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A.1. Further details about model specification

In this section of the appendix, we provide further details and proofs for results in Section 3 of the

paper. In Section 3.1, we claim that partial ignorability implies that inference on Y only requires

the distribution p(y, d) instead of p(y, r) = p(y, d, r) (recall D is a many-to-one function of R).

Similarly to Harel and Schafer (2009), it follows that

p(yobs, d, r|θ) =

∫
p(yobs,ymis, d, r|θ) dymis

=

∫
p(yobs,ymis|θ1) p(d|yobs,ymis,θ2A) p(r|d,yobs,ymis,θ2B) dymis

=

∫
p(yobs,ymis|θ1) p(d|yobs,ymis,θ2A) p(r|d,yobs,θ2B) dymis (A.1)

= p(r|d,yobs,θ2B) ×
∫
p(yobs,ymis|θ1) p(d|yobs,ymis,θ2A) dymis,

where (A.1) is a consequence of partial ignorability. Our goal for inference is θ1, the parameter that

describes the full data y. Due to the integration over the missing data, identification of θ1 requires

the model for dropout time p(d|y) but not the model for the missingness indicators p(r|d,yobs).

Hence, we base inference on the distribution of p(y, d), which we then factor as p(d)p(y|d) as in

the PMM.

Next, we show that the joint distribution of Yi,Di+1 = (Y>i1, . . . ,Y
>
i,Di

)> given

Di = d is N2d

(
Φ−1d ζd,Φ

−1
d ΩdΦ

−>
d

)
as discussed in Section 3.2. We can write Yit ∼



N2

(
ζd;t + (Φd;1t, . . . ,Φd;t−1,t)yit,Ωd;t

)
as

Yit = ζd;t + (Φd;1t, . . . ,Φd;t−1,t)yit + εit,

where the residual is εit ∼ N2(02,Ωd;t). By stacking these conditional regressions (t = 1, . . . , Di),

we have

Yi,Di+1 = ζd + TdYi,Di+1 + εi,

where εit ∼ N2d(02d,Ωd) and Td is a 2d × 2d lower-triangular block matrix with (t, j) (j < t)

block Φd;jt and the zero matrix block otherwise. Rearranging shows (I2d−Td)Yi,Di+1 = ζd + εi,

and noting that I2d − Td is our definition of Φd, gives Yi,Di+1 = Φ−1d ζd + Φ−1d εi, which is a

multivariate normal with mean Φ−1d ζd and covariance matrix Φ−1d ΩdΦ
−>
d .

As discussed in Section 3.2, the contribution of patient i to the observed data likelihood is

p(di,yi,di+1|θ) = πdi fdi;1(yi1)

di∏
t=2

fdi;t(yit|yit), (A.2)

assuming no intermittent missingness and that we know the values of the latent quit propensities

Z. As this is not the case, the observed data likelihood is better expressed by

p(di,qi,obs,wi,obs|θ) = πdi

∫
I(qitzt ≥ 0∀t) fdi;1(yi1)

di∏
t=2

fdi;t(yit|yit) dz dwint,

acknowledging that we must integrate over the latent z = (z1, . . . , zdi) and the intermittently-

missed weight change measures wint = {wt : t ≤ di, rit = 0} (see also (3)). Except to calculate

DIC, we work with (A.2) and use data augmentation to sample values z and wint.

The (data-augmented) posterior is given by p(θ|d,yobs) ∝ p(θ)
∏N

i=1 p(di,yi,di+1|θ), where

the joint prior is

p(θ) = p(τ 2ζ ) p(τ 2φ) p(τ 2ρ ) p(τ 2ω) p(σ2
ζ ) p(λ) p(γ0) p(ξ) p(λ1) p(λ2)

×
1∏

a=0

T∏
t=1

{
p(ζ?t |σ2

ζ ) p(ρ
?
t ) p(ω

?
t |λ1, λ2)

t−1∏
j=1

p(Φ?
jt|λ, γ0, ξ)

}

×
1∏

a=0

{
p(π)

T∏
d=1

d∏
t=1

[
p(ζd;t|ζ?t , τ 2ζ ) p(ρd;t|ρ?t , τ 2ρ ) p(ωd;t|ω?t , τ 2ω)

t−1∏
j=1

p(Φd;jt|Φ?
jt, τ

2
φ)

]}
.
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Note that the hyperparameters on the first line are common across the treatment groups a = 0 and

a = 1. Parameters drawn on the second and third lines are treatment-specific although we continue

to suppress dependence on a in the notation. We finally note that even under MAR our model

is non-ignorable as the second and third conditions (the parameters of the MDM and marginal

response model are separable and a priori independent) are violated. This is clear as our model

is parametrized through the marginal distribution of dropout and the response conditionally on

dropout.

A.2. Sampling distributions

Sampling from the model under MAR as in Section 4 proceeds by sampling from each of the

conditional distributions from the data-augmented posterior. Many of the distributions may be

updated conjugately, and we use slice sampling (Neal, 2003) for those that are not. We state the

necessary conditional distributions under the SHRINK/SHRINK/SPARSE model.

• Dropout probabilities: For a = 0, 1, πa ∼ Dirichlet(α), where αt is the sum of the prior

concentration parameter and the number of patients in treatment group a that dropout at time

t.

• Data augmentation: For each patient i, we sample the missing components of y. As stated

in Section 3.2, the distribution of the observable data Yi,Di+1 is N2Di
(µd,Σd) where µd =

Φ−1d ζd and Σd = Φ−1d ΩdΦ
−>
d . The missing data that we need to sample are the components

of Yi,Di+1 that correspond to the latent quit status variables Zit (t = 1, . . . , Di) and any Wit

that were intermittently missed. Denote these by Yi,Di+1,mis and the observed counterpart

by Yi,Di+1,obs. The conditional distribution for Yi,Di+1,mis is a restriction of the multivari-

ate normal with mean µd,mis + Σmis,obsΣ
−1
obs,obs(Yi,Di+1,obs − µd,obs) and covariance matrix

Σmis,mis − Σmis,obsΣ
−1
obs,obsΣobs,mis. Here µd,mis denote the vector made up of the rows of µ

that correspond to the variables in Yi,Di+1,mis; µd;obs,Σmis,mis,Σmis,obs,Σobs,obs are defined
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similarly. This distribution is restricted by the fact that the elements of Yi,Di+1,mis corre-

sponding to an observed quit status must be positive if Q = 1 and negative if Q = 0. An

efficient sampler for this restricted normal can be found in Liu et al. (2009, Proposition 1).

• Conditional intercept: For each treatment group a = 0, 1 and each pattern d =

1, . . . , T , ζd = (ζ>d;1, . . . , ζ
>
d;d)
> is multivariate normal with covariance matrix Σζ =(

τ−1ζ I2d +NdΩ
−1
d

)−1 and mean Σ−1ζ

(
τ−1ζ ζ?1:d +NdΩ

−1
d ΦdỸd

)
, where Nd is the number

of patient in treatment a that dropout at d, ζ?1:d = (ζ?>1 , . . . , ζ?>d )>, and Ỹd is the average of

Yi,d+1 across the patients i with di = d.

• GARP matrix: For a = 0, 1, d = 2, . . . , T , and t = 2, . . . , d, we jointly update the ele-

ments associated with the 2 × 2(d − 1) matrix Φd;t = [Φd;1t Φd;2t · · · Φd;t−1,t]. Let Pd;t

be the 4(d − 1) × 1 vector formed by row-wise concatenation. Form P?
t similarly from

Φ?
1t, . . . ,Φ

?
t−1,t. Then, for patients i in treatment group a and pattern d, let Xit be the

4(d − 1) × 2 matrix with Yit in the first 2(d − 1) rows of column 1 and again in the fi-

nal 2(d − 1) rows of column 2 with zeroes elsewhere. The distribution of Pd;t is multi-

variate normal with covariance matrix ΣP =
(
τ−2I +

∑
i XitΩ

−1
d;tX

>
it

)−1 and mean vector

Σ−1P
[
τ−2P?

t +
∑

i XitΩ
−1
d;t (Yit − ζd;t)

]
.

• Correlation and innovation variance: Under the SHRINK dependence structure we sample

these parameters through their transformed values rd;t = log[(1+ρd;t)/(1−ρd;t)] and wd;t =

log(ωd;t). For a = 0, 1, d = 1, . . . , T , and t = 1, . . . , d, the distribution of (rd;t, wd;t) is

proportional to

|Ω(rd;t, wd;t)|−Nd/2 exp

{ ∑
i:ai=a,Di=d

−1

2
e>itΩ(rd;t, wd;t)

−1eit

+
−1

2τ 2ρ

[
rd;t − log

(
1 + ρ?t
1− ρ?t

)]2
+
−1

2τ 2ω
(wd;t − log(ω?t ))

2

}
,

where eit = yit − (Φd;1t, . . . ,Φd;t−1,t)yit is the bivariate residual for patient i at time t and

Ω(rd;t, wd;t) is the covariance matrix corresponding to the transformed values of ρd;t and
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ωd;t. We apply univariate slice sampling steps (Neal, 2003) to sample rd;t given wd;t and then

wd;t given rd;t.

• Conditional intercept shrinkage target: For a = 0, 1 and t = 1, . . . , T , sample ζ?t from

multivariate normal with covariance Σζ? =
(
σ−2ζ + τ−2ζ (T − d+ 1)

)−2
I2 and mean vector

τ−2ζ Σ−1ζ?

(∑T
d=t ζd;t

)
.

• GARP matrix shrinkage target: For a = 0, 1 and t = 2, . . . , T , we update P?
t (us-

ing the notation from the GARP matrix step) by sampling from a multivariate normal

with covariance matrix ΣP? =
(
Σ−1NG + τ 2φ(T − t+ 1)I

)−1 and mean vector τ−2φ (T − t +

1)−1Σ−1P?

(∑T
d=t Pd;t

)
, where ΣNG is the 4(d − 1) × 4(d − 1) diagonal matrix containing

the elements σ2
jt;k in the appropriate location to correspond with the φ?jt;k element of P?

t .

• Correlation and innovation variance shrinkage target: For a = 0, 1 and t = 1, . . . , T , we use

univariate slice sampling to draw (ρ?t , ω
?
t ) from the distribution proportional to

(ω?t )
−λ1−1e−λ2/ω

?
t

T∏
d=t

exp

{
−1

2τ 2ρ

[
log

(
1 + ρd;t
1− ρd;t

)
− log

(
1 + ρ?t
1− ρ?t

)]2
+
−1

2τ 2ω
[log(ωd;t)− log(ω?t )]

2

}
.

• Shrinkage variance: For k ∈ {ζ, φ, ρ, ω}, the conditional distribution for τk given the other

parameters is proportional to p(τk|−) ∝ τ
−ak/2
k exp

{
−S2

k

2τ2k

}
[τ 2k + γ2k]

−1, where ak is the

number of parameters and S2
k is a sum of squares term associated with shrinkage of pa-

rameter k. These distributions are drawn by slice sampling, and as needed we subscript

parameters by the treatment group a = 0, 1.

aζ = 2T (T + 1), S2
ζ =

∑1
a=0

∑T
d=1

∑d
t=1(ζa;d;t − ζ?a;t)

>(ζa;d;t − ζ?a;t),

aφ = 4
3
T (T 2 − 1), S2

φ =
∑1

a=0

∑T
d=1

∑d
t=1

∑t−1
j=1(

vec(Φa;d;jt)− vec(Φ?
a;jt)
)> (

vec(Φa;d;jt)− vec(Φ?
a;jt)
)
,

aρ = T (T + 1), S2
ρ =

∑1
a=0

∑T
d=1

∑d
t=1

(
log
[
1+ρa;d;t
1−ρa;d;t

]
− log

[
1+ρ?a;t
1−ρ?a;t

])2
,

aω = T (T + 1), S2
ω =

∑1
a=0

∑T
d=1

∑d
t=1

(
log(ωa;d;t)− log(ω?a;t)

)2
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• Variance of conditional intercept shrinkage targets: When the prior is InvGamma(h1, h2), σ2
ζ

is sampled from InvGamma
(

2T + h1, 0.5
∑1

a=0

∑T
t=1 ζ

?>
a;tζ

?
a;t + h2

)
.

• Shape parameter of innovation variance shrinkage targets: With prior λ1 ∼ Gamma(h1, h2),

we update λ1 by slice sampling from the distribution proportional to

Γ(λ1)
−2Tλ2Tλ12 λh1−11 exp

{
−λ1

[
h−12 +

1∑
a=0

T∑
t=1

log(ω?a;t)

]}
.

• Scale parameter of innovation variance shrinkage targets: With prior λ2 ∼ Gamma(h1, h2),

we sample λ2 from a Gamma distribution with shape 2Tλ1 + h1 and scale h−12 +∑1
a=0

∑T
t=1(ω

?
a;t)
−1.

• GARP shrinkage factors: For a = 0, 1, t = 1, . . . , T , j = 1, . . . , t − 1, and k = 1, . . . , 4,

the distribution of σ2
jt;k is proportional to the generalized inverse Gaussian distribution with

kernel

(σ2
jt;k)

(λ− 1
2
)−1 exp

{
−1

2

[
σ2
jt;k

γ0ξt−j
+

(φ?jt;k)
2

σ2
jt;k

]}
.

• Parameter for GARP shrinkage factors: We sample (λ, ξ, γ0) from univariate slice sampling

steps according to the distribution proportional to

λh1−1e−λ/h2 γ−h3−10 e−h4/γ0
∏
a,j,t,k

1

Γ(λ) (2γ0ξt−j)λ
(ω?a;jt;k)

λ−1 exp

{−σ2
a;jt;k

2γ0ξt−j

}
,

where the priors are λ1 ∼ Gamma(h1, h2), γ0 ∼ InvGamma(h3, h4) and ξ ∼ Unif(0, 1).

A.3. Simulation Studies on Parameter Estimation and Model
Comparison

In this section we provide further details about the simulation study from Section 4. Recall that

we consider data generating model (A) where the “true” model is specified using the parameter

estimates from the SHRINK/EQUAL/SPARSE model applied to the CTQ2 data. We also consider
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data generating model (B) where the mean follows the MVN-MAR assumption, and the parame-

ter values are chosen by adjusting the parameters in (A) toward this assumption. Data generating

model (C) is chosen by adjusting parameters so that the ζd;t differ more substantially across pat-

terns, relative to model (A), so as to favor the PATTERN mean model or SHRINK with a large

value of τζ . In contrast to the choices (A)–(C) which all assume common dependence structures

across patterns, we include model (D) which adjusts the parameters from the CTQ2 data with the

SHRINK/SHRINK/SPARSE model to allow GARPs, correlation, and innovation variances to vary

across patterns. Figure A.1 displays parameter values for the wellness treatment under each of

these generating choices.

In addition to the risk analysis described in Section 4 of the manuscript, we also consider the

performance of a common model selection criterion to distinguish models fit to our simulated data.

We use the deviance information criterion (DIC; Spiegelhalter et al., 2002). The DIC is composed

of the deviance at a parameter estimate θ̂, given by Dev = −2
∑N

i=1 log p(di,qi,obs,wi,obs|θ̂),

and a term pD measuring the model complexity, the difference of the posterior expected deviance

Epost

(
−2
∑N

i=1 log p(di,qi,obs,wi,obs|θ)
)

and Dev. pD is often interpreted as the effective num-

ber of model parameters, and models with smaller DIC = Dev + 2pD are considered to better

balance the model fit and complexity. Note that we use the observed data likelihood (3) in this

calculation. While the integral in (3) is not available in closed form, it can be estimated using

importance sampling; see Gaskins et al. (2014, with appendix). It is well known that computation

of Dev is not invariant to the choice of θ̂, and the standard estimator of the covariance matrix[
Epost

(
ΦdΩ

−1
d Φ′d

)]−1 fails to maintain the structure of ones required by the unidentifiability of

the scale of Zit. Hence, our estimator θ̂ uses the posterior means of ζd, Φd, and ρd;t, and for ω̂d;t

we use
[
Epost(ω

−1
d;t )
]−1. These are the same parameter estimators we use in the risk analysis.

For each of the four model scenarios (A)–(D), we compute the DIC value for the five estima-

tion models and rank the models in each of the 100 data sets. Table A.1 provides the propor-

tion of times each model is selected. When the true model is (A), the correct generating model
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Figure A.1: Wellness treatment parameter values for data generating models in simulation study.
Zeta refers to the condition intercepts ζd;t, marginal mean is Φ−1d ζd, and marginal variance are the
diagonal elements from Φ−1d ΩdΦ

−> (see section A.1).
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DIC Ranking Estimation Model

Mean: MVN-MAR PATTERN SHRINK SHRINK PATTERN

Dependence: EQUAL EQUAL EQUAL SHRINK PATTERN

GARP: SPARSE SPARSE SPARSE SPARSE NON-SPARSE

Data Generating Model (A)

Best 8 3 89 0 0
2nd 79 14 4 3 0
3rd 13 63 6 18 0
4th 0 17 1 78 4

Worst 0 3 0 1 96

Data Generating Model (B)

Best 11 9 80 0 0
2nd 79 10 11 3 0
3rd 10 70 8 12 0
4th 0 8 1 86 5

Worst 0 3 0 2 95

Data Generating Model (C)

Best 3 33 63 0 1
2nd 9 57 29 4 1
3rd 63 6 3 27 1
4th 21 3 2 67 7

Worst 4 1 3 2 90

Data Generating Model (D)

Best 14 51 33 1 1
2nd 7 35 54 4 0
3rd 70 9 11 9 1
4th 7 2 1 86 4

Worst 2 3 1 0 94

Table A.1: Performance of DIC model selection statistic
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(SHRINK/EQUAL/SPARSE) is selected 89 times out 100, followed by MVN-MAR and PATTERN

mean structures. In scenario (B) where the true model has the MVN-MAR structure, the SHRINK

mean structure is still selected most often by DIC although the MVN-MAR structure is consistently

second. Recall from the risk simulations that even though MVN-MAR is the correct model, the

SHRINK model produces parameter estimates with lower risk. Hence, it may be unfair to call the

selection of SHRINK/EQUAL/SPARSE the “wrong model” since it has better estimates on average.

In scenario (C), the mean parameters differ significantly across patterns, and so both PATTERN and

SHRINK (with large τζ) are correct models. For 96 of the 100 data sets, one of these two are the

chosen model, with SHRINK mean winning 63 times.

For scenario (D) which has distinct dependence structures for each pattern, we find that the

DIC favors the models with EQUAL dependence structure. While this is clearly the wrong model

choice, it is important to remember that DIC is designed to balance the model fit to the data relative

the model complexity (number of parameters). Even though the models fit using the SHRINK and

PATTERN dependence parameters are expected to be better, these models are much more complex

(more parameters) and have much larger pD values. With only 208 partially observed patients,

there is not enough information in the data to support the estimation of this many parameters,

and the model that is estimated using EQUAL dependence is relatively close to the fit from the

more complex models. This is especially the case when the dropout patterns are as unbalanced as

those that we observe (Table 1). With fewer than 10 patients in the non-completer groups, we do

not reasonably expect to estimate the dependence well. As the sample size increases, one would

expect DIC to favor the SHRINK and PATTERN choices asymptotically. But given the complexity

of these models, it is unclear how much larger the data would need to be.

While we acknowledge that the DIC does not perform as well as anticipated, we are unable to

find a model selection criteria that performs better in our scenario. The log pseudo-marginal like-

lihood criterion based on the condition predictive ordinate (Geisser and Eddy, 1979; Christensen

et al., 2011) selects the true generating model with similar or worse probability. Further, because
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the conditional predictive ordinates are estimated using a harmonic mean of the likelihood, we

observe major instability in computation that may indicate the estimates have infinite variance.

Simulations that perform model selection using posterior predictive measures (Ibrahim and Laud,

1994; Daniels et al., 2012) are highly dependent on the choice of summary statistics and tend to

produce very similar values across all models. Further research into model selection methods tai-

lored specifically for mixed outcome data with missingness is needed to develop criteria that more

consistently choose the correct model. This is beyond the scope of the current work.

A.4. MCMC for MNAR

Here, we provide details behind the assertion in Section 6.1 that it is not necessary to rerun the

MCMC analysis when using a sensitivity parameter. We are interested in the posterior distribution

of the full parameter vector (θO,θE) conditional on the observed data yobs, r.

π(θO,θE|yobs, r) ∝ π(θO) π(θE|θO) p(yobs, r|θO,θE)

= π(θO) π(∆|θO) p(yobs, r|θO,∆) (A.3)

= π(θO) π(∆|θO) p(yobs, r|θO,∆ = 0) (A.4)

∝ π(∆|θO) π(θO|yobs, r,∆ = 0).

As the extrapolation parameter θE is a function of the observed data parameter θO and the sen-

sitivity parameter ∆, we may replace θE by ∆ in (A.3). Since the sensitivity parameter plays

no role in the observed data likelihood, (A.4) follows, and π(θO|yobs, r,∆ = 0) is precisely the

posterior corresponding to non-ignorable MAR. Hence, we obtain a posterior sample of (θO,θE)

(equivalently, (θO,∆)) by drawing θO from the MAR sample and drawing ∆ from the elicited

prior.

Table A.2 displays the algorithm used for drawing pseudo-patients from the PMM under

MNAR. We draw the full data of N = 5000 observations for each of the G = 1500 values of

θ0 in our MAR posterior sample. To draw samples under MAR, the sensitivity parameters are
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Table A.2: Pseudo-code for sampling pseudo-patients under MNAR
1: for g in 1, . . . , G (indexing the MAR posterior samples θ(g)

O ) do
2: for i in 1, . . . , N (indexing the pseudo-patients within g) do
3: Sample Di ∼ Multinomial(π(g))
4: for t in 1, . . . , Di do
5: Sample Yit|Yit ∼ fDi,t(·|Yit,θ

(g)
O )

6: end for
7: if Di < T then
8: t← Di + 1
9: Compute p̂ = P (Qit = 0|Yit, D ≥ t,θ(g)

O ) from (15) with ∆1 = 0
10: Given p̂, draw p̃ ∼ 1

2Unif (ψLB(p̂), ψmed(p̂)) + 1
2Unif (ψmed(p̂), ψUB(p̂))

11: Given p̃, solve (15) for ∆1

12: Sample ∆2 ∼ 1
2Unif(δLB, δmed) + 1

2Unif(δmed, δUB)

13: Sample S ∼ Multinomial( P (D = s|Yit, D ≥ t,θ(g)
O ) )

14: Sample Yit|Yit ∼ fS,t(·|Yit,θ
(g)
O )

15: Shift Yit ← Yit + (∆1,∆2)
16: end if
17: if Di < T − 1 then
18: for t in Di + 2, . . . , T do
19: (∆1,∆2)← (0, 0)

20: Sample S ∼ Multinomial( P (D = s|Yit, D ≥ t− 1,θ
(g)
O ) )

21: Sample Yit|Yit ∼ fS,t(·|Yit,θ
(g)
O )

22: if S = t− 1 then
23: Compute p̂ = P (Qit = 0|Yit, D ≥ t,θ(g)

O ) from (15) with ∆1 = 0
24: Given p̂, draw p̃ ∼ 1

2Unif (ψLB(p̂), ψmed(p̂)) + 1
2Unif (ψmed(p̂), ψUB(p̂))

25: Given p̃, solve (15) for ∆1

26: Sample ∆2 ∼ 1
2Unif(δLB, δmed) + 1

2Unif(δmed, δUB)
27: Shift Yit ← Yit + (∆1,∆2)
28: end if
29: end for
30: end if
31: end for
32: end for
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identically zero, and so lines 9–12, 15, 19, 22–28 are ignored. To solve (15) for ∆1 in lines 11

and 25, we use a naive bisection algorithm which has been found to work well in practice. For

each iteration g, the quantities of interest are the cessation probability N−1
∑

i I(ZiT ≥ 0), the

mean weight change N−1
∑

iWiT , and the correlation between QiT = I(ZiT ≥ 0) and WiT at

the final week T . We use 5000 pseudo-patients per iteration so that the Monte Carlo error asso-

ciated with estimating the quit probability given θ
(g)
O , the observed data parameter at iteration g,

by N−1
∑

i I(ZiT ≥ 0) is negligible. Estimates for P (QiT = 1), E(WiT ), and corr(QiT ,WiT ) are

averaged over iterations, credible intervals formed by taking the sample quantiles from the per-

iteration estimates, and posterior probabilities are estimated by the proportion of iterations where

the event of interest occurs.

A.5. Alternative choice for eliciting ∆1 for one-component
model

As mentioned in Section 6.2, in the special case where the MAR distribution is a single component,

as in the MCAR and MVN-MAR models, a simpler method is available for joining the location

shift parameter ∆1 to the change in smoking rates after dropout elicited by the expert. Because

the standard normal distribution function can be approximated by a scaled logistic distribution,

F (x) = [1 + exp(−kx)]−1 at k = 1.749 (Savalei, 2006), the change in the log-odds of Qit = 1 for

those who drop out at t and those who remain in the study is approximately k∆1; that is,

log

[
P (Qit = 1|yit, D = t− 1)

P (Qit = 0|yit, D = t− 1)

]
− log

[
P (Qit = 1|yit, D ≥ t)

P (Qit = 0|yit, D ≥ t)

]
≈ k∆1.

Thus, if the assumption of constant log-odds is reasonable and the subject-matter expert is com-

fortable with the log-odds scale, we can elicit the distribution for ∆1 in terms of the change in the

odds of smoking after dropout instead of using Table 3. We rescale the expert’s values by k−1 and

form a prior directly on ∆1 using the mixture of two uniforms. In this case equation (15) no longer

needs to be solved, leading to faster computing.
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A.6. Simulation Study on Treatment Effect Estimation

Here, we explore the properties of our treatment effect estimates using the first simulation study

(A) from Section 4. Again, the parameter values for the data generating model come from the

CTQ2 data analysis using the SHRINK/EQUAL/SPARSE model. When the data are generated, the

missingness is taken to match the missingness pattern from the CTQ2 data, but the complete data

is still generated (conditional on the fixed dropout time). Hence, we have access to the full data

(both observed and unobserved) that we can use to compare to both our model-based estimates

and a naive choice that only use the study completers. When generating this data, we assume the

intermittent missingness is partially ignorable, missingness after dropout is MNAR but does satisfy

non-future dependence (NFD), and that the first post-dropout distribution (14) is a location-shift

of the MAR distribution where the true value of ∆ is the median-elicited value in Table 3 of the

manuscript.

As in the manuscript, we are interested in estimating P (QiT = 1), E(WiT ), and corr(QiT ,WiT ).

For simplicity we only consider the estimates from the wellness treatment arm. The true values

are determined by appending 50,000 data sets drawn from the model and obtaining Monte Carlo

estimates of the desired quantities with negligible standard error. Using the MCMC outputs from

the SHRINK/EQUAL/SPARSE model for each of the 100 data sets, we obtain 5 estimators. First, we

consider the naive moment estimator that use only those patients who complete the study (66 out of

104 patients). We consider three model-based estimators: MAR which uses ∆ = 0 as in Section

5; ∆-known which fixes ∆ at the median-elicited value used to generate the data; and ∆-prior

which uses the elicited prior distribution for ∆. As a benchmark estimator, we use the moment

estimates based on the full data of all 104 patients. In real data situations, we do not have access

to this full data estimator, but we use it as an ideal case comparison. Table A.3 provide the mean

point estimate, the bias, and the mean squared error (MSE) for each of the quantities of interest.

and Figure A.2 provide box plots of the parameter estimates.
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Estimator P (QiT = 1) E(WiT ) corr(QiT ,WiT )

Estimate Bias MSE Estimate Bias MSE Estimate Bias MSE

Completer 0.497 0.019 4.8×10−3 2.44 0.17 18.1×10−2 0.130 -0.010 20.0×10−3

MAR 0.496 0.018 4.2×10−3 2.37 0.10 13.4×10−2 0.106 -0.034 13.8×10−3

∆-known 0.481 0.003 3.9×10−3 2.20 -0.06 12.7×10−2 0.109 -0.031 13.4×10−3

∆-prior 0.481 0.002 3.9×10−3 2.28 0.02 12.4×10−2 0.103 -0.037 14.0×10−3

Full Data 0.481 0.003 2.0×10−3 2.28 0.02 8.0×10−2 0.135 -0.005 8.7×10−3

Table A.3: Parameter estimation in the simulation study.

Completer MAR ∆−known ∆−prior Full Data

0.
35

0.
45

0.
55

0.
65

Quit Rate Estimate

Completer MAR ∆−known ∆−prior Full Data

1.
5

2.
0

2.
5

3.
0

Weight Change Estimate

Completer MAR ∆−known ∆−prior Full Data

−
0.

1
0.

1
0.

2
0.

3
0.

4
0.

5

Correlation Estimate

Figure A.2: Box plots of parameter estimates under each of the five estimation methods. The true
parameter value is given by the dashed line.

As expected, estimates based on the full data do best, but the full data is not available in

practice. We find that our model-based methods do a very good job of estimating quit rate and

mean weight change when there is informative missingness. The quit rate estimates under MAR

and complete case analysis are biased high by around 2 percentage points, whereas our MNAR

estimates are essentially unbiased and reduce mean squared error by around 10% over MAR and

20% over completer-only. Similarly, MAR and completer-only overstate the expected weight gain,

and our MNAR model provides the necessary correction reducing bias and MSE. While the model-

based correlation estimates appear to exhibit a minor downward bias (probably due to the sparse

GARP prior favoring low correlation), MSE show good performance relative to full data, indicating

we are trading minor bias for stability (low variance) in the estimate.

A.15



Original Prior

Prob of Smoking for D ≥ t

P
ro

b 
of

 S
m

ok
in

g 
fo

r 
D

 =
 t−

1

0.00 0.25 0.50 0.75 1.00

0.
00

0.
25

0.
50

0.
75

1.
00

Alternative Prior A

Prob of Smoking for D ≥ t

P
ro

b 
of

 S
m

ok
in

g 
fo

r 
D

 =
 t−

1

0.00 0.25 0.50 0.75 1.00

0.
00

0.
25

0.
50

0.
75

1.
00

Alternative Prior B

Prob of Smoking for D ≥ t

P
ro

b 
of

 S
m

ok
in

g 
fo

r 
D

 =
 t−

1

0.00 0.25 0.50 0.75 1.00

0.
00

0.
25

0.
50

0.
75

1.
00

Alternative Prior C

Prob of Smoking for D ≥ t

P
ro

b 
of

 S
m

ok
in

g 
fo

r 
D

 =
 t−

1

0.00 0.25 0.50 0.75 1.00

0.
00

0.
25

0.
50

0.
75

1.
00

Figure A.3: Prior distribution of P
(
Qit = 0|Yit, D = t− 1

)
given P

(
Qit = 0|Yit, D ≥ t

)
for

each choice of ∆1 prior. The bold line represents the median value, the solid lines the lower and
upper bounds, and the dotted line is P

(
Qit = 0|Yit, D ≥ t

)
.

A.7. Further Analyses Using Alternative Missingness Assump-
tions

In addition to the results described in the main article, we discuss further sensitivity analyses to our

assumptions about the missingness here. All of our beliefs about the behavior of the patients after

they drop out are determined by the the distributional assumptions for ∆ and the NFD assump-

tions. First, we consider the sensitivity of these results to varying choices in the distribution of the

sensitivity parameter. Figure A.3 displays the original distributional choice for ∆1 as determined

by the subject matter expert (Table 3, Figure 2) along with three new, alternative choices. To align

A.16



with the investigator’s original belief, we continue to use the same sensitivity prior for ∆1 for both

control and exercise treatments.

• The alternative prior A considers a more dispersed version of the original prior. The min-

imum and maximum values for p̃ are adjusted to be twice as far from the median as the

original choice (up to boundary conditions). Similarly, we adjust the prior on the weight

change sensitivity parameter ∆2 to have twice the width of the original choice. As a referee

pointed out, it is commonly the case that investigator-derived priors are overly confident, so

adaptations that increase the variance should be considered in the sensitivity analysis phase.

• Alternative prior B was chosen to provide a stronger assumption about the patients who have

dropped out. Under this choice, they are more likely to be smoking than in the original

prior and much more likely than under MAR (dotted line). We assume the weight change is

ignorable and fix ∆2 = 0.

• Alternative prior C assumes that the probability a patient is smoking after dropout does not

depend on how likely a patient under observation with common history is to be smoking. The

probability of smoking is uniformly distributed between 80% and 100%. Although there is

no longer the connection between p̃ and p̂, ∆1 is still found by solving (15). Weight change

is ignorable (∆2 = 0).

Table A.4 displays estimates of the quantities of interest under MAR, our original MNAR analysis,

and each of these alternative choices.

As the alternative priors B and C represent a stronger belief in a higher smoking rate for pa-

tients who leave the study, the overall quit rate decreases relative to the original MNAR and MAR

analyses. The more dispersed prior A leads to inference that is relatively unchanged from the orig-

inal prior. As this choice is centered at the same value as the original prior, this is not surprising.

For priors B and C which assume weight change is ignorable, we see slightly lower weight change
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Missing data assumption

Quantity Treatment Zit MAR Original Prior Prior A Prior B Prior C
of interest Wit MAR Wit MNAR Dispersed MNAR Wit MAR Wit MAR

P (QiT = 1)
Wellness 0.53 (0.40, 0.65) 0.50 (0.37, 0.63) 0.50 (0.37, 0.63) 0.47 (0.34, 0.60) 0.46 (0.34, 0.59)
Exercise 0.47 (0.35, 0.59) 0.44 (0.32, 0.56) 0.44 (0.32, 0.56) 0.40 (0.29, 0.52) 0.39 (0.28, 0.51)

Post. prob. 0.25 0.24 0.23 0.22 0.21

E(WiT )
Wellness 3.0% (2.3, 3.8) 2.9% (2.2, 3.6) 3.0% (2.2, 3.7) 2.9% (2.2, 3.7) 2.9% (2.2, 3.7)
Exercise 3.0% (2.3, 3.7) 2.8% (2.0, 3.4) 2.8% (2.1, 3.5) 2.9% (2.2, 3.6) 2.9% (2.2, 3.6)

Post. prob. 0.51 0.61 0.61 0.50 0.49

corr(QiT ,WiT )
Wellness 0.18 ( - 0.08, 0.42) 0.18 ( - 0.08, 0.42) 0.16 ( - 0.10, 0.41) 0.18 ( - 0.07, 0.41) 0.18 ( - 0.07, 0.40)
Exercise 0.13 ( - 0.14, 0.36) 0.13 ( - 0.13, 0.36) 0.12 ( - 0.14, 0.35) 0.13 ( - 0.13, 0.35) 0.13 ( - 0.12, 0.34)

Post. prob. 0.61 0.59 0.58 0.61 0.63

Table A.4: Posterior mean and 95% credible interval for the quantities of interest under varying
assumptions for the distribution of the sensitivity parameters. See Figure A.3 and the bulleted list
on the previous page. The posterior probability row gives the probability that the exercise treatment
is superior: higher cessation rate, lower weight change, lower correlation.

than under MAR (also Z-MNAR/W -MAR from Table 4) due to the positive correlation between

Q and W and the lower quit rate.

In addition to the sensitivity to our prior for ∆, it is also worthwhile to explore sensitivity to the

non-future dependence assumption. As we discuss in Section 6.1, NFD is often intuitively appeal-

ing since it assumes that the probability of dropping out at week d is independent of the responses

beyond the next week and because it identifies all extrapolation distributions beyond time d+1. Re-

call that under NFD, we assumed that the distribution of the first missed observation is a location-

shifted version of the MAR distribution given by fd;t(yit|yit) =
∑T

s=t α(s,yit)f̃s;t(yit|yit) for

d = t − 1 where f̃s;t(yit|yit) is the distribution fs;t(yit|yit) after the location shift ∆. The distri-

butions fd;t(yit|yit) at t > d+ 1 are given by (14). Without NFD we must specify all distributions

fd;t(yit|yit) for d < t.

As a simple alternative that does not require NFD, we assume a location-shift distribution for

all observations after dropout. That is, fd;t(yit|yit) =
∑T

s=t α(s,yit)f̃s;t(yit|yit) for all d < t, not

only d = t− 1. Under this belief, we consider three choices for the distribution on ∆. We use the

original priors on ∆1 and ∆2 from Table 3, the original prior on ∆1 with ∆2 = 0 (weight change
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Missing data assumption

Treatment
NFD Without NFD NFD Without NFD NFD Without NFD

Original Prior Original Prior Original Prior Original Prior Prior C Prior C
Wit MNAR Wit MNAR Wit MAR Wit MAR Wit MAR Wit MAR

Quantity of Interest: P (QiT = 1)

Wellness 0.50 (0.37, 0.63) 0.40 (0.28, 0.51) 0.50 (0.37, 0.63) 0.39 (0.28, 0.51) 0.46 (0.34, 0.59) 0.36 (0.27, 0.45)
Exercise 0.44 (0.32, 0.56) 0.36 (0.25, 0.47) 0.43 (0.32, 0.56) 0.36 (0.25, 0.47) 0.39 (0.28, 0.51) 0.33 (0.25, 0.43)

Post. prob. 0.24 0.32 0.23 0.31 0.21 0.35

Quantity of Interest: E(WiT )

Wellness 2.9% (2.2, 3.6) 2.5% (1.7, 3.3) 3.0% (2.2, 3.7) 2.9% (2.1, 3.7) 2.9% (2.2, 3.7) 2.8% (1.9, 3.6)
Exercise 2.8% (2.0, 3.4) 2.0% (1.2, 2.8) 3.0% (2.3, 3.6) 2.8% (2.1, 3.5) 2.9% (2.2, 3.6) 2.8% (2.0, 3.5)

Post. prob. 0.61 0.79 0.51 0.52 0.49 0.49

Quantity of Interest: corr(QiT ,WiT )

Wellness 0.18 ( - 0.08, 0.42) 0.20 ( - 0.03, 0.42) 0.18 ( - 0.07, 0.42) 0.18 ( - 0.06, 0.40) 0.18 ( - 0.07, 0.40) 0.18 ( - 0.00, 0.34)
Exercise 0.13 ( - 0.13, 0.36) 0.22 ( - 0.02, 0.42) 0.13 ( - 0.14, 0.36) 0.14 ( - 0.10, 0.36) 0.13 ( - 0.12, 0.34) 0.14 ( - 0.07, 0.32)

Post. prob. 0.59 0.45 0.61 0.57 0.63 0.61

Table A.5: Posterior mean and 95% credible interval for the quantities of interest with and without
the NFD assumption. The posterior probability row gives the probability that the exercise treatment
is superior: higher cessation rate, lower weight change, lower correlation.

is ignorable), and Prior C for ∆1 with ∆2 = 0. The estimated quantities are displayed in Table A.5

with their corresponding estimates under the NFD assumption.

Clearly, NFD has a strong impact on estimation, as the models without NFD produce quit rate

estimates between 6 and 11 points lower. However, a word of caution is in order. Recall that our

sensitivity specification compares a Patient A who is not observed to a Patient B who is observed

and has the same history yit. For a patient who dropped out at time d, her values for the first missed

observation yi,d+1 = (Zi,d+1,Wi,d+1) will be lower than a patient with the same history yi,d+1 (∆

is mostly negative values). But at time d+ 2, the new values yi,d+2 are lower than a patient who is

observed with the history (yi,d+1,yi,d+1), which is already lower than typical. Hence, for patients

who drop out early, the distribution of the (unobserved) value at the final week may be concentrated

on values that are unreasonably low. This is seen in the estimates for E(WiT ) with the MNAR prior

on weight change. In all other analyses, the expected weight change is incredibly stable, but using

our original model without NFD we see a dramatic drop. We note that this issue of YiT drifting
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to unreasonable values may be minimized by the choice of Prior C which does not specify the

probability of smoking in terms of a patient with common history.

We discuss this simply as a first step in understanding the role of the NFD assumption. When

we are not comfortable assuming NFD, further models may need to be developed to represent a

more appropriate mechanism for the behavior of patients after they drop out. In particular, one

could imagine specifying a distribution for the first missed response (along the lines of our original

prior) and a different model (perhaps, Prior C) for the later missed measurement that will not

lead to this drifting. Our focus in the current article is modeling under the NFD assumption, and

additional research is needed to move beyond this.

Finally, we return to the partial ignorability assumption. Recall that partial ignorability as-

sumes that the intermittent missing values (missingness prior to dropout) provide no information

beyond that obtained from the observed data and the dropout time. In this context, partial ignora-

bility implies that a patient who is missing is no more likely to be smoking that an observed patient

who will dropout at the same time d and has the same (past and future) observed values. Most

longitudinal models with intermittent missingness that do not use partial ignorability lead to iden-

tified parameters in the extrapolation distribution (e.g., Daniels and Hogan, 2008, Section 10.3).

We do not wish to explore such models here. As a simple competitor we adjust the data so that all

intermittently missed observations are assumed to be smoking. While this is more extreme than

is reasonable, this choice will provide the extent to which the intermittently missed values impact

inference. Intermittently missed weight change is assumed ignorable. Additionally, we return to

analysis from Section 6.3 that assumed Qit = 0 for all missed values. Now we set Qit = 0 only

after dropout to provide a partially ignorable version of this analysis.

The results in Table A.6 indicate that the impact of partial ignorability under MAR, our original

MNAR prior, and the Q = 0 assumption. We see the impact is minimal, leading to changes in quit

rate of around one percentage point. As our assumptions about the behavior after dropout becomes

more extreme (as depicted by the Q = 0 case), the partial ignorability assumption has a slightly
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Missing data assumption

Treatment
Part. Ign. Without Part. Ign. Part. Ign. Without Part. Ign. Part. Ign. Without Part. Ign.
Zit MAR Zit MAR Original Prior Original Prior Qit = 0 if missing Qit = 0 if missing
Wit MAR Wit MAR Wit MNAR Wit MNAR Wit MAR Wit MAR

Quantity of Interest: P (QiT = 1)

Wellness 0.53 (0.40, 0.65) 0.52 (0.39, 0.64) 0.50 (0.37, 0.63) 0.49 (0.36, 0.61) 0.34 (0.24, 0.44) 0.30 (0.21, 0.39)
Exercise 0.47 (0.35, 0.59) 0.46 (0.34, 0.59) 0.44 (0.32, 0.56) 0.43 (0.30, 0.55) 0.31 (0.22, 0.41) 0.28 (0.20, 0.37)

Post. prob. 0.25 0.25 0.24 0.24 0.34 0.42

Quantity of Interest: E(WiT )

Wellness 3.0% (2.3, 3.8) 3.1% (2.3, 3.8) 2.9% (2.2, 3.6) 2.9% (2.2, 3.7) 2.6% (1.9, 3.4) 2.6% (1.8, 3.3)
Exercise 3.0% (2.3, 3.7) 3.0% (2.4, 3.7) 2.8% (2.0, 3.4) 2.7% (2.1, 3.4) 2.7% (2.1, 3.4) 2.7% (2.1, 3.4)

Post. prob. 0.51 0.52 0.61 0.63 0.42 0.38

Quantity of Interest: corr(QiT ,WiT )

Wellness 0.18 ( - 0.08, 0.42) 0.19 ( - 0.06, 0.42) 0.18 ( - 0.08, 0.42) 0.19 ( - 0.05, 0.41) 0.18 ( - 0.04, 0.37) 0.21 (0.02, 0.39)
Exercise 0.13 ( - 0.14, 0.36) 0.14 ( - 0.11, 0.37) 0.13 ( - 0.13, 0.36) 0.15 ( - 0.09, 0.37) 0.16 ( - 0.04, 0.35) 0.17 ( - 0.04, 0.35)

Post. prob. 0.61 0.61 0.59 0.59 0.55 0.62

Table A.6: Posterior mean and 95% credible interval for the quantities of interest with and without
the partial ignorability assumption. The posterior probability row gives the probability that the
exercise treatment is superior: higher cessation rate, lower weight change, lower correlation.

greater impact, reducing the quit rate by 4 and 3 points, respectively.

In conclusion, we find that the results as presented in the main article are robust to the partial

ignorability assumption (Table A.6), while the choice of the distribution of the sensitivity parameter

∆ has a moderate impact on inference (Table A.4). Of the three assumption we consider, the

choice of non-future dependence leads to larger changes in the quit rates (Table A.5). The decision

to assume NFD must be made by balancing the appropriateness of the mathematical simplification

and intuition about the MDM against the difficulties of specifying the unidentified extrapolation

distribution.
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