# **Supplementary information**

# High throughput discovery of influenza virus neutralizing antibodies from phage-displayed synthetic antibody libraries

Ing-Chien Chen<sup>1,+</sup>, Yi-Kai Chiu<sup>1,+</sup>, Chung-Ming Yu<sup>1</sup>, Cheng-Chung Lee<sup>2</sup>, Chao-Ping Tung<sup>1</sup>, Yueh-Liang Tsou<sup>1</sup>, Yi-Jen Huang<sup>1</sup>, Chia-Lung Lin<sup>1</sup>, Hong-Sen Chen<sup>1</sup>, Andrew H.-J. Wang<sup>2</sup>, An-Suei Yang<sup>1,\*</sup>

<sup>1</sup>Genomics Research Center, Academia Sinica, Taipei, Taiwan 115.

<sup>2</sup> Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 115.

\*Correspondence and requests for materials should be addressed to A.S.Y. (email: <u>yangas@gate.sinica.edu.tw</u>). Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec.2, Nankang Dist., Taipei, Taiwan 115. Phone: +886-2-2787-1232.

# **Inventory of Supplemental Information**

# **Supplementary Methods**

Generic Human (GH) synthetic antibody library construction

# **Supplementary Figure**

Supplementary Figure S1. Sequence preferences determined with NGS for the VH designed positions at different panning stage against HER2 for the selected scFv libraries.

Supplementary Figure S2. Results of pseudo virus-based microneutralization assay for the IgGs that did not shown neutralization activity.

Supplementary Figure S3. SDS-PAGE analysis of purified IgGs.

# **Supplementary Tables**

Supplementary Table S1. Primers for diversifying CDR-L1, L2, L3, H1, H2 in GH2-5~24 antibody libraries.

Supplementary Table S2. Summary of CDR-H3 designs for GH2-5~24 phagedisplayed synthetic scFv libraries.

Supplementary Table S3. CDR sequences of anti-influenza IgGs derived from synthetic antibody libraries

Supplementary Table S4. Protein expression, epitope grouping and assessment of the neutralizing and binding potencies of anti-influenza IgGs derived from synthetic antibody libraries

Supplementary Table S5. Crystallography parameters for the S40-HA complex structure

# **References**

#### **Supplementary Methods**

#### Generic Human (GH) synthetic antibody library construction

*scFv template preparation:* The framework sequence of GH2-5~24 scFv libraries is based on the human IGKV1-NL1\*01/IGHV3-23\*04 germline sequence and cloned into pCANTAB5E (GE Healthcare) phagemid via *Sfi*I and *Not*I restriction sites. TAA stop codons were introduced in CDRs to ensure that only the phagemids carrying the mutagenic oligonucleotides would produce pIII fusion scFv on phage surface.

*Primer design and heavy chain/light chain variable domain library construction:* A phage displayed library for each of the GH2-5~24 libraries' light and heavy chain was constructed based on the oligonucleotide-directed mutagenesis procedure <sup>1</sup>. Positions were mutagenized using synthesized oligonucleotides with the following degenerate codons to produce equal molar ratio of designed amino acids: Trp/Gly ([T/G]GG), Phe/Ser/Tyr (T[T/C/A][C/T], Gly/Asp/Ser/Gln ([G/A][G/A][C/T]), Gly/Ala/Ser/Thr/Arg/Pro ([G/A/C][G/C][T/C]), Ala/Thr/Pro/Ser ([A/G/T/C]C[A/G/T/C]), Phe/Tyr/Asp/Val/Asn/Ile/His/Leu ([A/G/T/C][A/T][T/C]), and Leu/Ile/Val/Phe/Met ([A/G/T/C]T[A/G/T/C]) (Supplementary Table S1 and S2). For the light chain repertoires, CDR-L1, -L2 and -L3 were diversified with the mutagenic oligonucleotides shown in Supplementary Table S1 on the basis of the template V3a-LC TAA<sup>2</sup>. For the heavy chain repertoires, CDR-H1, -H2 and -H3 were diversified with the mutagenic oligonucleotides shown in Supplementary Table S1 (CDR-H1 and -H2) and Supplementary Table S2 (CDR-H3) on the basis of the template V3c-HC TAA<sup>2</sup>. In brief, mutagenic oligonucleotides for each CDR were mixed and phosphorylated by T4 polynucleotide kinase (New England BioLabs) in 70 mM Tris-HCl (pH 7.6), 10 mM MgCl<sub>2</sub>, 1 mM ATP and 5 mM dithiothreitol (DTT) at 37°C for 1 h. The phosphorylated oligonucleotides were then annealed to uracilated singlestranded DNA template, at a molar ratio of 3:1 (oligonucleotide:ssDNA), by heating the mixture at 90 °C for 2 min, followed by a temperature decrease of 1°C/min to 20 °C in a thermal cycler. Subsequently, the template-primer annealing mixture was incubated in 0.32 mM ATP, 0.8 mM dNTPs, 5 mM DTT, 600 units of T4 DNA ligase, and 75 units of T7 DNA polymerase (New England BioLabs) to prime *in vitro* DNA synthesis. After overnight incubation at 20 °C, the synthesized dsDNA was desalted and concentrated by a centrifugal filter (Amicon<sup>®</sup> Ultra 0.5 mL 30K device), then electroporated into *Escherichia coli* ER2738 at 3000 V with an electroporator. Typically, 1 µg of dU-ssDNA produced about  $10^7$ - $10^8$  recombinant phage variants, and 75–90% of the phage variants carried mutagenic oligonucleotides at the three CDR regions simultaneously.

*Protein A/L selection of functional scFv variants:* The rescued phage libraries of light- and heavy-chain were precipitated with 20% PEG/NaCl and resuspended in phosphate-buffered saline (PBS) for the following protein A/L selection process. First, NUNC 96-well Maxisorb immunoplates were coated overnight at 4 °C with Protein A (for selection of heavy chain-diversified libraries) or Protein L (for selection of light chain-diversified libraries) (1 µg/100 µL PBS per well) and blocked with 5% skim milk in PBST for 1h. After blocking, 100 µL of resuspended phage library (10<sup>13</sup> cfu/mL) was added to each well for 1 h under gentle shaking. The plate was washed 12 times with 200 µL PBST [0.05% (v/v) Tween 20] and 2 times with 200 µL PBS. The bound phages were eluted with 100 µL of 0.1 M HCl/glycine (pH 2.2) per well, followed by neutralization with 8 µL of 2 M Tris-base buffer (pH 9.1). The eluted phages were mixed with 1 mL of *E. coli* strand ER2738 (*A*<sub>600 nm</sub> = 0.6) for 15 min at 37 °C. Infected *E. coli* was titered, and amplified with 50 mL of 2 X YT containing 100 µg/mL

ampicillin at 37 °C overnight. After centrifugation, the bacterial pellet was resuspended and its phagemid DNA was extracted.

Combination of functional scFv variants into the generic human (GH) antibody *libraries:* Each of the GH2-5~24 libraries was assembled in scFv format as previously described with some modification<sup>3</sup>. In the first PCR, two variable domains VL and VH were amplified separately from light- and heavy-chain library after selection for binding to Protein A/L by using the primers *V*<sub>L</sub>for (5'-GGGCCCAGCCGGCCATGGCCGATATTCAAATGACCCAGAGCCCGAGC-3') (5'with *V*<sub>L</sub>rev GGAAGATCTAGAGGAACCACCGCGTTTGATTTCCACTTTGGTGCCTTGACC -3') V<sub>H</sub>for (5'and GGTGGTTCCTCTAGATCTTCCTCCTCTGGTGGCGGTGGCTCGGGCGGTGGT GGGGAAGTGCAGCTGGTGGAATCGGG -3') with (5'-V<sub>H</sub>rev CCTGCCTGCGGCCGCTGACGCCGAGC -3'), respectively (linker sequence is underlined). PCR reactions were performed in a volume of 50 µL using KOD Hot Start polymerase (Novagen), 100 ng DNA template and 0.3 µM of each primer for 25 cycles (30 sec 95°C, 30 sec 65°C, 1 min 72°C) followed a 10 min final synthesis step. The PCR products were digested with EcoRI and then purified by agarose gel electrophoresis. In the second PCR, two variable domains were assembled using the overlapping primers (SfiI and NotI restriction sites are underlined): Overlapfor (5'-GAGGAGGAGGAGGAGGAGGGGGGGGCCCAGCCGGCCATGGCCGATATTC -3') with *Overlaprev* (5'-GAGGAGGAGGAGGAGGAGGAGCCTGCCTGCCGCCGCTGACGCC -3'). 100 ng of the purified VL and VH PCR products of the first PCR were used in a a volume of 50 µL using MyTaq Hot Start polymerase (Bioline) and 0.3 µM of each primer for 30

cycles (30 sec 95°C, 30 sec 65°C, 1 min 30 sec 72°C) followed by a 10 min final synthesis step. The assembled VL-VH fragments were doubly digested with *Sfi*I and *Not*I (New England BioLabs) and cloned into pCANTAB5E phagemid vector. The resulting ligation product was electroporated into *Escherichia coli* ER2738 at 3000 V with an electroporator.







Supplementary Figure S1. Sequence preferences determined with NGS for the VH designed positions at different panning stage against HER2 for the selected scFv libraries. (A)~(C) Sequence preference of CDR-H1, CDR-H2, and CDR-H3 respectively. The scFv variants from initial designed library and 3 rounds panning against HER2/ECD are collected for high-throughput sequencing using Illumina MiSeq platform. The number of sequences derived for each group is shown on the top of sequence logo in (A). The calculation of sequence logo is described in previous publication <sup>4</sup>. The background frequency at each position is based on the design (See Supplementary Table S1<sup>2</sup> for CDR-H1 and CDR-H2 design details and Supplementary Table S2 for CDR-H3 design details). CDR position numbering follows IMGT numbering.



Supplementary Figure S2. Results of pseudo virus-based microneutralization assay for the IgGs that did not shown neutralization activity. (A)~(D) The IgGs were reformatted from the selected anti-HA trimer scFvs as shown in Fig. 3. The y-axis shows the relative viral activity plotted against the IgG concentration (x-axis). The experimental details are described in Methods. The CDR sequences of these IgGs are shown in Supplementary Table S3, and the numerical values of the IC<sub>50</sub>'s are listed as >10<sup>5</sup> ng/mL in Fig. 8 and Supplementary Table S4. The error bars associated with the data points are calculated with at least three independent repeats of the microneutralization assay.



**Supplementary Figure S3. SDS-PAGE analysis of purified IgGs.** Two microgram of purified IgGs were analyzed by the SDS-PAGE under reducing condition. P04 is glycosylated in the CDR-L1, and P28, S07 and S45 are glycosylated in the CDR-H1.

# Supplementary Table S1. Primers for diversifying CDR-L1, L2, L3, H1, H2 in GH2-5~24 antibody libraries <sup>2</sup>.

| CDNS       GACCATTACCTGCCGTGCGAGCCAGGATG       53       T31       A3       2       1       1         GACCATTACCTGCCGTGCAGAGCAGGATG       53       0       T31       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Image: School of the construction o                                                                                                                                                                                                                                                                    |
| Initial of the second of th                                                                                                                                                                                                                                                                    |
| GACCATTACCTGCCGTGCGAGCAGGATG       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| L101 TT THY THY THY<br>GTCGCATGGTATCAGCAGAAACCA<br>GACCATTACCTGCCGTGCGAGCCAGGATG<br>L102 TT THY THY KGG<br>GACCATTACCTGCCGTGCGAGCCAGGATG<br>L103 TT THY KGG KGG<br>GTCGCATGGTATCAGCAGAAACCA<br>GACCATTACCTGCCGTGCGAGCCAGGATG<br>L104 TT THY KGG THY<br>GTCGCATGGTATCAGCAGAAACCA<br>GACCATTACCTGCCGTGCGAGCCAGGATG<br>L105 TT KGG THY<br>GTCGCATGGTATCAGCAGAAACCA<br>GACCATTACCTGCCGTGCGAGCCAGGATG<br>L106 TT KGG THY KGG<br>GTCGCATGGTATCAGCAGAAACCA<br>GACCATTACCTGCCGTGCGAGCCAGGATG<br>L106 TT KGG THY KGG<br>GTCGCATGGTATCAGCAGAAACCA<br>GACCATTACCTGCCGTGCGAGCCAGGATG<br>L106 TT KGG THY KGG<br>GTCGCATGGTATCAGCAGAAACCA<br>GACCATTACCTGCCGTGCGAGCCAGGATG<br>L107 TT KGG KGG<br>GTCGCATGGTATCAGCAGAAACCA<br>GACCATTACCTGCCGTGCGAGCCAGGATG<br>L107 TT KGG KGG<br>GTCGCATGGTATCAGCAGAAACCA<br>GACCATTACCTGCCGTGCGAGCCAGGATG<br>CTCGCATGGTATCAGCAGAAACCA<br>GACCATTACCTGCCGTGCGAGCCAGGATG<br>CTCGCATGGTATCAGCAGAAACCA<br>GACCATTACCTGCCGTGCGAGCCAGGATG<br>CTCGCATGGTATCAGCAGAAACCA<br>GACCATTACCTGCCGTGCGAGCCAGGATG<br>CTCGCATGGTATCAGCAGAAACCA<br>GACCATTACCTGCCGTGCGAGCCAGGATG<br>CTCGCATGGTATCAGCAGAAACCA<br>CACCATTACCTGCCGTGCGAGCCAGGATG<br>CTCGCATGGTATCAGCAGAAACCA<br>CACCATTACCTGCCGTGCGAGCCAGGATG<br>CTCGCATGGTATCAGCAGAAACCA<br>CACCATTACCTGCCGTGCGAGCCAGGATG<br>CTCGCATGGTATCAGCAGAAACCA<br>CACCATTACCTGCCGTGCGAGCCAGGATG<br>CTCGCATGGTATCAGCAGAAACCA<br>CACCATTACCTGCCGTGCGAGCCAGGATG<br>CTCGCATGGTATCAGCAGCAGAAACCA<br>CACCATTACCTGCCGTGCGAGCCAGGATG<br>CTCGCATGGTATCAGCAGAAACCA<br>CACCATTACCTGCCGTGCGAGCCAGGATG<br>CTCGCATGGTATCAGCAGAAACCA<br>CACCATTACCTGCCGTGCGAGCCAGGATG<br>CTCGCATGGTATCAGCAGCAGCAGGATG<br>CTCGCATGGTATCAGCAGCAGGAAACCA<br>CACCATTACCTGCCGTGCGAGCCAGGATG<br>CTCGCATGGTATCAGCAGCAGGAAACCA<br>CACCATTACCTGCCGTGCGAGCCAGGATG<br>CTCGCATGGTATCAGCAGCAGAAACCA<br>CACCATTACCTGCCGTGCGAGCCAGGATG<br>CTCGCATGGTATCAGCAGCAGGAAACCA<br>CACCATTACCTGCCGTGCGAGCCAGGATG<br>CTCGCATGGTATCAGCAGCAGGAAACCA<br>CACCATTACCTGCCGTGCGAGCCAGGATG<br>CTCGCATGGTATCAGCAGGAAACCA<br>CACCATTACCTGCCGTGCGAGCCAGGATG<br>CTCGCATGGTATCAGCAGGAAACCA<br>CACCATTACCTGCCGTGCGAGCCAGGATG<br>CTCGCATGGTATCAGCAGGAAACCA<br>CACCATTACCTGCCGTGCGAGCCAGGATG<br>CTCGCATGCATGCTGCGAGCCAGGATG<br>CTCGCATGCATGCATGCAGCAGGAAACCA<br>CACCATTACCTGCCGTGCGAGCCAGGATG<br>CTCGCATGCATGCATGCAGCAGCAGGATG<br>CTCGCATGCATGCATGCAGCAGCAGGATG<br>CTCGCATGCATGCATGCAGCAGGATG<br>CTCG |
| LINI       INIT INITIAL       Image: Sector                                                                                                                                                                                                                                                                                       |
| GACCATTACCTGCCGTGCGAGCCAGGATG       Image: Construction of the con                                                                                                                                                                                                                                                                             |
| L102 TT THY THY KGG<br>GTCGCATGGTATCAGCAGAAACCA<br>GACCATTACCTGCCGTGCGAGCCAGGATG<br>L103 TT THY KGG KGG<br>GTCGCATGGTATCAGCAGAAACCA<br>GACCATTACCTGCCGTGCGAGCCAGGATG<br>L104 TT THY KGG THY<br>GTCGCATGGTATCAGCAGAAACCA<br>GACCATTACCTGCCGTGCGAGCCAGGATG<br>L105 TT KGG THY THY<br>GTCGCATGGTATCAGCAGAAACCA<br>GACCATTACCTGCCGTGCGAGCCAGGATG<br>L106 TT KGG THY KGG<br>GTCGCATGGTATCAGCAGAAACCA<br>GACCATTACCTGCCGTGCGAGCCAGGATG<br>L106 TT KGG THY KGG<br>GTCGCATGGTATCAGCAGAAACCA<br>GACCATTACCTGCCGTGCGAGCCAGGATG<br>L107 TT KGG KGG KGG<br>GACCATTACCTGCCGTGCGAGCCAGGATG<br>L107 TT KGG KGG KGG<br>GACCATTACCTGCCGTGCGAGCCAGGATG<br>CGACCATTACCTGCCGTGCGAGCCAGGATG<br>CGACCATTACCTGCCGTGCGAGCCAGGATG<br>CGACCATTACCTGCCGTGCGAGCCAGGATG<br>CGACCATTACCTGCCGTGCGAGCCAGGATG<br>CGACCATTACCTGCCGTGCGAGCCAGGATG<br>CGACCATTACCTGCCGTGCGAGCCAGGATG<br>CGACCATTACCTGCCGTGCGAGCCAGGATG<br>CGACCATTACCTGCCGTGCGAGCCAGGATG<br>CGACCATTACCTGCCGTGCGAGCCAGGATG<br>CGACCATTACCTGCCGTGCGAGCCAGGATG<br>CGACCATTACCTGCCGTGCGAGCCAGGATG<br>CGACCATTACCTGCCGTGCGAGCCAGGATG<br>CGCCATGGTATCAGCAGAAACCA<br>CCACTTACCTGCCGTGCGAGCCAGGATG<br>CGCCATGGTATCAGCAGCAGAAACCA<br>CCACTTACCTGCCGTGCGAGCCAGGATG<br>CGCCATGGTATCAGCAGCAGCAGGATG<br>CGCCATGGTATCAGCAGCAGCAGGATG<br>CGCCATGGTATCAGCAGCAGCAGGATG<br>CGCCATGGTATCAGCAGCAGCAGGATG<br>CCCATTACCTGCCGTGCGAGCCAGGATG<br>CCCATTACCTGCCGTGCGAGCCAGGATG<br>CCCATGGTATCAGCAGCAGCAGGATG<br>CCCATGGTATCAGCAGCAGCAGGATG<br>CCCATGGTATCAGCAGCAGCAGGATG<br>CCCATGGTATCAGCAGCAGCAGGATG<br>CCCATGGTATCCTGCCGTGCGAGCCAGGATG<br>CCCATGGTATCAGCAGCAGCAGCAGGATG<br>CCCATGGTATCAGCAGCAGCAGCAGGATG<br>CCCATGGTATCCTGCCGTGCGAGCCAGGATG<br>CCCATGGTATCCTGCCGTGCGAGCCAGGATG<br>CCCATGCCATG                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GTCGCATGGTATCAGCAGAAACCA       GTCGCATGGTATCAGCAGAAACCA       GTCGCATGGTATCAGCAGCAGGATG         L103       TT THY KGG KGG       b       a       a         GACCATTACCTGCCGTGCGAGCCAGGATG       gaccattacctagcatacca       a       a       a         GACCATTACCTGCCGTGCGAGCCAGGATG       gaccattacctagcatacca       a       b       a       b         GACCATTACCTGCCGTGCGAGCCAGGATG       gaccattacctagcataccagatacca       a       b       a       b         GTCGCATGGTATCAGCAGAAACCA       gaccattacctagcataccagataccagatag       gaccattacctagcataccagatag       gaccattacctagcataccagatag       gaccattacctagcataccagatag       gaccattacctagcataccagatag         GACCATTACCTGCCGTGCGAGCCAGGATG       gaccattacctagcataccagatag       gaccattacctagcataccagatag       gaccattacctagcataccagatag       gaccattacctagcataccagatag         GACCATTACCTGCCGTGCGAGCCAGGATG       gaccattacctagcataccagatag       gaccattacctagcataccagatag       gaccattacctagcataccagatag       gaccattacctagcataccagatag         L106       TT KGG THY KGG       ga       b       gaccattacctagcatagatag       gaccattacctagcatagatag       gaccattacctagcatagatagatagatagatagatagat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GACCATTACCTGCCGTGCGAGCCAGGATG       b       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       b       a       a       b       a       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       a       b       a       a       b       a       a       b       a       a       b       a       a       b       a       a       a       b       a       a       a       b       a       a       b       a       a       a       b       a <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| L103       TT THY KGG KGG       b       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       a       b       a       a       b       a       a       b       a       a       a       b       a       a       a       a       a       a       a       a       a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Initial       Initia       Initial       Initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GACCATTACCTGCCGTGCGAGCCAGGATG       b       a       b       a       b         L104       TT THY KGG THY       b       a       b       a       b         GACCATTACCTGCCGTGCGAGCCAGGATG       GACCATTACCTGCCGTGCGAGCCAGGATG       a       b       b       a       b         L105       TT KGG THY THY       a       b       b       b       a       b       b         GACCATTACCTGCCGTGCGAGCCAGGATG       GTCGCATGGTATCAGCAGAAACCA       a       b       b       b       a       b       b         L105       TT KGG THY THY       a       b       b       a       b       b       a       b       b       a       b       b       a       b       a       b       a       a       b       b       a       b       a       b       a       b       a       b       a       a       b       a       a       a       b       a       a       a       b       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| L104TT THY KGG THY<br>GTCGCATGGTATCAGCAGAAACCAbababGACCATTACCTGCCGTGCGAGCCAGGATG<br>L105GACCATTACCTGCCGTGCGAGCCAGGATG<br>GTCGCATGGTATCAGCAGAAACCAabbaL105TT KGG THY THY<br>GTCGCATGGTATCAGCAGAAACCAabbabGACCATTACCTGCCGTGCGAGCCAGGATG<br>GTCGCATGGTATCAGCAGAAACCAababaL106TT KGG THY KGG<br>GTCGCATGGTATCAGCAGAAACCAabaaaGACCATTACCTGCCGTGCGAGCCAGGATG<br>GTCGCATGGTATCAGCAGGAGCCAGGATG<br>GTCGCATGGTATCAGCAGAAACCAaaaaGACCATTACCTGCCGTGCGAGCCAGGATG<br>GTCGCATGGTATCAGCAGAAACCAaaaaaGACCATTACCTGCCGTGCGAGCCAGGATG<br>GTCGCATGGTATCAGCAGAAACCAaaaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GTCGCATGGTATCAGCAGAAACCA       GACCATTACCTGCCGTGCGAGCCAGGATG         L105       TT KGG THY THY       a       b       b       a       b       b         GACCATTACCTGCCGTGCGAGCCAGGATG       GTCGCATGGTATCAGCAGAAACCA       a       b       b       b       a       b       b       a       b       b       a       b       b       a       b       b       a       b       b       a       b       a       b       a       b       a       b       b       a       b       a       b       a       b       a       b       a       a       b       a       a       b       a       b       a       a       b       a       a       a       b       a       a       a       b       a       a       b       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GACCATTACCTGCCGTGCGAGCCAGGATG       a       b       b       b       b       b       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| L105       TT KGG THY THY<br>GTCGCATGGTATCAGCAGAAACCA       a       b       b       b       a       b       b       a       b       b       a       b       b       a       b       b       a       b       b       a       b       b       a       b       b       a       b       b       a       b       b       a       b       b       a       b       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       a       b       a       b       a       b       a       b       a       a       b       a       a       b       a       a       b       a       a       a       b       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| GTCGCATGGTATCAGCAGAAACCA       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| GACCATTACCTGCCGTGCGAGCCAGGATG       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       a       b       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| L106       TT KGG THY KGG       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       b       a       a       b       a       b       a       b       a       b       a       a       b       a       a       b       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| GTCGCATGGTATCAGCAGAAACCA       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| GACCATTACCTGCCGTGCGAGCCAGGATG       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| L107     TT KGG KGG KGG     a     a     a       GTCGCATGGTATCAGCAGAAACCA     GACCATTACCTGCCGTGCGAGCCAGGATG     I     I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| GTCGCATGGTATCAGCAGAAACCA     GACCATTACCTGCCGTGCGAGCCAGGATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| GACCATTACCTGCCGTGCGAGCCAGGATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| L108   TT KGG KGG THY   a   a   b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| GTCGCATGGTATCAGCAGAAACCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GACCATTACCTGCCGTGCGAGCCAGGATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| L109 TT RRY RRY RRY d d d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| GTCGCATGGTATCAGCAGAAACCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GGCAAAGCGCCGAAACTTCTGATA TAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <u>TCT GCG TCC TTC</u><br>9 0 1 S52 F53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| GGCAAAGCGCCGAAACTTCTGATA THY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| L201 THY NCN VSY THY b b p e b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CTGTATAGCGGCGTGCCGTCGCGTTTTTCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| GGCAAAGCGCCGAAACTTCTGATA THY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| L202 THY NCN VSY KGG b b p e a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| GGCAAAGCGCCGAAACTTCTGATA THY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| L203 KGG NCN VSY KGG b a p e a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| L2U4 KGG NCN VSY KGG b b p e b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|  | 1.004 | GATTTTGCGACCTACTACTGTCAACAG THY     |     |     |     |     | _   |     |    |    |    |    |
|--|-------|-------------------------------------|-----|-----|-----|-----|-----|-----|----|----|----|----|
|  | L301  |                                     | b   | b   | d   | b   | Р   | z   |    |    |    |    |
|  |       | ACCIICGGICAAGGCACCAAAGIGG           |     |     |     |     |     |     |    |    |    |    |
|  |       | GATTTTGCGACCTACTACTGTCAACAG THY     |     |     |     |     | _   |     |    |    |    |    |
|  | L302  | THY RRY KGG CCG NTN                 | b   | b   | d   | а   | Р   | z   |    |    |    |    |
|  |       | ACCIICGGICAAGGCACCAAAGIGG           |     |     |     |     |     |     |    |    |    |    |
|  |       | GATTTTGCGACCTACTACTGTCAACAG THY     |     |     |     |     | _   |     |    |    |    |    |
|  | L303  | KGG RRY KGG CCG NTN                 | b   | а   | d   | а   | Р   | z   |    |    |    |    |
|  |       | ACCTTCGGTCAAGGCACCAAAGTGG           |     |     |     |     |     |     |    |    |    |    |
|  |       | GATTTTGCGACCTACTACTGTCAACAG THY     |     |     |     |     |     |     |    |    |    |    |
|  | L304  | KGG RRY THY CCG NTN                 | b   | а   | d   | b   | Р   | z   |    |    |    |    |
|  |       | ACCTTCGGTCAAGGCACCAAAGTGG           |     |     |     |     |     |     |    |    |    |    |
|  |       | GATTTTGCGACCTACTACTGTCAACAG KGG     |     |     |     |     |     |     |    |    |    |    |
|  | L305  | THY RRY THY CCG NTN                 | а   | b   | d   | b   | Р   | z   |    |    |    |    |
|  |       | ACCTTCGGTCAAGGCACCAAAGTGG           |     |     |     |     |     |     |    |    |    |    |
|  |       | GATTTTGCGACCTACTACTGTCAACAG KGG     |     |     |     |     |     |     |    |    |    |    |
|  | L306  | THY RRY KGG CCG NTN                 | а   | b   | d   | а   | Р   | z   |    |    |    |    |
|  |       | ACCTTCGGTCAAGGCACCAAAGTGG           |     |     |     |     |     |     |    |    |    |    |
|  |       | GATTTTGCGACCTACTACTGTCAACAG KGG     |     |     |     |     |     |     |    |    |    |    |
|  | L307  | KGG RRY KGG CCG NTN                 | а   | а   | d   | а   | Р   | z   |    |    |    |    |
|  |       | ACCTTCGGTCAAGGCACCAAAGTGG           |     |     |     |     |     |     |    |    |    |    |
|  |       | GATTTTGCGACCTACTACTGTCAACAG KGG     |     |     |     |     |     |     |    |    |    |    |
|  | L308  | KGG RRY THY CCG NTN                 | а   | а   | d   | b   | Р   | z   |    |    |    |    |
|  |       | ACCTTCGGTCAAGGCACCAAAGTGG           |     |     |     |     |     |     |    |    |    |    |
|  |       | GAGCTGTGCGGCGAGCGGGTTCACCATT        | S3  |     | Y3  | W3  |     |     |    |    |    |    |
|  |       | AGC GAT TAC TGG                     | 0   | D31 | 2   | 3   |     |     |    |    |    |    |
|  |       | ATTCATTGGGTGCGTCAAGCTCCCG           |     |     |     |     |     |     |    |    |    |    |
|  |       | GAGCTGTGCGGCGAGCGGGTTCACCATT        |     |     |     |     |     |     |    |    |    |    |
|  | H101  | RRY RRY THY THY                     | d   | d   | b   | b   |     |     |    |    |    |    |
|  |       | ATTCATTGGGTGCGTCAAGCTCCCG           |     |     |     |     |     |     |    |    |    |    |
|  | H102  | GAGCTGTGCGGCGAGCGGGTTCACCATT        |     |     |     |     |     |     |    |    |    |    |
|  |       | RRY RRY THY KGG                     | d   | d   | b   | а   |     |     |    |    |    |    |
|  |       | ATTCATTGGGTGCGTCAAGCTCCCG           |     |     |     |     |     |     |    |    |    |    |
|  |       | GAGCTGTGCGGCGAGCGGGTTCACCATT        |     |     |     |     |     |     |    |    |    |    |
|  | H103  | RRY RRY KGG THY                     | d   | d   | а   | b   |     |     |    |    |    |    |
|  |       | ATTCATTGGGTGCGTCAAGCTCCCG           |     |     |     |     |     |     |    |    |    |    |
|  |       | GAGCTGTGCGGCGAGCGGGTTCACCATT        |     |     |     |     |     |     |    |    |    |    |
|  | H104  |                                     | d   | d   | а   | а   |     |     |    |    |    |    |
|  |       | ATTCATTGGGTGCGTCAAGCTCCCG           |     |     |     |     |     |     |    |    | _  |    |
|  |       | GCAAGGGGCTGGAGTGGGTCGCG <u>GGC</u>  |     |     |     |     |     |     |    |    |    |    |
|  |       | ATT ACG CCC GCT GGC GGT TAC ACA TAT | G50 | 151 | T52 | P52 | A53 | G54 | G5 | Y5 | T5 | Y5 |
|  |       |                                     |     |     |     | A   |     |     | 5  | 6  | 7  | 8  |
|  |       | A                                   |     |     |     |     |     |     |    |    |    |    |
|  |       |                                     |     |     |     |     |     |     |    |    |    |    |
|  | H201  |                                     | а   | I   | а   | Р   | b   | а   | G  | b  | Т  | b  |
|  |       |                                     |     |     |     |     |     |     |    |    |    |    |
|  |       |                                     |     |     |     |     |     |     |    |    |    |    |
|  |       |                                     |     |     |     |     |     |     |    |    |    |    |
|  | H202  |                                     | b   | I   | а   | Р   | b   | а   | G  | b  | Т  | b  |
|  |       |                                     |     |     |     |     |     |     |    |    |    |    |
|  |       | A                                   | l I | 1   |     |     | 1   | l   |    |    |    |    |

<sup>a</sup> Codons for mutagenized residues at CDR regions are underlined; DNA degeneracies are represented by IUB code (N = A/T/G/C, H = A/C/T, V = A/C/G, K = G/T, R = A/G, S = G/C, W = A/T, and Y = C/T).

<sup>b</sup> Residues are in Kabat number. Symbols used: a, W/G; b, F/S/Y; d, G/D/S/N; e, G/A/S/T/R/P; p, A/T/P/S; q, F/Y/D/V/N/I/H/L; z, L/I/V/F/M.

Supplementary Table S2. Summary of CDR-H3 designs for GH2-5~24 phagedisplayed synthetic scFv libraries.

| Library name | Sequence designs |
|--------------|------------------|
| GH2-5        | АжауҮ            |
|              | AwbyY            |
| GH2-6        | AwabyY           |
|              | AwbayY           |
| GH2-7        | AwabbyY          |
|              | AwbabyY          |
|              | AwbbayY          |
| GH2-8        | AwababyY         |
|              | AwabbayY         |
|              | AwbabayY         |
| GH2-9        | ARabbabDY        |
|              | ARabbbaDY        |
|              | ARbabbaDY        |
| GH2-10       | ARabbabbDY       |
|              | ARabbbabDY       |
|              | ARabbbbaDY       |
|              | ARbabbabDY       |
|              | ARbabbbaDY       |
|              | ARbbabbaDY       |
| GH2-11       | ARabbabbbDY      |
|              | ARabbbabbDY      |
|              | ARabbbbabDY      |
|              | ARabbbbbaDY      |
|              | ARbabbabbDY      |
|              | ARbabbbabDY      |
|              | ARbabbbbaDY      |
|              | ARbbabbabDY      |
|              | ARbbabbbaDY      |
|              | ARbbbabbaDY      |
| GH2-12       | ARFqsttsqMDY     |
| GH2-13       | ARFqqqqqaaMDY    |
|              | ARFqqqqaqaMDY    |
|              | ARFqqqaqqaMDY    |

|        | ARFqqaqqqaMDY                |
|--------|------------------------------|
|        | ARFqaqqqqaMDY                |
|        | ARFaqqqqqaMDY                |
|        | ARFqqqqaaqMDY                |
|        | ARFqqqaqaqMDY                |
|        | ARFqqaqqaqMDY                |
|        | ARFqaqqqaqMDY                |
|        | ARF <mark>aqqqqaq</mark> MDY |
|        | ARFqqqaaqqMDY                |
|        | ARFqqaqaqqMDY                |
|        | ARFqaqqaqqMDY                |
|        | ARFaqqqaqqMDY                |
|        | ARFqqaaqqqMDY                |
|        | ARFqaqaqqqMDY                |
|        | ARFaqqaqqqMDY                |
|        | ARFqaaqqqqMDY                |
|        | ARFaqaqqqqMDY                |
|        | ARFaaqqqqqMDY                |
| GH2-14 | ARFqststtsqMDY               |
|        | ARFqsttstsqMDY               |
| GH2-16 | ARFqsysttsysqMDY             |
|        | ARFqsytsttysqMDY             |
|        | ARFqsyttstysqMDY             |
| GH2-18 | ARFqsysttttsysqMDY           |
|        | ARFqsyysttsyysqMDY           |
|        | ARFqsyytsttyysqMDY           |
|        | ARFqsyyttstyysqMDY           |
| GH2-20 | ARFqsysyttttysysqMDY         |
|        | ARFqsyysttttsyysqMDY         |
|        | ARFqsyyysttsyyysqMDY         |
|        | ARFqsyyytsttyyysqMDY         |
|        | ARFqsyyyttstyyysqMDY         |
| GH2-22 | ARFqsysyyttttyysysqMDY       |
|        | ARFqsyysyttttysyysqMDY       |
|        | ARFqsyyysttttsyyysqMDY       |
|        | ARFqsyyyysttsyyyysqMDY       |
|        | ARFqsyyyytsttyyyysqMDY       |
|        |                              |

|        | ARFqsyyyyttstyyyysqMDY   |
|--------|--------------------------|
| GH2-24 | ARFqsysyyyttttyyysysqMDY |
|        | ARFqsyysyyttttyysyysqMDY |
|        | ARFqsyyysyttttysyyysqMDY |
|        | ARFqsyyyysttttsyyyysqMDY |
|        | ARFqsyyyyysttsyyyyysqMDY |
|        | ARFqsyyyyytsttyyyyysqMDY |
|        | ARFqsyyyyyttstyyyyysqMDY |
|        | Encoded amino acid types |
| a      | WG                       |
| b      | FSY                      |
| q      | FYDVNIHL                 |
| W      | RGW                      |
| у      | NDYH                     |
| S      | GS                       |
| t      | YS                       |

# Supplementary Table S3. CDR sequences of anti-influenza IgGs derived from synthetic antibody libraries

| Antibody | CDR L1          | CDR L2   | CDR L3     | CDR H1                 | CDR H2     | CDR H3                         | Library |
|----------|-----------------|----------|------------|------------------------|------------|--------------------------------|---------|
| F10      | TGNSNNVGNQGAA   | YRNNDRPS | STWDSSLSAV | TSSEVTFSSFAIS          | GISPMFGTPN | ARSPSYICSGGTCVFDH              |         |
| FI6V3    | KSSQSVTFNYKNYLA | YWASTRES | QQHYRTPP   | AASGFTFSTYAMH          | VISYDANYKY | AKDSQLRSLLYFEWLSQGYFDY         |         |
| C05      | QASQDIRKFLN     | YDASNLQR | QQYDGLPF   | VGSGSSFGESTLSY<br>YAVS | IINAGGGDID | AKHMSMQQVVSAGWERADLV<br>GDAFDV |         |
| CR8020   | RASQSVSMNYLA    | YGASRRAT | QQYGTSPR   | KASGYTFTSFGVS          | WISAYNGDTY | AREPPLFYSSWSLDN                |         |
| Do1      | RASQDVWGGVA     | FFSRYLYS | QQYYNGPL   | AASGFTIDNGSIH          | WIGPYGGFTS | ARFYGSGSSSFMDY                 | GH2-14  |
| P01      | RASQDVGWYVA     | YGSTFLYS | QQYYDSPL   | AASGFTIGDGSIH          | WIGPYGGSTF | ARFFWGINMDY                    | GH2-11  |
| P03      | RASQDVWGYVA     | SWSGSLYS | QQYYNWPV   | AASGFTIDSFGIH          | FIGPFGGSTF | ARFDSNSYSYHGIMDY               | GH2-16  |
| P04      | RASQDVNGSVA     | SSSASLYS | QQGWSYPL   | AASGFTINSWSIH          | SIWPFGGFTF | ARGYSSFGDY                     | GH2-10  |
| P05      | RASQDVGSSVA     | SSSPYLYS | QQYYDYPL   | AASGFTINDYGIH          | GIWPYWGFTF | ARFHGSSYYSVMDY                 | GH2-14  |
| P06      | RASQDVGGGVA     | SGTSGLYS | QQSSNFPI   | AASGFTIGGYWIH          | GIGPYWGSTY | ARFNNWFWNVMDY                  | GH2-13  |
| P10      | RASQDVNSNVA     | YWAGYLYS | QQSSDFPI   | AASGFTIDNSWIH          | SIWPFGGYTY | ARFGNVFDWYMDY                  | GH2-13  |
| P11      | RASQDVDNNVA     | SYASWLYS | QQSSGGPV   | AASGFTISSFWIH          | GIGPFWGSTF | ARFNDWFYHGMDY                  | GH2-13  |
| P12      | RASQDVGYWVA     | YWTSGLYS | QQYSNWPI   | AASGFTIGDYYIH          | GIGPSWGSTS | ARFYNNHWGFMDY                  | GH2-13  |
| P14      | RASQDVGFYVA     | SWSSYLYS | QQYYNYPL   | AASGFTIGDFGIH          | GIWPFGGYTY | ARFVNWDGDYMDY                  | GH2-13  |
| P25      | RASQDVWGYVA     | SGSRSLYS | QQYYNYPI   | AASGFTISNGGIH          | GIGPYGGYTY | ARFYGYSGIMDY                   | GH2-12  |
| P26      | RASQDVWSGVA     | YGTTYLYS | QQYYSFLL   | AASGFTIDNSWIH          | SIGPYWGYTS | ARFVFFLPYAMDY                  | GH2-13  |
| P28      | RASQDVWYSVA     | YFATGLYS | QQYFNWPV   | AASGFTINNSGIH          | SIWPSGGYTY | ARFNSSYSSGLMDY                 | GH2-14  |
| P37      | RASQDVGNDVA     | SSARGLYS | QQYYNFPI   | AASGFTFNSWGIH          | GIWPYWGFTY | ARFHGSSYYSVMDY                 | GH2-14  |
| P38      | RASQDVWGYVA     | SWPGGLYS | QQYSSFPL   | AASGFTINDGGIH          | FIGPYGGSTF | AGFIGDYSSYHGVMDY               | GH2-16  |
| P44      | RASQDVNNNVA     | YWSSSLYS | QQYYNFPV   | AASGFTIDGWWIH          | GIWPFGGFTS | ARSYSGYSGDY                    | GH2-11  |
| P47      | RASQDVYYYVA     | SGSSYLYS | QQYYNWPL   | AASGFTIGNSGIH          | SIWPSGGSTY | ARFGHIDGDIMDY                  | GH2-13  |
| P48      | RASQDVWSYVA     | SYTSYLYS | QQYFNWPI   | AASGFTINSWGIH          | GIGPSWGYTS | ARFGDGDFDLMDY                  | GH2-13  |
| P58      | RASQDVYSYVA     | SSSRGLYS | QQYSSFPI   | AASGFTIGGGGIH          | WIWPYWGYTY | ARFNSYSYSGVMDY                 | GH2-14  |
| S01      | RASQDVWGYVA     | SFPSSLYS | QQYYDGPV   | AASGFTINNYGIH          | SIWPSGGYTS | ARFGLGDYDIMDY                  | GH2-13  |
| S06      | RASQDVSSWVA     | YGTTFLHS | QQYYNGPL   | AASGFTIGGGWIH          | FIGPYGGSTF | ARFNFGFWNHMDY                  | GH2-13  |
| S07      | RASQDVWGYVA     | SYASFLYS | QQYFNWPV   | AASGFTINSSGIH          | SIGPSWGSTY | ARFGIGDIDVMDY                  | GH2-13  |
| S10      | RASQDVSYYVA     | FWSTFLYS | QQYYDSPM   | AASGFTIGGYGIH          | SIGPSWGFTF | ARFNWVINGVTDY                  | GH2-13  |
| S11      | RASQDVYSWVA     | YYSSFLYS | QQYYNGPL   | AASGFTIDNGGIH          | WIGPYGGSTS | ARFGFGLHDLMDY                  | GH2-13  |
| S29      | RASQDVFGGVA     | YWSSWLYS | QQYYDGPI   | AASGFTISDYWIH          | SIWPSGGYTY | ARFNWIVGHYMDY                  | GH2-13  |
| S40      | RASQDVGFYVA     | SWSSYLYS | QQYYNYPL   | AASGFTIGDFGIH          | GIWPFGGYTY | ARFVNWDGDYMDY                  | GH2-13  |
| S45      | RASQDVGWWVA     | YGARFLYS | QQYFNGPL   | AASGFTINGSSIH          | YIGPFGGSTY | ARFWHGYNLYMDY                  | GH2-13  |
| S48      | RASQDVGWWVA     | YGTRWLYS | QQYYSGPI   | AVSGFTIGDGSIH          | SIGPYGGSTY | ARFHYGYWNNMDY                  | GH2-13  |
| S51      | RASQDVWGYVA     | SYTTYLYS | QQYYNSPV   | AASGFTIDDWGIH          | WIWPYGGFTS | ARFGFVDWNLMDY                  | GH2-13  |

# Supplementary Table S4. Protein expression, epitope grouping and assessment of the neutralizing and binding potencies of anti-influenza IgGs derived from synthetic antibody libraries.

| Name   | Yield<br>(mg/L) | Epitope<br>Group-<br>ing | EC50 0           | of ELISA bin<br>(correlation | ding (EC50 (1<br>coefficient)) | ng/ml)           | EC <sub>50</sub> of cel | ll surface bin<br>(ng/ml)<br>(max. MFI)) | ding (EC <sub>50</sub> | IC <sub>50</sub> of true<br>virus<br>neutraliz-<br>ation<br>(ng/ml) | IC50 of pseudo virus neutralization<br>(ng/ml) |                    |                    |                    |
|--------|-----------------|--------------------------|------------------|------------------------------|--------------------------------|------------------|-------------------------|------------------------------------------|------------------------|---------------------------------------------------------------------|------------------------------------------------|--------------------|--------------------|--------------------|
|        |                 |                          | H1N1<br>CA/09 HA | H3N2<br>WN/05 HA             | H5N1<br>VN/04 HA               | H7N9<br>AH/13 HA | H1N1<br>CA/09 HA        | H3N2<br>WN/05 HA                         | H5N1<br>VN/04 HA       | H1N1<br>CA/09                                                       | H1N1<br>CA/09                                  | H3N2<br>WN/05      | H5N1<br>VN/04      | H7N9<br>AH/13      |
| F10    | 5.68            | I                        | 12.15<br>(0.96)  | NB                           | 20.98<br>(0.94)                | NB               | 1051<br>(9527)          | NB<br>(220)                              | 590<br>(10535)         | 1256.98                                                             | 11.9                                           | ND                 | 12                 | >2×10 <sup>5</sup> |
| FI6V3  | 9.87            | I                        | 10.68<br>(0.96)  | 78.93<br>(0.92)              | 6.48<br>(0.92)                 | 313.63<br>(0.95) | 67<br>(10125)           | 65<br>(16583)                            | 610<br>(13712)         | 9214.55                                                             | 21.3                                           | ND                 | 13                 | 51                 |
| C05    | 3.48            |                          | NB               | 8.44<br>(0.95)               | NB                             | NB               | NB<br>(86)              | 130<br>(14588)                           | NB<br>(547)            | >5×10 <sup>5</sup>                                                  | >10 <sup>5</sup>                               | 10.17              | >2×10 <sup>5</sup> | >2×10 <sup>5</sup> |
| CR8020 | 1.80            |                          | NB               | 19.37<br>(0.97)              | NB                             | 68.99<br>(0.92)  | NB<br>(91)              | 569<br>(18011)                           | NB<br>(639)            | >5×10 <sup>5</sup>                                                  | >10 <sup>5</sup>                               | 47.66              | >2×10 <sup>5</sup> | 52                 |
| Do1    | 9.15            |                          | NB               | NB                           | >10 <sup>4</sup>               | NB               | NB<br>(228)             | NB<br>(278)                              | NB<br>(313)            | >5×10 <sup>5</sup>                                                  | >10 <sup>5</sup>                               | >2×10 <sup>4</sup> | >2×10 <sup>5</sup> | >2×10 <sup>5</sup> |
| P01    | 12.60           | II                       | 54.47<br>(0.94)  | NB                           | 185.09<br>(0.96)               | NB               | 5900<br>(3668)          | NB<br>(342)                              | 5940<br>(1195)         | >5×10 <sup>5</sup>                                                  | >10 <sup>5</sup>                               | >2×10 <sup>4</sup> | >2×10 <sup>5</sup> | >2×10 <sup>5</sup> |
| P03    | 13.23           | ш                        | 15.61<br>(0.96)  | >10 <sup>4</sup>             | >104                           | NB               | 494<br>(6022)           | NB<br>(147)                              | NB<br>(216)            | >5×10 <sup>5</sup>                                                  | >10 <sup>5</sup>                               | >2×10 <sup>4</sup> | >2×10 <sup>5</sup> | >2×10 <sup>5</sup> |
| P04    | 9.50            | Ι                        | 13.72<br>(0.97)  | NB                           | >2000                          | NB               | 1920<br>(6244)          | 3500<br>(2147)                           | 3260<br>(1603)         | 62323                                                               | 146.3                                          | >2×10 <sup>4</sup> | 185                | >2×10 <sup>5</sup> |
| P05    | 15.00           | Ι                        | 16.50<br>(0.97)  | NB                           | NB                             | NB               | 2060<br>(7950)          | NB<br>(176)                              | 190<br>(1723)          | 289733                                                              | 36.6                                           | >2×10 <sup>4</sup> | >2×10 <sup>5</sup> | >2×10 <sup>5</sup> |
| P06    | 18.00           | Ι                        | 5.59<br>(0.92)   | NB                           | 238.05<br>(0.98)               | NB               | 1560<br>(11619)         | NB<br>(250)                              | 260<br>(1356)          | 135818                                                              | 135.9                                          | >2×10 <sup>4</sup> | 1256               | >2×10 <sup>5</sup> |
| P10    | 4.93            | Ι                        | 17.40<br>(0.97)  | NB                           | NB                             | NB               | 410<br>(9663)           | NB<br>(117)                              | NB<br>(517)            | >5×10 <sup>5</sup>                                                  | 464.9                                          | >2×10 <sup>4</sup> | >2×10 <sup>5</sup> | >2×10 <sup>5</sup> |
| P11    | 23.40           | Ι                        | 29.22<br>(0.95)  | NB                           | >104                           | NB               | 300<br>(8164)           | NB<br>(303)                              | 2420<br>(924)          | 953155                                                              | 104                                            | >2×10 <sup>4</sup> | 9293.78            | >2×10 <sup>5</sup> |
| P12    | 12.38           | п                        | 54.94<br>(0.94)  | >10 <sup>4</sup>             | NB                             | NB               | 5860<br>(1995)          | NB<br>(209)                              | 6540<br>(883)          | >5×10 <sup>5</sup>                                                  | >10 <sup>5</sup>                               | >2×10 <sup>4</sup> | >2×10 <sup>5</sup> | >2×10 <sup>5</sup> |
| P14    | 17.43           | III                      | 11.71<br>(0.96)  | NB                           | NB                             | NB               | 125<br>(8337)           | NB<br>(154)                              | NB<br>(328)            | 4393351                                                             | >10 <sup>5</sup>                               | >2×10 <sup>4</sup> | >2×10 <sup>5</sup> | >2×10 <sup>5</sup> |
| P25    | 6.13            | III                      | 138.93<br>(0.95) | NB                           | NB                             | NB               | 761<br>(2376)           | NB<br>(152)                              | NB<br>(318)            | >5×10 <sup>5</sup>                                                  | >10 <sup>5</sup>                               | >2×10 <sup>4</sup> | >2×10 <sup>5</sup> | >2×10 <sup>5</sup> |
| P26    | 5.45            | Ι                        | 11.91<br>(0.96)  | NB                           | 26.55<br>(0.92)                | 75.05<br>(0.94)  | 2035<br>(8923)          | NB<br>(120)                              | 650<br>(6402)          | 29596                                                               | 549.3                                          | >2×10 <sup>4</sup> | 85                 | >2×10 <sup>5</sup> |
| P28    | 13.70           | II                       | 797.79<br>(0.91) | NB                           | NB                             | NB               | NB<br>(168)             | NB<br>(127)                              | NB<br>(193)            | >5×10 <sup>5</sup>                                                  | >10 <sup>5</sup>                               | >2×10 <sup>4</sup> | >2×10 <sup>5</sup> | >2×10 <sup>5</sup> |
| P37    | 22.00           | I                        | 235.68<br>(0.98) | NB                           | NB                             | NB               | 420<br>(5028)           | NB<br>(199)                              | 1180<br>(644)          | >5×10 <sup>5</sup>                                                  | 1674                                           | >2×10 <sup>4</sup> | >2×10 <sup>5</sup> | >2×10 <sup>5</sup> |
| P38    | 22.40           | Ш                        | 94.39<br>(0.96)  | NB                           | NB                             | NB               | 3160<br>(988)           | NB<br>(137)                              | NB<br>(240)            | >5×10 <sup>5</sup>                                                  | >10 <sup>5</sup>                               | >2×10 <sup>4</sup> | >2×10 <sup>5</sup> | >2×10 <sup>5</sup> |
| P44    | 9.50            | п                        | 15.03<br>(0.97)  | NB                           | 100<br>(0.96)                  | 162.86<br>(0.94) | 466<br>(8478)           | NB<br>(127)                              | NB<br>(188)            | >5×10 <sup>5</sup>                                                  | >10 <sup>5</sup>                               | >2×10 <sup>4</sup> | >2×10 <sup>5</sup> | >2×10 <sup>5</sup> |
| P47    | 6.93            | ш                        | 9.62<br>(0.96)   | NB                           | NB                             | NB               | 610<br>(10241)          | NB<br>(175)                              | NB<br>(396)            | >5×10 <sup>5</sup>                                                  | >10 <sup>5</sup>                               | >2×10 <sup>4</sup> | >2×10 <sup>5</sup> | >2×10 <sup>5</sup> |
| P48    | 2.80            | ш                        | 15.36<br>(0.97)  | NB                           | NB                             | NB               | 2400<br>(7865)          | NB<br>(258)                              | NB<br>(474)            | >5×10 <sup>5</sup>                                                  | >10 <sup>5</sup>                               | >2×10 <sup>4</sup> | >2×10 <sup>5</sup> | >2×10 <sup>5</sup> |

| P58  | 0.90  | п   | 22.74    | NR    | >10 <sup>4</sup> | 503.58 | 250     | 3581  | 366      | >5×10 <sup>5</sup> | >10 <sup>5</sup> | >2×10 <sup>4</sup> | >2×10 <sup>5</sup> | >2×10 <sup>5</sup> |
|------|-------|-----|----------|-------|------------------|--------|---------|-------|----------|--------------------|------------------|--------------------|--------------------|--------------------|
| 1 50 | 0.90  |     | (0.96)   | ПЪ    | >10              | (0.93) | (6288)  | (697) | (6713)   | 23/10              | >10              | 22/10              | 24/10              | 22/10              |
| 601  | 0.65  | тт  | 12.18    | ND    | ND               | ND     | 384     | NB    | NB       | 5.105              | > 105            | > 2 104            | > 2-105            | > 2-105            |
| 501  | 9.05  |     | (0.96)   | IND   | IND              | IND    | (8428)  | (178) | (306)    | >5×10              | >10              | >2×10              | >2×10              | >2×10              |
| 506  | 0.49  | п   | 46.70    | ND    | 310.98           | ND     | 3982    | NB    | NB       | . 5. 105           | . 105            | . 2104             | . 2. 105           | . 2. 105           |
| 500  | 9.40  | 11  | (0.97)   | NB    | (0.97)           | IND    | (1648)  | (135) | (249)    | >5×10*             | >10"             | >2×10.             | >2×10°             | >2×10 <sup>3</sup> |
| 607  | 1( 1) |     | 11.42    | ND    | ND               | ND     | 1610    | 3710  | 4980     | . 5. 105           | 1.05             | 2 104              | 0 105              | 0.105              |
| 507  | 16.43 | 111 | (0.96)   | NB    | NB               | NB     | (10791) | (410) | (863)    | >5×10°             | >10°             | >2×10.             | >2×10°             | >2×10°             |
| 610  | 2.45  |     | 14.00    | ND    | 259.21           | ND     | 3380    | 7860  | 790      | 15(0010            | 240.1            | 0.104              | 2/7                | . 2. 105           |
| 510  | 3.45  | 1   | (0.97)   | NB    | (0.97)           | NB     | (10696) | (511) | (1099)   | 1562813            | 349.1            | >2×10*             | 207                | >2×10              |
| 611  | 16.00 |     | 26.79    | ND    | 78.14            | ND     | 4070    | NB    | NB       | . 5. 105           | . 105            | > 2 - 104          | > 2-105            | >2×10 <sup>5</sup> |
| 511  | 10.98 | 11  | (0.98)   | NB    | (0.90)           | IND    | (5600)  | (207) | (434)    | >5×10*             | >10-             | >2×10              | >2×10*             |                    |
| 620  | 10 10 | т   | 22.27    | ND    | . 104            | ND     | 4220    | NB    | NB       | . 5. 105           | (72.2            | . 2104             | . 2. 105           | . 2. 105           |
| 829  | 18.18 | 1   | (0.98)   | NB    | >10.             | NB     | (6276)  | (188) | (367)    | >5×10*             | 072.2            | >2×10*             | >2×10*             | >2×10*             |
| C 40 | 24.05 | тт  | 16.32    | ND    | ND               | ND     | 460     | NB    | 2850     | 425024             | . 105            | . 2104             | . 2. 105           | . 2. 105           |
| 540  | 24.05 |     | (0.96)   | NB    | NB               | NB     | (8626)  | (109) | (724)    | 455924             | >10-             | >2×10*             | >2×10*             | >2×10*             |
| S 45 | 1( (9 | п   | 20.61    | ND    | 230.35           | ND     | 4470    | 15800 | NB       | . 5. 105           | . 105            | . 2104             | . 2. 105           | 2.10               |
| 545  | 10.08 | 11  | (0.96)   | NB    | (0.97)           | NB     | (2473)  | (529) | (451)    | >5×10*             | >10-             | >2×10*             | >2×10*             | >2×10*             |
| C 40 | 10.02 | п   | 12.50 NB | 73.75 | ND               | 4860   | NB      | 1920  | . 5. 105 | . 105              | . 2104           | . 2. 105           | . 2. 105           |                    |
| 540  | 10.03 | 11  | (0.97)   | IND   | (0.91)           | IND    | (6243)  | (122) | (875)    | >5×10 <sup>3</sup> | >10°             | >2×10*             | >2×10 <sup>5</sup> | >2×10°             |
| 051  | (75   | TT  | 23.38    | ND    | ND               | ND     | 754     | NB    | NB       | . 5. 105           | 1.05             |                    | 0.105              | 0 105              |
| 551  | 0.75  | 111 | (0.96)   | INB   | INB              | INB    | (6290)  | (340) | (452)    | >5×10°             | >10°             | >2×10.             | >2×10°             | >2×10°             |

|                                                      | HA1/S40-Fab                                         |
|------------------------------------------------------|-----------------------------------------------------|
| Data collection                                      |                                                     |
| Wavelength (Å)                                       | 0.9                                                 |
| Space group                                          | <i>C</i> 2                                          |
| Cell dimensions (Å)                                  | $a=200.40, b=133.64, c=133.14, a=90, \beta=110.47,$ |
| Resolution (Å)                                       | 25.0-3.35 (3.47-3.35)                               |
| Unique reflections                                   | 47,477                                              |
| $R_{ m merge}$ (%)                                   | 9.6 (64.5)                                          |
| Ι/σ(Ι)                                               | 17.3 (2.4)                                          |
| Completeness                                         | 99.6 (100.0)                                        |
| Redundancy                                           | 4.6 (4.7)                                           |
| Refinement                                           |                                                     |
| Resolution (Å)                                       | 25.0-3.35                                           |
| No. of reflections $R_{\text{work}}/R_{\text{free}}$ | 34,487/1,826                                        |
| $R_{ m work}/R_{ m free}$                            | 23.0/27.5                                           |
| No. of protein atoms/Avg B factor (Å <sup>2</sup> )  | 11,100/176.1                                        |
| RMSD                                                 |                                                     |
| Bond lengths (Å) /Bond angles (°)                    | 0.01/1.49                                           |
| Ramachandran statistics (%) <sup>b</sup>             |                                                     |
| Most favored                                         | 75.0                                                |
| Additionally allowed                                 | 22.8                                                |
| Generously allowed                                   | 1.6                                                 |
| Disallowed                                           | 0.6                                                 |

# Supplementary Table S5. Crystallography parameters for the S40-HA complex structure

<sup>a</sup> Values corresponding to the highest resolution shells are shown in parentheses.

<sup>b</sup> Stereochemistry of the model was validated with PROCHECK.

# **Reference:**

- Sidhu, S. S. & Weiss, G. A. in *Phage Display* (eds T. Clackson & H. B. Lowman) 27-41 (Oxford University Press, 2004).
- Chen, H. S. *et al.* Predominant structural configuration of natural antibody repertoires enables potent antibody responses against protein antigens.
   *Scientific reports* 5, 12411, doi:10.1038/srep12411 (2015).
- 3 Andris-Widhopf, J., Steinberger, P., Fuller, R., Rader, C. & Barbas, C. F., 3rd. Generation of human scFv antibody libraries: PCR amplification and assembly of light- and heavy-chain coding sequences. *Cold Spring Harb Protoc* **2011**, doi:2011/9/pdb.prot065573 [pii]
- 10.1101/pdb.prot065573 [doi] (2011).
- Yu, C.-M. *et al.* Rationalization and Design of the Complementarity
   Determining Region Sequences in an Antibody-Antigen Recognition
   Interface. *PLoS ONE* 7, e33340, doi:10.1371/journal.pone.0033340 (2012).