to zero in probability. The argument is nearly the same as that for (C.5), using
various different values of r in (C.8) and (C.9) to establish the Lyapunov condition.

Lastly for (C.2), by Slutsky’s Theorem (Lehman and Romano, 2005, p. 433), it suffices to show that
∑n
i=1 wi

(√
λiθui + εi

)2−∑n
i=1 wi

(
λiθ

2 + σ2
)

converges in distribution to a Gaussian random variable, which can again be established using
Lyapunov’s central limit theorem in nearly the same way as in the argument for (C.5). Note that the resulting

variance expression
∑n
i=1 Var

(
wi
(√
λiθui + εi

)2)
=
∑n
i=1 2

(
λiθ

2 + σ2
)2

is not identical to the variance of S in

(2.4), but the quotient of the two expressions converges to 1 as n, p −→∞.
Only a few changes to the above proof are needed for establishing asymptotic normality of T3. First, an analogue

to Equation (C.9) can be shown:

n∑
i=1

w2
i λ

r
i ≥

(
∑n
i=1 wi)

2∑n
i=1 λ

−2r
i

=
1∑n

i=1 λ
−2r
i

∈ Ωp(n
−1). (C.10)

Next, in each of (C.4),(C.6), and (C.7), the sum equals a constant while the coefficient in front of the sum
converges in probability to zero. The arguments for (C.2), (C.3), and (C.5) take the same form as for T2 except
using (C.8) and (C.10) instead of (C.9) to establish the Lyapunov condition.

Proof of Lemma 1. We start by slightly rewriting the optimization program P1:

arg min
w∈Rn

t such that

n∑
i=1

w2
i ≤ t,

n∑
i=1

w2
i λ

2
i ≤ t,

n∑
i=1

wi = 0,

n∑
i=1

wiλi = 1. (C.11)

By the Karush-Kuhn-Tucker conditions for (C.11), the gradient of the Lagrangian with respect to (t, w1, . . . , wn)
vanishes, i.e.,

1− δ1 − δ2 = 0, (C.12)

wi
(
2δ1 + 2δ2λ

2
i

)
+ κ1 + κ2λi = 0, (C.13)

where δ1 ≥ 0 and δ2 ≥ 0 are the dual variables corresponding to the inequalities and κ1 and κ2 are the dual variables
corresponding to the equalities. Rearranging Equation (C.13),

wi =
−κ1 − κ2λi
2δ1 + 2δ2λ2i

. (C.14)

By Equation (C.12) and dual positivity constraints, we have δ1, δ2 ∈ [0, 1]. Observe that

min
δ1∈[0,1],δ2=1−δ1

δ1 + δ2λ
2
i = min{λ2i , 1},

establishing a lower-bound on the denominator. Now it suffices to show that |κ1|, |κ2| ∈ Op(1/n).
Multiplying Equation (C.13) by wi and summing over i,

2δ1

n∑
i=1

w2
i + 2δ2

n∑
i=1

w2
i λ

2
i + κ1

n∑
i=1

wi + κ2

n∑
i=1

wiλi = 0. (C.15)
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By recalling that Equation (2.11) established that max{
∑n
i=1 w

2
i ,
∑n
i=1 w

2
i λ

2
i } ∈ Op(1/n) and the constraints

∑n
i=1 wi =

0 and
∑n
i=1 wiλi = 1, we have that |κ2| ∈ Op(1/n). Next, by just summing Equation (C.13) over i,

2δ1

n∑
i=1

wi + 2δ2

n∑
i=1

wiλ
2
i + nκ1 + κ2

n∑
i=1

λi = 0. (C.16)

By Cauchy-Schwarz,
∑n
i=1 wiλ

2
i ≤

√∑n
i=1 w

2
i

∑n
i=1 λ

4
i ∈ Op(1), and using that |κ2| ∈ Op(1/n) and

∑n
i=1 λi ∈ Op(n),

we find that |κ1| ∈ Op(1/n) and the Lemma is proved for T2.
To see the same result for T3, first note that rewriting P2 analogously to (C.11) gives the same gradient for the

Lagrangian, so that Equations (C.12) and (C.13) still hold with the same implications for the denominator of wi in
Equation (C.14), so all that remains is again showing that |κ1|, |κ2| ∈ Op(1/n).

We will need an analogue to Equation (2.11) for T3 to show that max{
∑n
i=1 w

2
i ,
∑n
i=1 w

2
i λ

2
i } ∈ Op(1/n). The

proof of Equation (2.11) can be found in Appendix D, and follows from the construction of a simple set of weights
w̃i satisfying the constraints of P1. By considering instead the set of weights

w̆i :=
λ−1i∑n/2

j=1 λ
−1
j −

∑n
j=n/2+1 λ

−1
j

·

{
+1, for i ≤ n/2,
−1, for i > n/2,

satisfying the constraints of P2, one can follow the same steps to establish max{
∑n
i=1 w

2
i ,
∑n
i=1 w

2
i λ

2
i } ∈ Op(1/n) for

T3. Using this and the constraints of P2, Equation (C.15) establishes |κ1| ∈ Op(1/n). Using this result and the same
methods as for T2, Equation (C.16) establishes |κ2| ∈ Op(1/n), and the Lemma is proved.

D Variance upper-bound for T2

In this section we derive the upper bound (2.11) on the variance of the statistic T2. For simplicity we assume that
n is even.

We begin by constructing a vector of weights w̃:

w̃i :=
1∑n/2

j=1 λj −
∑n
j=n/2+1 λj

·

{
+1, for i ≤ n/2,
−1, for i > n/2.

Note that w̃ satisfies the constraints of the optimization problem (2.8), and thus Var(T2) is upper-bounded by
Equation (2.7) with w̃ plugged in. A second key observation is that we know from random matrix theory that for
n, p → ∞ and n/p → γ ∈ (0, 1), the distribution of rescaled eigenvalues, λi, converges to the MP distribution with
parameter γ.

Recalling the definitions of Aγ , Bγ given in (2.10), this implies that

1

n

n∑
i=1

λi · (1i≤n/2 − 1i>n/2)→ Aγ

and
1

n

n∑
i=1

λ2i → Bγ .

Together with the definition of w̃, these imply that as n, p→∞ with n/p→ γ ∈ (0, 1),

n

n∑
i=1

w̃2
i =

n · n{
n ·
[
1
n

∑n
i=1 λi · (1i≤n/2 − 1i>n/2)

]}2 → n · n
(nAγ)

2 =
1

A2
γ

,

n

n∑
i=1

w̃2
i λ

2
i =

n · n ·
[
1
n

∑n
i=1 λ

2
i

]{
n ·
[
1
n

∑n
i=1 λi · (1i≤n/2 − 1i>n/2)

]}2 → n · n ·Bγ
(nAγ)

2 =
Bγ
A2
γ

,

which in turn implies

√
n ·
√

Var(T2)

θ2 + σ2
≤

√√√√2 ·max

(
n

n∑
i=1

w̃2
i , n

n∑
i=1

w̃2
i λ

2
i

)
→
√

2 ·max

(
1

Aγ
,

√
Bγ

Aγ

)
. (D.1)
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E Proof of Theorem 2

Proof. For this proof, we use Le Cam’s method (see e.g. Yu (1997, Lemma 1)), which states that

PZ∼P0
[ψ(Z) = 1] + PZ∼P1

[ψ(Z) = 0] ≥ 1− ‖P0 − P1‖TV ,

where ‖·‖TV is the total variation norm:

‖P0 − P1‖TV = sup
A⊆Rn

|PZ∼P0
(Z ∈ A)− PZ∼P1

(Z ∈ A)| ,

where the supremum is taken over Lebesgue-measurable sets.
We begin by constructing a related distribution Q1:

W = θ ·DV >a · r + σ · ε , (E.1)

where θ = σ = 1√
2
, and where r ∼ χp/

√
p is independent from V , ε. We will bound

‖P0 − P1‖TV ≤ ‖P0 −Q1‖TV + ‖P1 −Q1‖TV .

First, we use the fact that r concentrates tightly near 1 for the following bound:

E
(∥∥θ ·DV >a · r − θ ·DV >a∥∥

2

)
= E

[
E
(∥∥θ ·DV >a · r − θ ·DV >a∥∥

2

∣∣ r,V )]
= E

(∥∥θ ·DV >a∥∥
2
· |r − 1|

)
≤ θ ·

√
E (a>V D2V >a) ·

√
E [(r − 1)2]

= θ ·
√
E (a>V D2V >a) · 1

√
p

√
E
(
χ2
p

)
− 2
√
p · E (χp) + p

Using the fact that E
(
χ2
p

)
= p and E (χp) ≥

√
p− 1

4
√
p , and that E

(
(V >i a)2

)
= 1

p for each i = 1, . . . , n,

E
(∥∥θ ·DV >a · r − θ ·DV >a∥∥

2

)
≤ θ ·

√∑
i

D2
ii

p
· 1√

2p

=
θ
√
n√

2p
,

since 1
p

∑
iD

2
ii = n. Next, for any measurable set A ⊆ Rn, we have

|PW∼Q1 (W ∈ A)− PZ∼P1 (Z ∈ A)|
= |E [P (W ∈ A | r,V )− P (Z ∈ A | r,V )]|
≤ E [|P (W ∈ A | r,V )− P (Z ∈ A | r,V )|]
= E

[∣∣P (θ ·DV >a · r + σ · ε ∈ A
∣∣ r,V )− P

(
θ ·DV >a+ σ · ε ∈ A

∣∣ r,V )∣∣]
≤ E

{
E
[∥∥N (θ ·DV >a · r, σ2In

)
−N

(
θ ·DV >a, σ2In

)∥∥
TV

∣∣ r,V ]}
Using the fact that

∥∥N(µ, σ2In)−N(µ′, σ2In)
∥∥
TV
≤ ‖

µ−µ′‖
2√

2πσ2
for any fixed µ,µ′, σ2,

≤ E

[
E

(∥∥θ ·DV >a · r − θ ·DV >a∥∥
2√

2πσ2

∣∣∣∣∣ r,V
)]

≤ 1√
2πσ2

· θ
√
n√

2p
,

where the last step uses our calculations above. Since this is true for any A ⊂ Rn, and since θ = σ = 1√
2

by

assumption under the distribution P1, we have

‖P1 −Q1‖TV ≤
√
n/p

4π
.
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Next, we bound ‖P0 −Q1‖TV. By Pinsker’s inequality,

‖P0 −Q1‖TV ≤
√

1

2
KL (Q1‖P0) ,

where KL (·‖·) is the Kullback-Leibler divergence. Note that the distributions P0 and Q1 can be reformulated as

P0 : Zi
⊥⊥∼ N(0, 1)

and

Q1 : Zi
⊥⊥∼ N

(
0,
λi + 1

2

)
.

Writing p0(·) and q1(·) to be the densities of the distributions P0 and Q1, respectively, we have

KL (Q1‖P0) = EZ∼Q1

{
log

[
q1(Z)

p0(Z)

]}

= EZ∼Q1

log


∏n
i=1

1√
2π
(
λi+1

2

)e− Z2
i

λi+1

∏n
i=1

1√
2π
e−

Z2
i
2




= EZ∼Q1

{
−1

2

∑
i

[
log

(
λi + 1

2

)
+ Z2

i ·
(

2

λi + 1
− 1

)]}

Since EZ∼Q1

(
Z2
i

)
= λi+1

2 ,

= −1

2

∑
i

[
log

(
λi + 1

2

)
+

(
1− λi + 1

2

)]

Using the fact that log(x) ≥ (x− 1)− 2(x− 1)2 for all x ≥ 1
2 ,

≤ −1

2

∑
i

[
λi − 1

2
− 2

(
λi − 1

2

)2

+

(
1− λi + 1

2

)]

=
1

4

∑
i

(λi − 1)2 .

Combining everything, we have

‖P0 −Q1‖TV ≤
√

1

2
KL (Q1‖P0) ≤

√
1

2
· 1

4

∑
i

(λi − 1)2 ,

and so

‖P0 − P1‖TV ≤
√

1

8

∑
i

(λi − 1)2 +

√
n/p

4π
.

F CVX code for computing the weight vector

The following snippet of code was used with MATLAB Version 8.1 (R2013a) and CVX Version 2.1, Build 1085 on a
64-bit Linux OS. The eigenvalues λi are represented by the column vector lambda, t corresponds to 2 val(P1), and
the resulting vector w corresponds to w∗.
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cvx_begin

variable t

variable w(n)

minimize t

subject to

sum(w) == 0;

sum(w .* lambda) == 1;

norm([w; (t/2-1)/2]) <= (t/2+1)/2;

norm([w .* lambda; (t/2-1)/2]) <= (t/2+1)/2;

cvx_end

G Bayesian model

The Bayesian model is given explicitly as follows (M , Z, σ2, and ε are all independent of one another):

M ∼Exponential(λ),

Z ∼N(0, Ip),

β =
√
MZ,

1

σ2
∼Gamma(A,B),

ε ∼N(0, σ2Ip),

y =Xβ + ε,

(G.1)

where the values for the parameters used were λ = 50,000
p (so θ2 ≈ Exponential(1/2000)), A = 14, B = 1

20,000 , and

we have used the shape/scale parameterization of the Gamma distribution, as opposed to the shape/rate parame-

terization. Figure 1 shows the resulting priors for θ2, σ2, and ρ = θ2

θ2+σ2 .
Note also that, although not shown, the posteriors achieved under this setup were all unimodal, so that the

equal-tailed credible intervals were very close to the minimum-length credible intervals. We used equal-tailed credible
intervals to give fair comparison with the EigenPrism CIs, which are also equal-tailed. The interval widths plotted
all have nominal coverage of 80%. BCI endpoints were estimated by empirical quantiles of posterior draws from a
Gibbs sampler, and thus we were able to much more accurately estimate the 10th and 90th percentiles than, say, the
2.5th and 97.5th percentiles.

H Construction of correlated-column covariance matrices

Dense 10% Correlations used a covariance matrix with ones on the diagonal and 0.1’s as all the other entries.
The Sparse 100 · P% Correlations used alternating P and −P as off-diagonal entries in a correlation matrix, then
projected that matrix into the positive semidefinite cone and reset the diagonal entries to 1. The resulting matrix has
approximately 1/4 of its entries equal to P , 1/2 of its entries equal to 0, and 1/4 of its entries equal to−2×10−4·(1−P ).

I Processing of NFBC1966 dataset

Genotype features from the original data set were removed if they met any of the following conditions:

• Not a SNP (some were, e.g., copy number variations)

• Greater than 5% of values were missing

• All nonmissing values belonged to the same nucleotide

• SNP location could not be aligned to the genome

• A χ2 test rejected Hardy-Weinberg equilibrium at the 0.01% level

• On chromosome 23 (sex chromosome)
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Figure 1: Priors from model (G.1).

The remaining missing values were assumed to take the major allele value (thus were coded as 0’s in the pre-centered
design matrix).

For each trait, further processing was performed on the subjects. Triglycerides, BMI, insulin, and glucose were
all log-transformed. C-reactive protein was also log-transformed after adding 0.002 mg/l (half the detection limit) to
0 values. Subjects were excluded from the triglycerides, HDL and LDL cholesterol, glucose, and insulin analyses if
they were on diabetic medication or had not fasted before blood collection (or if either value was missing). Further
subjects were excluded from the triglycerides, HDL and LDL cholesterol analyses if they were pregnant or if their
respective phenotype measurement was more than three standard deviations from the mean, after correcting for sex,
oral contraceptive use, and pregnancy. Subjects whose weight was not directly measured were excluded from BMI
analysis. Of course any missing values in each phenotype were also excluded.
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