Supplementary Figure 1 | Genetic architecture of recombined tylosin PKS genes after AE process.

WT ISOM-1022	TylGl	TylGII 3	4	5 5 0 0 0 0	TylGIV 6	туКу 7
ISOM-4854	TylGI	TylGII 3	TylGIII/IV H	туlGV 7		
ISOM-4897	TylGl	TylGII 3	TylGIII H	TylGV 7		
ISOM-5004	Tylsi/III	TylGIV 6	TylGV 7			
ISOM-5005		TylGII 3		TylGV 7		
ISOM-5008	TylGl/III	TylGIV 6	TylGV 7			
ISOM-5009	TylGI/IV	7 7				
ISOM-5010	TylGI/IV	7				
ISOM-5051	TylGi/IV 6 7					
ISOM-5054	TylGI/IV	тукоv 7				

Supplementary Table 1 | Rapalog fermentation titres. The mean titre for production of **1** by strain ISOM-4010 fed with hCHCA (2 mM) was determined by analysing the raw data from 396 individual analytical fermentations carried out in Falcon tubes (see Methods section). Outliers were rejected based on a Jarque-Bera test. This analysis gave a mean value of 193.4 \pm 49.2 μ M. All raw data (titres) were calculated using HPLC-UV analysis with compound **1** as a standard.

Strain	Rapalog produced	Module genotype	Rapalog titre (µM)
ISOM-4010	1	Wild-type	193
ISOM-4309	8	Plus 1	9
ISOM-4141	7	Minus 1	121
ISOM-4280	7	Minus 1	177
ISOM-4291	7	Minus 1	197
ISOM-4144	6	Minus 2	87
ISOM-4185	5	Minus 3	73
ISOM-4192	5	Minus 3	77
ISOM-4142	5	Minus 3	70
ISOM-4146	5	Minus 3	7
ISOM-4172	5	Minus 3	63
ISOM-4279	4	Minus 4	84
ISOM-4178	4	Minus 4	37
ISOM-4359	3	Minus 5	109
ISOM-4193	2	Minus 6	126
ISOM-4184	2	Minus 6	135
ISOM-4180	2	Minus 6	149
ISOM-4186	2	Minus 6	126

Oligonucleotide sequence	PCR
	Product
CGACGAATTCCATCGCGCCCGGCCCGCCAGG	1
TTGTCCGGCCGGGTGTCGTACGTCTTCGG	1
CCAGGGACGAGGAGCACGCCGTGTCCATCG	2
GGGGTGTAGAGGCTAGCCGCCCTGGCACCGGCCGAGC	2
GTATCTAGAAAGATCTAGTACCCGGGTTGTGGCGGTGCCGAGG	3
TCAGGCCGCCTCGGGCGTGTCGGTTGTCATCAAGATGG	3
GACGGCTCATCCACGTGCAGGGTGCGGGGAACC	4
GTCTAAGCTTTCCCCACCGACCGTGGCTGGGACGTCG	4
CGCGAATTCGGAGAAACCGGCACCGTCCGCACTGTCCGC	5
GGGGTGTAGAGGCTAGCCGCCTGGCACCGGCCGAGC	5
CGTAAAGCTTGGAGACGACACCGTCACCGGCACCGCTGTG	6
GTATCTAGAAAGATCTAGTACCCGGGTTGTGGCGGTGCCGAGG	6
GGCCAGTGCCAAGCTTCCTTCATCGAGGAGCAGCTTTG	IR001_3
ACATGATTACGAATTCGGTGAAGATGCGGTTCGAG	IR001_3
GGCCAGTGCCAAGCTTCTGTCGCTCGCGCCC	IR001_4.F
ACATGATTACGAATTCGGGGTCGGGTGGT	IR001_4.R
GGCCAGTGCCAAGCTTCCGCGACGACCACCCA	IR001_6
ACATGATTACGAATTCCCGGTCGAGCAGCAGTCT	IR001_6
GGCCAGTGCCAAGCTTCCTGCACACCGCGG	IR001_7
ACATGATTACGAATTCTTCGGCGCCGGGGA	IR001_7
GGCCAGTGCCAAGCTTGAGGTCAGTGCCCACCCG	IR001_8
ACATGATTACGAATTCGCAGATGCCGGGCGAGG	IR001_8

Supplementary Table 2 | Oligonucleotides used in this study

Supplementary Note 1 | Rapalog isolation and structure elucidation

General. NMR spectra were recorded on a Bruker AVANCE 500 spectrometer at 298 K operating at 500 MHz and 125 MHz for ¹H and ¹³C respectively. Standard Bruker pulse sequences were used to acquire ¹H-¹H COSY, APT, HMBC and HMQC spectra. Chemical shifts are reported in parts per million (ppm) relative to the solvent residual peak of chloroform- d_1 (¹H: 7.24 ppm, singlet; ¹³C: 77.00 ppm, triplet) or acetonitrile- d_3 (¹H: 1.94 ppm, quintet; ¹³C: 118.26 ppm, singlet).

COMPOUND 1

Compound **1** was reported previously¹ and authentic standards were used for LCMS analysis including quantification.

COMPOUND 2

The fermentation was as described in the Methods section except that the vegetative cultures (seed cultures) were prepared using 12 x 5 mm plugs from an agar plate and inoculating into 400 mL RapV7 medium in 2 L Erlenmeyer flasks with foam plugs. Cultivation was carried out for 48 h at 28°C, 250 rpm (2.5 cm throw), before fermentation as set out in the text.

Strain: ISOM-4180

Exogenous feed: 4-trans-hydroxylcyclohexanecarboxylic acid (final concentration 2 mM)

Volume: 1 x 15 L

DSP was as described in the text, both the cell mass and clarified broth were extracted and the crude extracts combined.

The crude extract (13.8 g) was dissolved in 1:1 methanol/acetonitrile and C18 reverse-phase silica added (26 g). The solvent was removed under reduced pressure and the silica added to a C18 reverse-phase silica open column (70 mm x 50 mm diameter) and the column eluted with 3:2 water/acetonitrile (600 mL), 1:1 water/acetonitrile (400 mL), 2:3 water/acetonitrile (1000 mL). Fractions containing **2** were combined and taken to dryness (6.0 g).

Compound **2** was then purified by dissolving the 6.0 g enriched extract in methanol (5 mL) and separating the mixture by size-exclusion chromatography over sephadex LH-20 resin (column dimensions 1000 mm x 30 mm diameter) eluted with methanol. Fractions containing **2** were combined and the solvent evaporated under reduced pressure. The material (210 mg) was adsorbed onto C18 reverse-phase silica (dissolved in 20 ml methanol, 2 g C18 silica added and the solvent removed under reduced pressure). This was then added to a C18 silica column (100 mm x 30 mm diameter) and eluted with 3:2 acetonitrile/water. The fractions containing **2** as adjudged by analytical HPLC (see methods section) were combined and the solvent evaporated under reduced pressure to yield **2** as a white, amorphous solid.

LC-MS analysis. RT = 10.7 min, m/z = 584.2 ([M+Na]⁺) and 560.2 ([M-H]⁻).

HRMS (*m*/*z*):, calcd for $C_{33}H_{51}NO_8$, Observed: 598.3731; calculated: 598.3714; Δ = 2.84 ppm.

Supplementary Figure 2 | Chemical structure and 2D NMR correlations for compound 2.

Supplementary Table 3 | NMR data for compound 2 in CDCl₃ at 500 MHz for ¹H and 125 MHz for ¹³C. For methylene groups the axial and equatorial ¹H has not been assigned.

	¹ H-NMR			13C NIAD	
Position	δ ppm	Multiplicity, J in Hz	COSY	δ ppm	¹ H to ¹³ C
1	-	-	-	174.0	-
2	5.40	br. d, 4	H-3	51.5	C-1,C-3,C-4,C-6, C-8
2	1.66	m	Н-2,	27 /	C 1 C 2 C A C E
5	1.22	m	H-4	27.4	C-1,C-2,C-4, C-J
л	1.69	m	Н-3,	21.1	C-2 C-3 C-5 C-6
4	1.15	m	H-5	21.1	C-2,C-3,C-3, C-0
5	1.69	m	H-4,	25.3	C-3 C-1 C-6
5	1.45	m	H-6	23.5	C-3,C-4, C-0
6	3.77	br.d, 12.8	H-5	44.1	C-2 C-4 C-5 C-8
0	3.26	ddd, 12.8, 9.5, 6	11.5		
7	-	-	-		-
8	-	-	-	172.8	-
9	1.19	d, 16.5	-	44.2	C-8, C-10, C-11
5	1.09	d, 16.5			0 0, 0 10, 0 11
10	-	-	-	98.0	-
11	2.26	ddq, 11.5, 4, 6.5	11-CH₃, H-12	34.3	C-9,C-10,C-12,C-13, 11- CH ₃
11-CH₃	0.93	d, 6.5	H-11	16.8	C-10,C-11, C-12
12	1.46	m	H-11, H-12	26.7	C-10,C-11,C-13,C-14, 11-
	2 1/	m	H-12		CH3
13	1 75	m	H-1 <i>4</i>	30.8	C-11,C-14,C-15
	1.75		H-13		
14	4.13	m	H-15	71.2	-
	2.70	ddd, 16, 9, 2, 11	H-14		
15	1.47	ddd, 16.5.5. 6	H-16	39.2	C-13,C-14,C-16, C-17
		,,, _, _			

16	4.26	dd, 9.2, 5.5,	H-15, H-17	66.0	C-14,C-15,C-17,C-18
16-OCH₃	3.14	S	-	50.3	-
17	-	-	-	134.6	-
17-CH₃	1.72	S	-	10.2	C-16, C-17, C-18
18	6.07	d, 14.5	H-17, H-19	126.2	C-16,C-17,C-19,C-20, 17- CH ₃
19	6.32	dd, 14.5, 11.4	H-18, H-20	133.4	C-17,C-18,C-20, C-21
20	6.15	dd, 14.5, 11.4	H-19, H-21	128.9	C-18,C-19,C-21, C-22
21	6.06	dd, 14.5, 14.4	H-20, H-22	133.5	C-19,C-20,C-22, C-23
22	5.50	dd, 14.4, 8	H-21, H-23	141.0	C-20,C-21,C-23, 23-CH ₃ , C-24
23	1.91	m	H-22, 23-CH₃, H-24	34.0	C-21,C-22,C-24,C-25, 23- CH₃
23-CH₃	0.93	d, 6.5	H-23	21.0	C-22,C-23, C-24
24	1.55	m	H-23 <i>,</i> H-25	44.0	C-22,C-23,C-25,C-26, 23- CH ₃ , C-30
25	2.57	m	H-24, H-26, H-30	39.1	C-23,C-24,C-26,C-27, C- 29, C-30
26	1.74	m	H-25, H-27	31.6	C-24,C-25,C-27,C-28, C- 30
27	1.19	m	H-26 <i>,</i> H-28	35.1	C-25,C-26,C-28, C-29
28	3.50	dddd, 10.8, 8.4, 6.8, 6.8	H-27, H-29	71.1	-
29	1.31	m	H-28 <i>,</i> H-30	35.2	C-25, C-27, C-28, C-30
30	1.32	m	H-29, H-25	31.7	C-24,C-25,C-26,C-28, C- 29

Supplementary Figure 4 | ¹³C NMR spectrum (CDCl₃, 125 MHz) of compound 2.

Supplementary Figure 5 | H,H-COSY spectrum of compound 2.

Supplementary Figure 6 | HSQC spectrum of compound 2.

Supplementary Figure 7 | HMBC spectrum of compound 2.

COMPOUND 3

The seed and production fermentations were performed as detailed in the methods section.

Strain: ISOM-4359

Feed: 4-trans-hydroxycyclohexanecarboxylic acid (hCHCA) (final concentration 2 mM)

Volume: 1 x 15 L fermentation

The resulting fermentation broth was separated by centrifugation and the cell paste and clarified broth processed as described for **2**.

The crude extract (20.7 g) was dissolved in methanol and silica added. The solvent was removed under reduced pressure and the adsorbed silica added to a flash silica column (20 cm x 5 cm diameter) and eluted with the 40:60 ethyl acetate/hexanes and then 50:50, 60:40, 70:30, 80:20, 90:10 mixtures followed by 100% ethyl acetate. Fractions containing **3** were combined and the solvent evaporated under reduced pressure to yield an enriched extract of 0.96 g.

Compound **3** was further purified by preparative HPLC on a Phenomenex Gemini NX C18 column: 10 μ m, 21 mm diameter x 150 mm. Mobile phase A = water, B = acetonitrile; t = 0 min, B = 60%; t = 30 min, B = 100%). Flow rate 20 mL min⁻¹. Fractions containing **3** were defatted (dissolved in 80% aqueous methanol and extracted into hexanes; the solvent was then removed from the aqueous methanol layer to reveal the target compound) to yield a white amorphous solid (164 mg).

LC-MS analysis: $RT = 14.9 \text{ min}; m/z = 636.2 ([M+Na]^+) \text{ and } 612.2 ([M-H]^-).$

HRMS (m/z):, calcd for C₃₅H₅₁NO₈Na, 636.3512; found, 636.3516; Δ = 0.6 ppm.

Supplementary Figure 8 | Chemical structure and 2D NMR correlations for compound 3.

Supplementary Table 4 | NMR data for compound 3 in CDCl₃ at 500 MHz for 1 H and 125 MHz for 13 C.

	¹ H-NMR				LINARC correlations	
Position	6	Multiplicity,				
	o ppm	J in Hz	COSY	o ppm	-H toC	
1	-	-	-	168.7	-	
2	5.16	d, 5.1	H-3	51.8	C-1, C-3, C-4, C-6, C-8	
3	1.61	m	H-2	25.8	C-1, C-2, C-5	
	2.20	m				
4	1.25	m	H-5	21.4	C-2, C-6	
	1.45	m	H-4, H-	24.0	C 2	
5	1.56	m	6	24.9	C-5	
6	3.03 3.36	ddd,13.4,13.2, 3.0 d, 13.4	H-5	44.9	C-2, C-4, C-5, C-8	
7	-	-	-		-	
8	-	-	-	167.1	-	
9	-	-	-	175.8	-	
10	-	-	-	99.3	-	
11	2.28	m	H-12	35.2	C-9, 11-CH₃,C-12	
11-CH ₃	0.84	d, 6.7	H-11, H-12	15.5	C-10, C-11, C-12	
12	1.55	m	H-11	26.2	-	
13	1.54	m	H-14	31.1	-	
14	4.08	m	H-13, H-15	68.8	-	
15	1.62	m	H-14,	41.3	C-14, 17-CH₃	
	1.94	m	H-10		C-14 C-15 C-17 17-CH	
16	4.20	dd, 11.6, 2.2	H-15	74.3	C-18	
17	-	-	-	140.0		
17-CH₃	1.76	S	-	11.9	C-16, C-17, C-18	
18	5.95	d, 10.9	17-CH₃, H-19	124.4	C-16, 17-CH₃, C-19, C-20	
19	6.24	dd, 14.5, 10.9	H-18, H-20	127.0	C-17, C-18, C-21	
20	6.02	dd, 14.5, 10.7	H-19, H-21	133.0	C-18, C-21, C-22	
21	5.92	dd, 14.8, 10.7	H-20, H-22	130.1	C-19, C-20, C-23	
22	5.20	dd, 14.8, 9.9	H-21, H-23	140.4	C-20, 23-CH ₃ , C-24	
23	2.06	m	H-22, H-24	39.6	-	

23-CH₃	0.98	d, 6.5	H-23	22.2	C-22, C-23, C-24	
24	1.97	m	H-23,	20 E		
24	2.07	m	H-25	59.5	C-22, 23-CH ₃ , C-25	
25	2.53	m	H-24 <i>,</i> 25-CH₃	43.0	C-24, 25-CH ₃ , C-26	
25-CH₃	1.02	d, 7.3	H-25	19.3	C-24, C-25, C-26	
26	-	-		215.6	-	
27	2.31	m	-	48.5	-	
20	1.36	m	LI 20	20.6		
20	1.95	m	п-29	50.0	C-2J, C-20	
20	1.16	m	H-28,	20.0		
29	1.36	m	H-30	29.0	-	
20	4 5 4	m	H-29,	74 4	C 1	
50	4.54		H-31	/4.4	C-1	
21	1.24	m	H-30,	20.0		
51	1.91	m	H-32	29.0	-	
22	1.71	m	⊔_21	21 7	C-30 C-38	
52	1.96	m	11-21	51.7	C-30, C-20,	

Supplementary Figure 9 | ¹H NMR spectrum (CDCl₃, 500 MHz) of compound 3.

Supplementary Figure 10 | ¹³C NMR spectrum (CDCl₃, 125 MHz) of compound 3.

Supplementary Figure 11 | H,H-COSY spectrum (CDCl₃, 500 MHz) of compound 3.

Supplementary Figure 12 | HSQC spectrum (CDCl₃, 500 MHz) of compound 3.

Supplementary Figure 13 | HMBC spectrum (CDCl₃, 500 MHz) of compound 3.

COMPOUND 4

The seed and production fermentations were performed as detailed in the methods section.

Strain: ISOM-4178

Feed: 4-trans-hydroxycyclohexanecarboxylic acid (hCHCA) (final concentration 2 mM)

Volume: 1 x 15 L fermentation

The fermentation broth at the end of the fermentation was separated by centrifugation and the cell paste processed as described for **2**.

The crude extract (9.8 g) was dissolved in 1:1 methanol/acetonitrile and C18 reverse-phase silica gel added. The solvent was removed under reduced pressure and the adsorbed silica was applied to a flash reverse-phase C18 silica column (70 mm x 55 mm diameter). The column was eluted with 6:4 water / acetonitrile (800 mL), 1:1 water / acetonitrile (200 mL), 4:6 water / acetonitrile (800 mL), and then 3:7 water / acetonitrile (200 L). Fractions containing **7** were combined and the solvent removed under reduced pressure to yield an enriched fraction (404 mg). This material was further purified by reverse-phase HPLC over a Phenomenex Xterra C18 column: 10 µm, 19 mm diameter x 250 mm. Mobile phase A = water, B = acetonitrile; gradient, t = 0 min, B = 30%; t = 30 min, B = 80%). Flow rate 20 mL min⁻¹. Fractions containing compound **4** were combined and the solvent evaporated under reduced pressure. This material was purified by size-exclusion chromatography over sephadex LH-20 resin (column dimensions 1000 mm x 30 mm diameter) and eluted with methanol. Fractions containing **4** were combined and the solvent to yield **4** as a white amorphous solid (47 mg).

LC-MS analysis: RT = 12.7 min, m/z = 652.6 ([M+Na]⁺) and 628.5 ([M-H]⁻)

HRMS (m/z):, calcd for C₃₇H₅₉NO₇Na, 652.4189; found, 652.4190; Δ = 0.2 ppm.

Supplementary Figure 14 | Chemical structure and 2D NMR correlations for compound 4.

Supplementary Table 5 | NMR data for compound 4 in CDCl₃ at 500 MHz for ¹H and 125 MHz for 13 C.

-

	¹ H-NMR				HMBC correlations	
Position	6	Multiplicity,	606V	C-INIVIR Sinone		
	<i>o</i> ppm	<i>J</i> in Hz	COSY	o ppm	пюс	
1	-	-	-	170.6	-	
2	5.17	d, 4.6, 1.7	H-3	52.6	C-1, C-3, C- C-4, C-6, C-8	
2	1.72	m	H-2, H-	26.4		
5	2.30	m	4	20.4	-	
л	1.22	m	H-3, H-	20.8		
4	1.72	m	5	20.8	-	
5	1.47	m	H-4, H- 6	29.0	-	
c	3.19	ddd,13.1,12.9, 3.0	ЦΕ	12 0		
0	3.68	m	п-э	42.0	C-2, C-4, C-0	
7	-	-	-		-	
8	-	-	-	173.2	-	
9	2.42	d, 16.1		38.3	C-8, C-10	
5	2.58	d, 16.1		0010	0 0, 0 10	
10	-	-	-	98.3		
10-OH	6.48	bs	-		C-10, C-9	
11	1.33	m	11-CH₃, H-12	38.8	-	
11-CH ₃	0.85	d, 6.7	H-11	17.2	C-10, C-11, C-12	
12	1.45	m	H-11	24.9	-	
12	1.71	m		24.5		
13	1.29	m	H-14	33.2	-	
10	1.44	m		0012		
14	3.91	m	H-13, H-15	64.4	C-12, C-15, C-16	
15	1.64	m	H-14,	20.0		
15	1.87	m	H-16	55.5	-	
16	4.23	m	H-15	74.1	C-14, C-15, C-17, 17- CH ₃ , C-18	
17	-	-	-	137.3	-	
17-CH₃	1.59	S	-	13.3	C-16, C-17, C-18	
18	6.11	d, 9.8	H-19	124.6	C-16, 17-CH₃, C-19, C-20	
19	6.30	dd, 14.8, 10.6	H-18, H-20	127.5	C-18, C-21	
20	6.22	dd, 14.8, 9.8	H-19, H-21	132.2	C-18, C-21, C-22	
21	6.08	dd, 15.4, 9.9	H-20, H-22	129.1	C-19, C-20, C-23	

22	F F0		H-21,	120 1	C-20, C-23, 23-CH ₃ , C-
22	5.59	uu, 15.4, 7.3	H-23	138.1	24,
			H-22,		
23	2.02	m	23-CH₃,	35.5	C-21, C-22, 23-CH ₃ , C-25
			H-24		
23-CH₃	0.98	d, 6.8	H-23	22.9	C-22, C-23, C-24
24	1 50	m	H-23,	<u> 20 1</u>	
24	4 1.50	111	H-25	20.1	-
25	1.50	m	H-24,	27.9	C-22 C-22 C-26 C-27
25	1.63	m	H-26		C-23, C-22, C-20, C-27
26	1 72	ddd 0 0 2 1 2 0	H-25,	78.6	C-1, C-24, C-25, C-27-
20	4.72	uuu, 9.9, 3.1, 2.9	H-27		CH₃, C-28
			H-26,		
27	1.78	m	27-CH₃,	31.4	C-25, C-26
			H-28		
27-CH ₃	0.83	d, 6.7	H-27	15.6	C-26, C-27, C-28
28	0.91	m	H-27,	10.2	_
28	1.07	m	H-29	40.2	-

Supplementary Figure 15 | ¹H NMR spectrum (CDCl₃, 500 MHz) of compound 4.

Supplementary Figure 16 | ¹³C NMR spectrum (CDCl₃, 500 MHz) of compound 4.

Supplementary Figure 17 | H,H-COSY NMR spectrum (CDCl₃, 500 MHz) of compound 4.

Supplementary Figure 18 | HSQC NMR spectrum (CDCl₃, 500 MHz) of compound 4.

Supplementary Figure 19 | HMBC NMR spectrum (CDCl₃, 500 MHz) of compound 4.

COMPOUND 5

The seed and production fermentations were performed as detailed in the Methods section.

Strain: ISOM-4185

Feed: 4-trans-hydroxycyclohexanecarboxylic acid (hCHCA) (final concentration 2 mM)

Volume: 1 x 15 L fermentation

The fermentation broth at the end of the fermentation was separated by centrifugation and the cell paste processed as described for **2**.

The crude extract (8 g) was dissolved in ethyl acetate and silica gel added (15 g). The solvent was removed under reduced pressure and the adsorbed silica was applied to a flash silica column (200 mm x 55 mm diameter). The column was eluted with 1:2 ethyl acetate / hexanes (900 mL), 4:5 ethyl acetate / hexanes (1.8 L), 1:1 ethyl acetate / hexanes (3 L), 3:2 ethyl acetate / hexanes (1 L), 2:1 ethyl acetate / hexanes (1.8 L) and then 100% ethyl acetate (400 mL). Fractions containing **5** were combined and reduced the solvent removed under reducer pressure. This material was dissolved in 2:3 acetonitrile/water and applied to a C18 SPE cartridge (20 g). This was eluted with 100 mL each of 2:3, acetonitrile/water, 1:1, 3:2, 7:3, 4:1. Fractions containing **5** were combined and the solvent removed under reduced pressure to yield an enriched fraction (150 mg). This material was further purified by reverse-phase HPLC over a Phenomenex Xterra C18 column: 10 µm, 19 mm diameter x 250 mm. Mobile phase: A = water, B = acetonitrile: t = 0 min, B = 50%; t = 22 min, B = 80%). Flow rate 20 mL min⁻¹. Fractions containing **5** were combined and the solvent reduced pressure to yield **5** as a white amorphous solid (93 mg).

LC-MS data: $RT = 14.3 \text{ min}, m/z = 722.6 ([M+Na]^+) \text{ and } 698.5 ([M-H]^-).$

HRMS (m/z):, calcd for C₄₁H₆₅NO₈Na, 722.4608; found, 722.4601; Δ = -1.0 ppm.

Supplementary Figure 20 | Chemical structure and 2D NMR correlations for compound 5.

Supplementary Table 6 | NMR data for compound 5 in CDCl₃ at 500 MHz for 1 H and 125 MHz for 13 C.

	¹ H-NMR			HMPC correlations	
Position	6	Multiplicity,	CO5V	Sinner	
	o ppm	<i>J</i> in Hz	COSY	<i>o</i> ppm	
1	-	-	-	170.7	-
2	5.23	dd, 6.1, 2.0	H-3	52.2	C-1, C-3, C-4, C-6, C-8
	1.75	m	H-2,		
3	2.26	m	H-4	26.7	-
	1.25	m	H-3,	20.6	
4	1.73	m	H-5	20.6	-
F	1.51	m	H-4,	24.0	
5	1.73	m	H-6	24.8	-
	2.26	ddd, 13.2, 13.0,			
6	3.26	3.0	H-5	42.7	C-2, C-4, C-5
	3.72	m			
7	-	-	-		-
8	-	-	-	173.4	-
9	2.55	S	-	38.0	-
10	-	-	-	98.2	-
10-OH	6.68	d, 1.2	-		C-9, C-11
11	1.13	m	11-CH₃	38.8	-
11-CH₃	0.86	d, 6.5	H-11	17.3	C-10, C-11, C-12
10	1.41	m		27.6	
12	1.61	m	H-13	27.6	-
10	1.69	m	11.40	22.7	C 11 C 15
13	2.09	m	H-12	32.7	L-11, L-15
14	3.71	m	H-15	65.6	C-15, C-16
15	1.59	m	H-14,	20.7	C-13, C-14, C-16, C-17, 17-
15	1.73	m	H-16	38.7	CH ₃
10	2.69			04.0	C-15, 16-OCH ₃ , 17-CH ₃ , C-
10	3.08	aa, 10.9, 5.1	H-12	84.8	18
16-OCH₃	3.10	S	-	55.6	C-16
17	-	-	-	133.3	-
17-CH₃	1.58	d, 0.7	-	10.1	C-16, C-17, C-18
18	6.06	dd, 9.8, 8.8	H-19	131.6	17-CH ₃ , C-16, C-19, C-20
10	6 21	dd 14 0 10 2	H-18,	176 2	C-18 C-20 C 21
19	0.51	uu, 14.9, 10.5	H-20	120.5	C-18, C-20, C-21
20	6 20	dd 140 100	H-19,	124 2	
20	0.38	uu, 14.9, 10.2	H-21	134.3	L-18, L-21, L-22
21	C 11		H-20,	120.0	
21	0.11	uu, 15.0, 10.0	H-22	130.0	L-19, L-20, L-23
22			H-21,	120.0	
22	5.45	ud, 15.0, 7.6	H-23	138.9	L-20, L-23, 23-LH ₃ , L-24

			H-22,			
23	2.23	m	23-CH₃,	36.0	C-21, C-22, 23-CH₃	
			H-24			
23-CH₃	1.02	d, 4.4	H-23	21.3	C-22, C-23, C-24	
24	1.27	m	⊔_ 22	10.1	C-22 C-25 25-CH, C-26	
24	1.58	m	11-25	40.4	C-23, C-23, 23-CH3, C-20	
25	2.44	m	25-CH₃	45.6	C-23, C-24, 25-CH ₃ , C-27	
25-CH₃	1.00	d, 4.7	H-25	16.4	C-24, C-25, C-26	
26	-	-	-	210.8	-	
27	2.66	dd, 16.8, 5.4	H-28	<i>4</i> 1 1	C-26 C-28 C-29	
27	2.73	dd, 16.8, 4.9	11 20	71.1	C 20, C 20, C 25	
28	4 97	ddd 535353	H-27,	75.6	C-1 C-26 C-27 C-29 C-30	
20	4.57	uuu, 5.5, 5.5, 5.5	H-29	75.0	C 1, C-20, C-27, C-29, C-90,	
			H-28,		C-27, C-28, 29-CH₂, C-30,	
29	2.08	m	29-CH₃,	32.4	C-31	
			H-30		0.51	
29-CH₃	0.84	d, 6.8	H-29	15.8	C-28, C-29, C-30	
30	0.98	m	H-29,	39.0	29-CH₂. C-32	
			H-31			
			H-30,			
31	1.27	m	H-32,	33.9	-	
			H-36			
32	0.95	m	H-31,	32.6	-	
	1.47	m	H-33	01.0		
33	1.24	m	H-32,	35.5	C-31, C-32, C-34, C-35, C-	
	1.92	m	H-34	0010	36	
34	3.50	m	H-33,	71.0	-	
	0.00		H-35			
35	1.17	m	H-34,	35.2	-	
	1.94	m	H-36			
36	0.78	m	H-31,	30.5	-	
30	1.78	m	H-35	30.5		

Supplementary Figure 21 | ¹H NMR spectrum (CDCl₃, 500 MHz) of compound 5.

Supplementary Figure 22 | ¹³C NMR spectrum (CDCl₃, 500 MHz) of compound 5.

Supplementary Figure 23 | H,H-COSY NMR spectrum (CDCl₃, 500 MHz) of compound 5.

Supplementary Figure 24 | HSQC NMR spectrum (CDCl₃, 500 MHz) of compound 5.

Supplementary Figure 25 | HMBC NMR spectrum (CDCl₃, 500 MHz) of compound 5.

COMPOUND 6

The seed and production fermentations were performed as detailed in the methods section.

Strain: ISOM-4144

Feed: 4-trans-hydroxycyclohexanecarboxylic acid (hCHCA) (final concentration 2 mM)

Volume: 80 x 7 mL Falcon tubes; 560 mL.

The individual falcons were combined and the cell mass separated by centrifugation. Only the cell mass extracted using the method describe for **2**.

The crude extract (1.2 g) was dissolved in ethyl acetate and silica gel added (10 g). The solvent was removed under reduced pressure and the adsorbed silica was applied to a flash silica column (180 mm x 55 mm diameter). The column was eluted with 4:5 ethyl acetate / hexanes (1.3 L) then 1:1 ethyl acetate / hexanes (3.4 L). Fractions containing **6** were combined and the solvent removed under reduced pressure to yield an enriched fraction (65 mg). This was further purified by reverse-phase HPLC over a Phenomenex Xterra C18 column: 10 μ m, 19 mm diameter x 250 mm. Mobile phase: A = water, B = acetonitrile; t = 0 min, B = 50%; t = 22 min, B = 80%). Flow rate 20 mL min⁻¹. Fractions containing **6** were combined and the solvent evaporated under reduced pressure to yield **6** as a white amorphous solid (47 mg).

LC-MS: RT = 15.5 min, *m*/*z* = 780.3 ([M+Na]⁺) and 756.2 ([M-H]⁻).

HRMS (m/z):, calcd for C₄₃H₆₇NO₁₀Na, 780.4663; found, 780.4648; Δ = -1.9 ppm.

Supplementary Figure 26 | Chemical structure and 2D NMR correlations for compound 6.

Supplementary Table 7 | NMR data for compound 6 in CDCl₃ at 500 MHz for 1 H and 125 MHz for 13 C.

	¹ H-NMR				HMBC correlations
Position	δ ppm	Multiplicity,	COSY	δ ppm	¹ H to ¹³ C
		<i>J</i> in Hz			
1	-	-	-	169.6	-
2	5.26	dd, 5.4, 1.2	H-3	52.2	C-1, C-3, C-4, C-6, C-8
3	1.75	m	Н-2,	27 0	C-2 C-4 C-5
5	2.35	m	H-4	27.0	0-2, 0-4, 0-3
1	1.33	m	Н-3,	21.1	
4	1.76	m	H-5	21.1	C-5, C-0
F	1.55	m	Н-3,	ЭГ 1	
5	1.68	m	H-6	25.1	-
c	3.30	ddd, 13.4, 13.2, 3.1		A A 1	
D	3.71	m	п-э	44.1	0-2, 0-4, 0-8
7	-	-	-	-	-
8	-	-	-	165.9	-
9	-	-	-	194.4	-
10	-	-	-	98.8	-
11	2.00	m	11-CH₃, H- 12	33.8*	C-10, 11-CH ₃ , C-12,
11-CH₃	0.86	d, 6.7	H-11	16.1	C-10, C-12
12	1.55	m	H-11	27.2	-
13	1.54	m	H-14	31.1	-
14	2 72		H-13,	66.0	C 1C
14	3.73	m	H-15	00.9	C-10
15	1.53	m	H-14,	20.4	C 14 C 1C C 17
12	1.82	m	H-16	38.4	L-14, L-10, L-17
16	3.70	dd, 9.7, 6.0	H-15	84.1	C15, 16-OCH ₃ , 17-CH ₃ , C-18

16-0CH ₃	3.09	S	-	55.8	C-16
17	-	-	-	135.3	-
17-CH₃	1.61	S		10.1	C-16, C-17, C-18
18	6.04	m	H-19	129.7	C-16, 17-CH ₃ , C-20
19	6.32	dd, 14.9, 10.5	H-18 <i>,</i> H-20	126.6	C-17, C-21
20	6.25	dd, 14.9, 10.0	H-19, H-21	133.4	C-18, C-22
21	6.07	m	H-20, H-22	130.1	C-19, C-23
22	5.39	dd, 15.0, 8.3	H-21, H-23	139.3	C-20, C-23, 23-CH ₃ , C- 40
23	2.20	m	H-22, 23-CH₃, H-24	36.5	C-21, C-22, 23-CH3, C- 24,
23-CH₃	0.99	d, 3.76	H-23	21.4	C-22, C-23, C-24, C-25
24	1.30 1.65	m m	H-23, H-25	40.2	C-23, C-25
25	2.48	q, 6.7	H-24, 25-CH₃	46.0	C-24, 25-CH ₃ , C-26
25-CH₃ 26	1.01	d, 3.94	H-25	16.8 215.1	C-24, C-25, C-26
27	2.53	d, 6.0	H-28	47.2	C-26, C-28, C-29
28	4.12	m	H-27, H-29	65.7	C-26, C-29, C-30
29	1.64 1.73	m m	H-28, H-30	36.1	C-28, C-
30	5.00	m	H-29 <i>,</i> H-31	77.5	C-1, C-28, C-29, 31-CH₃, C-32, C-33
31	2.02	m	H-30 <i>,</i> 31-CH₃	34.3	31-CH ₃
31-CH₃	0.87	d, 6.7	H-31	15.2	C-30, C-32, C-33
32	1.52	m		39.4	C-34
33	1.25	m	H-34 <i>,</i> H-38	33.8*	-
34	0.83	m	H-33,	30.6	C-32
0.	1.76	m	H-35	0010	0.02
35	1.18	m	H-36,	35.3	C-33. C-36
	1.95	m	H-34		,
36	3.51	m	H-35, H-37	71.0	C-35, C-37
37	1.26	m	H-36,	35.6	C-33, C-35, C-36
	T.97	 m	п-38 ц 27		
38	1.71	m	H-37, H-33	32.4	C-34

Supplementary Figure 27 | ¹H NMR spectrum (CDCl₃, 500 MHz) of compound 6.

Supplementary Figure 28 | ¹³C NMR spectrum (CDCl₃, 500 MHz) of compound 6.

Supplementary Figure 29 | H,H-COSY NMR spectrum (CDCl₃, 500 MHz) of compound 6.

Supplementary Figure 30 | HSQC NMR spectrum (CDCl₃, 500 MHz) of compound 6.

Supplementary Figure 31 | HMBC NMR spectrum (CDCl₃, 500 MHz) of compound 6.

COMPOUND 7

The seed and production fermentations were performed as detailed in the methods section.

Strain: ISOM-4141

Feed: 4-trans-hydroxycyclohexanecarboxylic acid (hCHCA) (final concentration 2 mM)

Volume: 1 x 15 L fermentation

The fermentation broth at the end of the fermentation was separated by centrifugation and the cell paste processed as described for **2**.

The crude extract was dissolved in ethyl acetate and silica gel added (7.5 g). The solvent was removed under reduced pressure and the adsorbed silica was applied to a flash silica column (200 mm x 55 mm diameter). The column was eluted with 4:5 ethyl acetate / hexanes (1.8 L), 1:1 ethyl acetate / hexanes (3.0 L), 3:2 ethyl acetate / hexanes (1.5 L) and then 2:1 ethyl acetate / hexanes (0.9 L). Fractions containing **7** were combined and the solvent removed under reduced pressure (44 mg). This material was further purified by reverse-phase HPLC over a Phenomenex Xterra C18 column, 10 µm, 19 mm diameter x 250 mm. Mobile phase: A = water, B = acetonitrile; t = 0 min, B = 50%; t = 22 min, B = 80%). Flow rate at 20 mL min⁻¹. Fractions containing **7** were combined and the solvent amorphous solid (32.6 mg).

LC-MS: RT = 14.8 min, *m*/*z* = 820.7 ([M+Na]⁺) and 796.4 ([M-H]⁻).

HRMS (*m*/*z*):, calcd for C₄₆H₇₁NO₁₀Na, 820.4976; found, 820.4964; Δ = -1.5 ppm.

Supplementary Figure 32 | Chemical structure and 2D NMR correlations for compound 7.

Supplementary Table 8 | NMR data for compound 7 in CDCl₃ at 500 MHz for ¹H and 125 MHz for ¹³C.

		¹ H-NMR			HMPC correlations
Position	δppm	Multiplicity, J in Hz	COSY	δ ppm	¹ H to ¹³ C
1	-	-	-	169.2	-
2	5.20	dd, 5.5, 5.2	H-3	51.3	C-1, C-3, C-4, C-6, C-8
2	1.68	m	н_2 н_/	26.7	C-5
5	2.27	m	11-2, 11-4	20.7	C-3
4	1.39	m	н-3 н-5	21.0	-
	1.75	m	11 3, 11 3 21.0		
5	1.46	m	H-5. H-6 25.1		C-3
	1.65 m		11 3, 11 0	23.1	
6	3.27	m	H-5	44.4	C-2. C-4. C-5. C-8
Ū	3.47	m			
7	-	-	-	-	-
8	-	-	-	166.6	-
9	-	-	-	195.1	-
10	-	-	-	98.8	-
11	2.08	m	11-CH ₃ ,	34.4	C-10, 11-CH ₃ , C-12
			H-12		
11-CH₃	0.88	-	H-11	16.0	C-10, C-11, C-12
12	1.58	m	H-11	26.9	C-14
13	1.30	m	H-14	30.7	C-14
14	3.95	m	H-13,	67.5	C-12, C-15, C-16
45	4 47		H-15	20 F	
12	1.47	m	H-14,	39.5	L-13, L-14, L-16, L-17

	1.89	m	H-16		
16	3.58	dd, 8.7, 5.8	H-15	83.8	C-14, C-15, 16-OCH ₃ , 17- CH ₃ , C-18
16-OCH₃	3.09	S	-	55.9	C-16
17	-	-	-	136.8	-
17-CH₃	1.63	S	-	10.1	C-16, C-17, C-18
18	5.88	dd, 19.9, 11.0	H-19	128.5	C-16, 17-CH ₃ , C-19, C-20
19	6.32	dd, 14.7 11.0	H-18, H-20	126.9	C-20, C-21,
20	6.16	dd, 14.7, 10.6	H-19, H-21	133.0	C-18, C-19, C-22
21	6.05	dd, 15.0, 10.6	H-20, H-22	129.7	C-19, C-23
22	5.43	dd, 15.0, 8.8	H-21, H- 23	140.3	C-20, C-23, 23-CH ₃ , C-24
23	2.16	m	23-CH₃, H-24	37.8	-
23-CH₃	1.00	d, 9.6	H-23	21.3	C-22, C-23, C-24
24	1.33	m	H-23,	10 5	C-22 C-23 C-25 25-CH
27	1.81	m	H-25	40.5	C 22, C 23, C 23, 25 CH ₃
25	2.52	m	H-24, 25-CH₃	46.2	C-23, C-24, 25-CH₃, C-27
25-CH₃	1.02	d, 7.0		17.9	C-24, C-25, C-26
26	-	-	-	215.2	-
27	2.43 2.57	dd, 16.8, 1.9 dd 16.8, 9.8	H-28	47.3	C-25, C-28, C-29
28	2.37 4 35	m	H-27	71 8	29-CH ₂ C-27 C-30 C-29
29	-	-	-	139.6	-
29-CH2	1.56	S	H-30	13.1	C-28, C-29, C-30
30	5 36	dd 7169	29-CH₃,	118.8	C-28, 29-CH₃, C-31, C-32,
50	5.50	uu, , .1, 0.3	H-31	110.0	C-29
31	2.18 2.28	m m	H-30, H-32	28.9	C-29, C-30, C-32, C-33
32	4.73	m	H-31, H-33	79.3	C-1, C-30, C-33, 33-CH₃, C-34,
33	1.79	m	H-32, 33-CH ₃ , H-34	32.6	-
33-CH₃	0.88	dd 6.5, 4.4	H-33	16.4	C-32, C-33, C-34
	1.07	dd, 9.6, 9.2	H-33,		
34	1.22	m	H-35 <i>,</i> H-40	38.1	33-CH₃, C-36, C-40
35	1.21	m	H-34, H-36	33.9	-
36	0.81	m	H-35,	30.3	-

	1.75	m	H-37		
27	1.19	m	H-36,	25.4	
57	1.96	m	H-38	55.4	-
38	3.53	-	H-37,	71.0	
		m	H-39	/1.0	-
20	1.26	m	H-38,	аг с	
39	1.93	m	H-40	35.0	(-35, (-37, (-38
40	0.98	m	H-34,	226	
	1.68	m	H-39	52.0	-

Supplementary Figure 33 | ¹H NMR spectrum (CDCl₃, 500 MHz) of compound 7.

Supplementary Figure 34 | ¹³C NMR spectrum (CDCl₃, 500 MHz) of compound 7.

Supplementary Figure 35 | H,H-COSY NMR spectrum (CDCl₃, 500 MHz) of compound 7.

Supplementary Figure 36 | HSQC NMR spectrum (CDCl₃, 500 MHz) of compound 7.

Supplementary Figure 37 | HMBC NMR spectrum (CDCl₃, 500 MHz) of compound 7.

COMPOUND 8

The seed and production fermentations were performed as detailed in the methods section.

Strain: ISOM-4309

Feed: 4-trans-hydroxycyclohexanecarboxylic acid (hCHCA) (final concentration 2 mM)

Volume: 1 x 15 L fermentation

The fermentation broth at the end of the fermentation was separated by centrifugation and the cell paste processed as described for **2**.

The crude extract (5.3 g) was dissolved in methanol and silica added. The solvent was removed under reduced pressure and the adsorbed silica added to a flash silica column (20 cm x 5 cm diameter) and eluted with the 50:50 ethyl acetate/hexanes and then 60:40, 70:30, 80:20, 90:10 mixtures followed by 100% ethyl acetate. Fractions containing **8** were combined and dried under reduced pressure to yield an enriched extract (50 mg). This was loaded onto a second silica column (10 cm x 2 cm) and eluted with 45% ethyl acetate / 55% hexanes. Fractions containing **8** were combined and the solvent removed (32 mg). This was further purified by reverse-phase HPLC over a Phenomenex Xterra C18 column, 10 μ m, 19 mm diameter x 250 mm. Mobile phase: A = water, B = acetonitrile; t = 0 min, B = 50%, t = 30 min, B = 100%). Flow rate at 20 mL min⁻¹. Fractions containing **8** were combined, concentrated, and subjected to a second round of reverse-phase HPLC over a Phenomenex Gemini NX C18 column, 10 μ m, 21 mm diameter x 150 mm. Mobile phase: A = water, B = acetonitrile; gradient t = 0 min, B = 50%, t = 30 min, B = 100%). Flow rate 20 mL min⁻¹. Fractions containing **8** were combined and the solvent removed under reduced pressure to yield **8** as a white amorphous solid (14.5 mg).

LC-MS analysis: RT = 15.2 min, m/z = 920.6 ([M+Na]⁺) and 896.5 ([M-H]⁻).

HRMS (*m*/*z*):, calcd for $C_{51}H_{79}NO_{12}Na$, 920.5500; found, 920.5479; Δ = -2.3 ppm.

Supplementary Figure 38 | Chemical structure and 2D NMR correlations for compound 8.

Supplementary Table 9 | NMR data for compound 8 in CDCl₃ at 500 MHz for ¹H and 125 MHz for ¹³C.

		¹ H-NMR			HMBC correlations	
Position	δ ppm	Multiplicity, J in Hz	COSY	δ ppm	¹ H to ¹³ C	
1	-	-	-	170.5, 170.3	-	
2	5.20	d, 5.5	H-3	56.7, 52.1	C-1, C-3, C-4, C-6, C-8	
3	1.72	m	H-2,	27.0.26.9	C-1 C-3 C-4 C-5 C-8	
5	2.28	m	H-4	27.0, 20.5	0 1, 0 3, 0 4, 0 3, 0 8	
4	1.44	m	H-3,	21 1 20 9	_	
-	1.77	m	H-5	21.1, 20.5		
5	1.52	m	H-4	25.2.24.4	-	
5	1.67	m		23.2, 21.1		
6	3.35	m	-	44.7.40.0	C-1, C-8	
Ũ	3.53	m		1117, 1010	0 2,00	
7	-	-	-	-	-	
8	-	-	-	167.7, 166.5	-	
9	-	-	-	198.8, 195.6	-	
10	-	-	-	99.5, 99.0	-	
11	2.12	m	-	34.1, 34.1	-	
11_CH	0.76	d 7.0	H-11,	16 2 15 0	C-10 C-11 C-12	
11-013	0.70	u, 7.0	H-12	10.2, 13.9	C-10, C-11, C-12	
12	1.73	m	H-11,	28 0 27 4	_	
12	1.52	m	H-13	20.0, 27.4		
13	1.73	m	H-12,	30 7 30 7	_	
15	1.23	m	H-14	50.7, 50.7		
14	4.06	m	H-13,	677677	_	
1 1 7	4.06		H-15	07.7, 07.7		

10	1.66	m	H-14,	20.0.29.5	
12	1.72	m	H-16	39.0, 38.5	-
16	3.66	m	H-15	84.7, 84.3	C-14, C-15, 16-OCH ₃ , 17-
16-OCH	3 09	c	_	55 5 55 4	C-16
10-0013	-	-	_	136 6 135 6	
17-CH	1 62	s	_	100.99	-
18	6.00	d 11 0	H-19	130 3 129 4	C-16 17-CH ₂ C-19 C-20
10	0.00	u, 11.0	H-18	130.3, 123.4	C 10, 17 CH3, C 15, C 20
19	6.42	dd, 15.0, 11.0	H-20	126.9, 126.8	C-17, C-20, C-21
20	6.28	dd, 15.0, 11.0	H-19, H-21	134.1, 133.8	C-18, C-19, C-22
21	6.16	dd, 15.0, 11.0	H-20, H-22	130.7, 130.6	C-19, C-20, C-22, C-23
22	5.38	dd, 15.0, 8.5	H-21, H-23	140.8, 140.6	C-20, C-23, 23-CH ₃ , C-24
	2.23	m	H-22,		
23	2.23	m	23-CH₃,	35.6, 35.6	C-21, 23-CH₃
			H-24		
23-CH₃	0.99	d, 7.0	H-23	21.9, 21.6	C-22, C-23, C-24
24	1.80	m	H-23,	39.3, 39.3	-
	1.49	m	H-25	,	
25	2.45	m	H-24 <i>,</i> 25-CH₃	45.2, 45.0	-
25-CH₃	0.99	d, 7.0	H-25	15.4, 15.2	C-24, C-25, C-26
26	-	-	-	214.4, 214.0	-
27	2.63	m	H_28	171 172	C-26
27	2.46	m	11-20	47.4, 47.5	C-20
28	4.28	m	H-27	73 7 73 4	C-26, C-27, C-29, 29-CH3,
20	4.33	m	11 27	75.7,75.4	C-30
29	-	-		140.2, 139.3	-
29-CH₃	1.66	S	H-30	11.8, 11.6	C-28, C-29, C-30
30	5.27	dd, 7.5, 7.5	29-CH₃, H-31	125.3, 124.8	C-28, 29-CH ₃ , C-31, 31- CH ₃ , C-32
21	3.40	dd, 17.0, 6.0	H-30,		
51	3.49	m	31-CH₃	40.8, 40.0	C-29, C-30, 31-CH ₃ , C-32
21 CH.	1.02	m	LI 21	162 165	
51-CH3	1.13	m	п-эт	10.2, 10.5	C-50, C-51, C-52
32	-	-	-	212.0, 211.3	-
33	2.50	m	_	475 477	C-31 C-32 C-34 C-35
55	2.58	m		47.3, 47.7	C 31, C 32, C 34, C 33
34	2.94	dd, 17.5, 3.5	-	65.6, 65.1	-
35	1.68	m	H-36	37.7.37.5	-
	1.73	m		27.77, 37.3	
36	5.01	m	H-35,	77.4, 76.9	C-1, C-34, 37-CH ₃ , C-38

			H-37			
37	1.81	m	37-CH₃, H-38	31.7, 31.1	C-35, C-39	
37-CH₃	0.87	d, 6.7	H-37	16.1, 16.2	C-36, C-37, C-38	
38	1.12 1.18	m m	H-37	38.7, 38.5	C-39	
			H-38,			
39	1.16	-	H-40,	36.4, 35.3	-	
			H-44			
10	0.82	_	H-39,	277 277	_	
40	1.70	-	H-41	52.7, 52.7	-	
41	1.14	m	H-40,	35 8 35 8	-	
	1.87	m	H-42	55.0, 55.0		
42	3 38	m	H-41,	70 5 70 4	-	
12	5.50		H-43	, 0.3, , 0.1		
43	1.19	m	H-42,	35 8 35 8	-	
	1.83	m	H-44	55.0, 55.0		
11	0.89	m	H-39,	327327		
	1.66	m	H-43	52.7, 52.7		

Supplementary Figure 39 | ¹H NMR spectrum (CDCl₃, 500 MHz) of compound 8.

Supplementary Figure 40 | ¹³C NMR spectrum (CDCl₃, 500 MHz) of compound 8.

Supplementary Figure 41 | H,H-COSY NMR spectrum (CDCl₃, 500 MHz) of compound 8.

Supplementary Figure 42 | HSQC NMR spectrum (CDCl₃, 500 MHz) of compound 8.

Supplementary Figure 43 | HMBC NMR spectrum (CDCl₃, 500 MHz) of compound 8.

Supplementary Note 2 | Rapalog diversity generated through mutasynthesis. Five new rapalog producing strains were few exogenously with up to 32 different starter unit analogues, leading to a plethora of new structures as determined by HPLC-UV and LCMS/MS analysis,. No molecules were produced in the unfed controls and each new compound displayed the characteristic rapamycin UV chromophore. Markush structures are given based on the combination of: strain used, carboxylic acid fed, LCMS/MS fragmentation analysis and biosynthetic considerations.

Supplementary Figure 44 | Markush structure for rapalogs produced by feeding exogenous starter acids to strain ISOM-4141.

Strain	Feed	Feed structure	R ₁	R ₂	R ₃	х	major product peaks RT (mins)	molecular weight
ISOM- 4141	cyclohexanecarboxylic acid	CO ₂ H	'ZZ'	Н	Me	0	10.1	797.5
ISOM- 4141		CO ₂ H	Str. OH	ОН	Me	0	8.7	813.5
	cyclohex-1- enecarboxylic acid		۲. OH	н	Me	0	9.6	797.5
			۲ ۲	н	Me	0	10.6	781.5
ISOM- 4141	cyclohex-3- enecarboxylic acid	CO ₂ H	۲. OH	ОН	Me	0	8.2	813.5
			کر:``OH	Н	Me	0	9.8	795.5
			کر: `OH	ОН	Me	0	10.1	813.5

Supplementary Table 10 | LCMS data for rapalogs produced by feeding exogenous starter acids to strain ISOM-4141.

Strain	Feed	Feed structure	R ₁	R ₂	R ₃	х	major product peaks RT (mins)	molecular weight
		MeOCO ₂ H	Ъ. OH	н	Me	0	10.6	797.5
ISOM- 4141 r	3- methoxycyclohexanec arboxylic acid			Н	Me	0	10.8	813.5
				Н	Me	Н, Н	11.3	797.5
ISOM- 4141	Ethyl 5- hydroxycyclohex-3- enecarboxylic acid	HOCO2Et	Strive OH	ОН	Me	0	8.3	811.6
			ν. ····································	н	Me	0	10.2	795.5
ISOM- 4141	(1S*,3S*,4R*)-4- fluoro-3- hydroxycyclohexaneca rboxylic acid	HO CO ₂ H	کریں۔ CH	ОН	Me	0	9.7	831.6
ISOM- 4141	4- methylcyclohexanecar boxylic acid	CO ₂ H	OH OH	ОН	Me	0	8.9	843.5
			[→] [→] [→] [→] OH	Н	Me	0	9.5	827.5
			'Synthesis Contraction of the second	Н	Me	0	10.1	811.5

Strain	Feed	Feed structure	R ₁	R ₂	R ₃	x	major product peaks RT (mins)	molecular weight
ISOM- 4141	cyclopentanecarboxylic acid	CO ₂ H	ъОН	Н	Me	0	10.1	783.5
ISOM- cycloheptanecarboxylic 4141 acid	CO ₂ H	OH OH	Н	Me	0	10.1	827.2	
		ч, ОН	ОН	Me	0	10.4	827.2	
			-ОН	Н	Me	0	10.9	811.6
ISOM- 4141 (1R*,2S*,4S*)- bicyclo[2.2.1]heptar carboxylic acid			OH OH OH	Н	Me	0	9.3	825.6
	(1R*,2S*,4S*)- bicyclo[2.2.1]heptane-2- carboxylic acid	CO ₂ H	OH	ОН	Me	0	9.8	825.6
			OH	Н	Me	0	10.5	809.5

Strain	Feed	Feed structure	R ₁	R ₂	R ₃	x	major product peaks RT (mins)	molecular weight
ISOM- 4141		HO CO ₂ H	С	ОН	Н	0	8.9	839.5
	(1S*,2R*,5R*,6S*)-2- hydroxybicyclo[3.2.1] octane-6-carboxylic acid		С	ОН	Me	Н, Н	9.9	839.5
			С	ОМе	Н	н, н	10.4	839.5
			С	н	Н	0	11.1	823.5
ISOM-	tetrahydro-2H- pyran-4-carboxylic	CO ₂ H		Н	н	0	9.9	769.5
4141	acid		July Contraction of the second	Н	Me	Ο	11.7	783.4
ISOM- 4141	tetrahydro-2H- thiopyran-4- carboxylic acid	S CO ₂ H	S S	ОН	Me	Ο	10.4	815.5
ISOM- 4141	3-hydroxybenzoic acid	HO CO ₂ H	ч. ОН	Н	Me	0	10.4	791.5

Strain	Feed	Feed structure	R ₁	R ₂	R ₃	х	major product peaks RT (mins)	molecular weight
ISOM- 4141	4-methylthiophene- 2-carboxylic acid	S CO ₂ H	CH SOH	Н	Me	0	9.9	811.5
ISOM- 4141			·Szivi··································	ОН	Me	Н, Н	10.4	827.5
	4-hydroxy-3,3- dimethylcyclohexane carboxylic acid		Str. OH	Н	Me	Н, Н	10.9	811.5
			Str. OH	Н	Me	0	11.6	825.5
	4- methylenecyclohexa necarboxylic acid	CO ₂ H	Service OH	ОН	Me	0	10.5	827.5
ISOM- 4141			Zzivi OH	ОН	Me	0	11.2	825.5
			Zzivi OH	Н	Me	0	11.7	809.5
ISOM- 4141	4-methylcyclohex-3- enecarboxylic acid	CO ₂ H	Str. OH	ОН	Me	0	10.4	825.7
			Zzivi OH	н	Me	0	10.7	809.5

Strain	Feed	Feed structure	R ₁	R ₂	R ₃	х	major product peaks RT (mins)	molecular weight
			Szy, Szy OH	Н	Me	0	8.9	827.6
ISOM- 4141	(1S*,4S*)-4-	CO ₂ H	ъъъъ́, ··· CH OH	ОН	Me	0	9.5	843.5
	arboxylic acid		ъъъъъъъъъъъъъъъъъъъъъъъъъъъъъъъъъъъъъ	ОН	Me	0	10.1	827.6
			John OH	Н	Me	0	10.7	811.5
ISOM- 4141	(1R*,4R*)-4- hydroxycyclohexanec arboxylic acid		OH Szyw. OH	Н	Me		10.1	797.9
ISOM- 4141	methyl 3,3-difluoro- 4-	OH O	کریں ج	н	Me	Ο	9.9	833.9
	hydroxycyclohexanec arboxylate	Т́́́⊧ ОМе́́⊧	کریں F F	Н	Me	Н, Н	10.9	819.9

Supplementary Figure 45 | Markush structure for rapalogs produced by feeding exogenous starter acids to strain ISOM-4144.

Supplementary Table 11 | LCMS data for rapalogs produced by feeding exogenous starter acids to strain ISOM-4144.

Strain	Feed	Feed structure	R1	R ₂	R ₃	х	major product peaks RT (mins)	molecular weight
ISOM- 4144	cyclohexanecarboxylic acid	CO ₂ H	OH	н	Me	0	9.6	757.5
ISOM- 4144 er	cyclohex-1-	CO ₂ H	کر:	н	Me	Н, Н	7.8	743.6
	enecarboxylic acid		Х, OH	н	Me	0	9.6	757.5
ISOM-	cyclohex-3-	CO ₂ H	, OH	ОН	Me	0	5.4	773.6
4144	enecarboxylic acid		ν. OH	Н	Me	0	7.5	757.6
ISOM- 4144	3- methoxycyclohexanec arboxylic acid	Meo CO2	کی ^ن . OH	Н	Me	Н, Н	7.9	743.5

Strain	Feed	Feed structure	R ₁	R ₂	R ₃	х	major product peaks RT (mins)	molecular weight
ISOM-	Ethyl 5-	HOCO2Et	Str. OH	Н	Me	Н, Н	7.5	741.6
4144	enecarboxylic acid		Str. OH	Н	Me	0	9.5	755.6
ISOM- 4144	(1S*,3S*,4R*)-4- fluoro-3- hydroxycyclohexanec arboxylic acid	HO CO ₂ H	کری کری OH	Н	Me	0	9.2	775.6
			Strain Contraction Strain Str	ОН	Me	Ο	6.6	787.8
ISOM-	4- methylcyclohexanec	CO ₂ H	Strain OH	Н	Me	Н, Н	8.9	757.8
4144	arboxylic acid	\sim	Str. OH	н	Me	0	10.2	771.6
			Service OH	Н	Me	0	11.3	771.6
ISOM- 4144	cycloheptanecarboxy lic acid	CO ₂ H	22 ОН	Н	Ме	0	10.6	771.7

Strain	Feed	Feed structure	R ₁	R ₂	R ₃	x	major product peaks RT (mins)	molecular weight
ISOM- 4144	(1R*,2S*,4S*)-		OH	Н	Me	0	7.8	769.6
	e-2-carboxylic acid	CO₂H	OH	Н	Me	н, н	9.9	755.8
(1S*,2R*,5R*, ISOM- hydroxybicycl 4144]octane-6-car acid			СН	Н	Me	н, н	8.5	769.8
	(1S*,2R*,5R*,6S*)-2- hydroxybicyclo[3.2.1]octane-6-carboxylic acid	HO CO ₂ H	С	н	Me	0	9.1	783.5
			СН	н	Me	0	10.6	783.5
ISOM- 4144	4-methylthiophene- 2-carboxylic acid	S CO ₂ H	S OH	Н	Me	Ο	9.3	771.6
ISOM-	4-hydroxy-3,3-		Str. OH	Н	н	н, н	9.7	757.4
4144	carboxylic acid	но	Str. OH	Н	Me	н, н	10.5	771.7
ISOM- 4144	4- methylenecyclohexa necarboxylic acid	CO ₂ H	July OH	Н	Me	0	11.6	769.6

Strain	Feed	structure	R ₁	R ₂	R ₃	х	major product peaks RT (mins)	molecular weight
ISOM- 4144	4-methylcyclohex-3- enecarboxylic acid	CO ₂ H	July OH	Н	Me	0	10.6	769.6
ISOM- 4144	(1S*,4S*)-4-	CO ₂ H	Juin Contraction of the second	ОН	Me	0	6.6	787.6
	arboxylic acid		Jui OH	н	Me	0	10.3	771.7
ISOM-	(15*,35*,45*)-3,4-		OH	Н	Me	Н, Н	7.2	759.7
4144	ecarboxylic acid	HO	ر کرین OH	Н	Me	0	7.5	773.7
			July Contraction of the second	Н	Me	0	6.7	787.6
ISOM- 4144	3- methylcyclohexanec arboxylic acid		-OH	ОН	Me	0	8.5	787.6
			'Zy''.'.OH	Н	Me	0	10.6	771.7
ISOM- 4144	5-methylthiophene- 2-carboxylic acid	S CO ₂ H	S OH	Н	Me	0	9.3	771.6

Strain	Feed	Feed structure	R ₁	R ₂	R ₃	х	major product peaks RT (mins)	molecular weight
ISOM- 4144	(1 <i>R*,4R*</i>)-4- hydroxycyclohexane carboxylic acid	HO HO	Striv.	Н	Me	0	7.3	757.6
ISOM- 4144	(1S*,3S*)-3-	0.	ν _ζ ν. OH	Н	Me	0	10.9	757.9
	hydroxycyclohexane carboxylic acid	он	Service OH	Н	Me	0	11.2	757.9
ISOM- 4144	methyl 3,3-difluoro- 4- hydroxycyclohexane carboxylate	O O O Me F	کرین F F	Н	Me	0	9.2	793.9

Supplementary Figure 46 | Markush structure for rapalogs produced by feeding exogenous starter acids to strain ISOM-4185.

Supplementary Table 12 | LCMS data for rapalogs produced by feeding exogenous starter acids to strain ISOM-4185.

Strain	Feed	Feed structure	R1	R ₂	R₃	х	major product peaks RT (mins)	molecular weight
ISOM- 4185	cyclohexanecarboxylic	CO ₂ H	CH CH		Me	Н, Н	8.4	699.5
	aciu		CH CH		Me	0	10.8	713.6
ISOM- 4185	cyclohex-1- enecarboxylic acid	CO ₂ H	ντζή. OH		Me	Н, Н	8.8	699.6
ISOM- 4185	cyclohex-3- enecarboxylic acid	CO ₂ H	·		Me	0	8.3	697.6
ISOM- 4185	3-	MeO CO2H	کرین ^۰ . OH		н	Ο	8.8	699.7
	arboxylic acid		νζζ ^{ΥΥ} ··································		Me	Н, Н	9.4	699.7

Strain	Feed	Feed structure	R ₁	R ₂	R ₃	x	major product peaks RT (mins)	molecular weight
ISOM- 4185	Ethyl 5- hydroxycyclohex-3- enecarboxylic acid	HOCO2Et	کر:''OH		Me	н, н	8.3	697.6
ISOM- 4185	(1S*,3S*,4R*)-4-fluoro- 3-		کری ۲۰۰۰ OH		Me	н, н	6.9	717.6
	hydroxycyclohexanecar boxylic acid	F	کری کری OH		Me	0	7.8 73 7.5 72 9.2 72	731.6
			COH Contraction Contraction Co		Me	Н, Н	7.5	729.6
ISOM- 4185	4- methylcyclohexanecarb oxylic acid	CO ₂ H	Salver OH		Н	0	9.2	713.7
			Str. OH		Me	н, н	10.1	713.7
ISOM- 4185	cycloheptanecarboxylic acid	CO ₂ H	OH		Me	н, н	8.6	713.6
ISOM- 4185	(1R*,2S*,4S*)- bicyclo[2.2.1]heptane-2- carboxylic acid	CO ₂ H	OH		Me	Н, Н	8.9	711.6

Strain	Feed	Feed structure	R ₁	R ₂	R ₃	x	major product peaks RT (mins)	molecular weight
ISOM- 4185			он Сон Сон		Me	Н, Н	7	741.6
	(1S*,2R*,5R*,6S*)-2- hydroxybicyclo[3.2.1]octane-6-carboxylic acid	HO CO ₂ H	С		н	0	9.6	725.5
	acid		С		Me	н, н	10.2	725.5
ISOM-	3-hydroxybenzoic	HO CO ₂ H	Ъ. OH		Н	Ο	8.6	693.6
4185	acid		OH		Me	н, н	11.8	693.6
ISOM- 4185	4-hydroxy-3,3- dimethylcyclohexane carboxylic acid	HO CO ₂ H	J.		Н	Н, Н	9.4	713.6
ISOM- 4185	4- methylenecyclohexa necarboxylic acid	CO ₂ H	Jui OH		Me	н, н	9.8	711.7

Strain	Feed	Feed structure	R ₁	R ₂	R ₃	x	major product peaks RT (mins)	molecular weight
ISOM- 4185	4-methylcyclohex-3-	CO ₂ H	Zzivi OH		Me	Н, Н	9.5	711.5
	enecarboxylic acid		Zyvi OH		Me	0	12.2	725.5
ISOM- 4185	(1S*,4S*)-4- methylcyclohexanec arboxylic acid	CO ₂ H	Zy''' OH		н	0	9.2	713.6
ISOM- 4185	(1S*,3S*,4S*)-3,4- dihydroxycyclohexan ecarboxylic acid	HO CO ₂ H	CH CH		Me	Ο	7.1	729.7
ISOM-	3-	CO ₂ H	Contraction of the second seco		Me	Н, Н	9.5	713.7
4185	methylcyclohexanec arboxylic acid		CH CH CH		Me	О	9.9	743.6
ISOM- 4185	5-methylthiophene- 2-carboxylic acid	S CO ₂ H	Ч. S OH		Me	Н, Н	8.1	713.5
ISOM-	(1R*,4R*)-4-	, CO ₂ H	CH CH		Me	н, н	8.4	699.8
4185	carboxylic acid	но	Service OH		Me	0	10.8	713.7

Strain	Feed	Feed structure	R ₁	R ₂	R ₃	х	major product peaks RT (mins)	molecular weight
ISOM- 4185	(1S*,3S*)-3- hydroxycyclohexanecar boxylic acid	о ОН	Zz, OH		Me	н, н	9.4	699.9
ISOM-	(1S*,3R*,4S*)-methyl 3- fluoro-4-	O OH	کرین F		н	0	6.9	717.9
4185	hydroxycyclohexanecar boxylate	OMe "F	Service F		Me	Н, Н	7.9	717.9
ISOM- 4185 h	(1S*,3R*)-3-	0.	ν. OH		Me	Н, Н	8.8	699.9
	boxylic acid	он	کرین ^۰ . OH		н	0	9.3	699.9
			OH کر F		н	0	7.33	735.8
ISOM- 4185	methyl 3,3-difluoro-4- hydroxycyclohexanecar boxylate		OH کر F		Me	0	8.2	749.9
			CH کر F		Me	Н, Н	10.3	735.8

Supplementary Figure 46 | Markush structure for rapalogs produced by feeding exogenous starter acids to strain ISOM-4185.

Supplementary Table 12 | LCMS data for rapalogs produced by feeding exogenous starter acids to strain ISOM-4185.

Strain	Feed	Feed structure	R1	R ₂	R₃	х	major product peaks RT (mins)	molecular weight
ISOM- 4178	cyclohexanecarboxylic acid	CO ₂ H	CH CH		Н	Н, Н	4.6	629.7
ISOM- 4178	cyclohex-1- enecarboxylic acid	CO ₂ H	کر: OH		н	Н, Н	5.3	629.7
ISOM- 4178	cyclohex-3- enecarboxylic acid	CO ₂ H	کر:`` OH		Me	0	8.4	655.8
ISOM- 4178	(1S*,3S*,4R*)-4-fluoro- 3- hydroxycyclohexanecar boxylic acid	HO F	لر F کر OH		н	0	4.1	647.7
ISOM- 4178	4- methylcyclohexanecarb oxylic acid	CO ₂ H	₩ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹		н	Н, Н	5.2	643.5
ISOM- 4178	cycloheptanecarboxylic acid		Ч		Н	Н, Н	5.5	643.8

Strain	Feed	Feed structure	R ₁	R ₂	R ₃	x	major product peaks RT (mins)	molecular weight
ISOM- 4178	(1S*,2R*,5R*,6S*)-2- hydroxybicyclo[3.2.1]oc tane-6-carboxylic acid	HO CO ₂ H	ССССОН		Н	н, н	6.02	655.5
ISOM- 4178	3-hydroxybenzoic acid	HO CO ₂ H	Ч		Н	н, н	5.1	623.5
ISOM- 4178	(1S*,3S*,4S*)-3,4- dihydroxycyclohexaneca rboxylic acid	HO CO ₂ H	۲. OH		Me	0	8.4	673.6
ISOM- 4178	(1S*,3R*,4S*)-methyl 3- fluoro-4- hydroxycyclohexanecar boxylate	OMe F	F CH		Н	Н, Н	7.7	647.7

Supplementary Figure 47 | Markush structure for rapalogs produced by feeding exogenous starter acids to strain ISOM-4178.

Supplementary Table 13 | LCMS data for rapalogs produced by feeding exogenous starter acids to strain ISOM-4178.

Strain	Feed	Feed structure	R ₁	R ₂	R ₃	x	major product peaks RT (mins)	molecular weight
ISOM- 4180	cyclohexanecarboxylic acid	CO ₂ H	Szy.		Me	Н, Н	5.1	561.5
			OH		Me	0	6.7	575.5
ISOM- 4180	cyclohex-1- enecarboxylic acid	CO ₂ H	ν. · OH		Me	Н, Н	5.07	561.5
			, OH		Me	0	6.7	575.5
ISOM- 4180	cyclohex-3- enecarboxylic acid	CO ₂ H	ν. OH		Me	Н, Н	5.1	561.4
			. ОН		Me	0	6.1	573.7
ISOM- 4180	(1S*,3S*,4S*)-3,4- dihydroxycyclohexane carboxylic acid	HO CO ₂ H	۲. OH		Me	0	3.9	591.9

Strain	Feed	Feed structure	R ₁	R ₂	R ₃	х	major product peaks RT (mins)	molecular weight
ISOM- 4180	3- methoxycyclohexanec arboxylic acid	Meo CO ₂ H	ντζή. OH		Me	Н, Н	5	561.4
			ντζή····································		Me	0	6.7	575.5
ISOM- 4180	cycloheptanecarboxyli c acid		СОН		Me	0	7.8	590
ISOM- 4180	(1S*,2R*,5R*,6S*)-2- hydroxybicyclo[3.2.1]o ctane-6-carboxylic acid	HO CO ₂ H	ССССОН		Me	0	7.8	601.8
ISOM- 4180	3-hydroxybenzoic acid	HO CO ₂ H	ч. OH		Me	0	6.4	569.9
ISOM- 4180	4-hydroxy-3,3- dimethylcyclohexanec arboxylic acid		J. CH		Me	0	8.9	603.8
ISOM- 4180	(1S*,4S*)-4- methylcyclohexanecar boxylic acid	CO ₂ H	Service OH		Me	0	7.6	589.9
ISOM- 4180	(1S*,3S*)-3- hydroxycyclohexaneca rboxylic acid	O OH OH	کر:		Me	0	7.8	575.6

Strain	Feed	Feed structure	R ₁	R ₂	R ₃	x	major product peaks RT (mins)	molecular weight
ISOM- 4180	3- methylcyclohexanec arboxylic acid	CO ₂ H	'Zy'' OH		Me	Н, Н	6.3	575.6
			'Zyj'' OH		Me	0	8.02	589.9
ISOM- 4180	(1R*,4R*)-4- hydroxycyclohexanec arboxylic acid	HO HO	Strive OH		Me	Н, Н	5.1	561.7
			Strive OH		Me	0	6.7	575.8
ISOM- 4180	(1S*,3R*)-3- hydroxycyclohexanec arboxylic acid	о он он	کریں۔ OH		Me	0	6.7	575.8
ISOM- 4180	(1S*,3R*,4S*)- methyl 3-fluoro-4- hydroxycyclohexanec arboxylate	O O Me	کر CH		Me	0	5.9	593.7
ISOM- 4180	(1S*,3R*,4S*)-3- ethyl-4- hydroxycyclohexanec arboxylic acid	OH OH	Contraction of the second seco		Me	0	8.6	603.7
ISOM- 4180	methyl 3,3-difluoro- 4- hydroxycyclohexanec arboxylate	O O O Me F	OH کر F		Me	0	6.1	611.8

Supplementary References

1. Kendrew, S. G. *et al.* Recombinant strains for the enhanced production of bioengineered rapalogs. *Metab. Eng.* **15**, 167-173 (2013).