
Supplementary Figure 1: Experimental setup. For conventional holography (red path, Supple-
mentary Note 2.), a femtosecond laser beam is expanded with lenses, L3, and L4 onto a phase-only
SLM. We compute a phase mask in the Fourier domain that best replicates a custom 3D intensity
distribution after propagation to the real space through the telescope lens, L5. The resulting volume
hologram is then demagnified with the microscope tube lens, L6, and objective L7. For 3D-SHOT
(blue path, Supplementary Note 3.), a diffraction grating decomposes laser pulses in the spectral
domain, and phase patterning, here with an additional lens, LC, enables digital holography in the
Fourier domain. We target the desired locations in 3D with point-cloud holography (Supplemen-
tary Note 6.). All-optical convolution replicates the same temporally-focused pattern on targeted
neurons for efficient photo-excitation with high spatial specificity.
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Supplementary Figure 2: Intensity spectral distribution at SLM plane. (a,c) |AD(x, y,∆k =
(2π∆λ/λ20))|2 is displayed for various values of ∆λ within the wavelength spectrum range of a
time-bandwidth limited femtosecond pulse and in a window corresponding to the SLM area. (a)
Without applying a spherical phase mask to the field before the diffraction grating, the SLM is at the
image plane of a diffraction limited point, swept along the grating direction. (b) The corresponding
intensity pattern on the SLM, a focused line, is reflected by a much smaller number of pixels (less
than 7% of the SLM pixels are above Half-Max intensity threshold) and taking advantage of the
SLM wavefront beam shaping capabilities for holography remains impossible. (c) With lens LC in
place, an appropriate amount of curvature to the incoming wavefront allows for a more uniform
spreading of the wavefront onto the SLM for all values of ∆λ within the pulse bandwidth. (d)
Corresponding intensity pattern on SLM. The circle represents the back-aperture of the microscope
objective and the effective area of the SLM.

Supplementary Figure 3: Two-photon absorption in primary and in secondary focus. (a)
Primary focus two-photon absorption I2

F(x, y,∆t, z = 0) is simulated for various values of ∆t, and
shows temporal focusing propagating long the x axis. (b) Time-averaged two-photon absorption at
primary focus: I2

F(x, y, z = 0). (c) Two-photon absorption in the secondary focus I2
F(x, y,∆t, z =

25) μm for various values of ∆t, shows a static geometric focus line broadened in the time domain.
(d) Time-averaged two-photon absorption at secondary focus: I2

F(x, y, z = 25 μm).
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Supplementary Figure 4: Simplified diagram of the optical system (hologram synthesis sec-
tion). We define the effective area of the SLM, h, and the pixel size, p. The Fourier lens, tube lens,
and objective, and their respective focal lengths, and d, the back-aperture diameter of the objective.

Supplementary Figure 5: Biological features determine the optimal power level for neuron
photoactivation (a) We consider a Gaussian model, with Full-Width-Half-Max : FWHM = 30
μm to represent photocurrents induced in a neuron at various power levels. (b) We use a sigmoidal
response profile to model the statistical distribution of spike probability as a function of induced
photocurrent. We identify three characteristic zones, (I) below, (II) near, and (III) above threshold.
(c) The resulting spatial distribution of spike probability shows two regimes with a compromise
between maximal spiking probability at z = 0 and spatial resolution. (d) Simulation results show
how the FWHM of the spiking probability distribution increases as unnecessary additional optical
power is sent onto the neuron.
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Supplementary Figure 6: Power calibration (15000 points, 3000 shown). (a) Computed
diffraction efficiency, µi, from digital simulation. (b) Normalized recorded intensity, Ii, from sin-
gle target point holograms acquired during the calibration experiment. (c) System specific optical
loss, pi, to be used as interpolation data points for power correction in subsequent experiments.
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Supplementary Figure 7: Spatial resolution through mouse brain tissue. (a) Experimental
setup with an inverted fluorescence microscope allowing 3D recording of two-photon absorption
through custom thicknesses of brain tissue slice. (b) Volumetric recordings of two photon absorp-
tion through increasing thickness of mouse brain tissue for the same hologram. (c) Radial, and
(d), radial FWHM as a function of scattering depth shows accumulated effects of optical propaga-
tion through brain tissue. (e) Amount of light received in non-targeted locations as a function of
scattering depth shows a clear degradation of hologram quality below 500 μm.
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Supplementary Figure 8: Spatial resolution through mouse brain tissue. (a) radial, and (b)
axial FWHM measured for various holograms with randomized spatial distributions of 20 to 75
targets as a function of scattering depth through mouse brain tissue, from left (0 μm) to right (600
μm)). Histogram data distributions are shown in black. In each case, we also show scatter plots (in
red) to display the FWHM as a function of the x,y,z location of each target within the hologram .

Supplementary Figure 9: Spatial resolution and 3D target position. (a) Radial FWHM of
multi-target holograms as a function of target location. Color coding indicates distance to nearest
target. (b) - Same as in (a) but by displaying radial FWHM as a function of target distance to the
nearest neighbor. (c), (d) : same as in (a), resp. (b) but with axial FWHM.
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Supplementary Figure 10: Temporal response of the optical system. The laser gate was trig-
gered at various frequencies ((a) 10 Hz,(b) 100 Hz,and (c) 1000Hz). A hologram was placed on
the SLM to illuminate a spot in a fluorescent slide. A photomultiplier tube (PMT) synchronously
recorded the fluorescence induced by two-photon absorption. Results show no detectable delay for
operations at speeds below 1KHz.

Supplementary Figure 11: Photostimulation in simulated brain tissue. (a) Example resolution
simulations showing volumes of simulated brain tissue with 1, 50, or 300 3D-SHOT spots. Neu-
rons that are stimulation targets are shown in red, and off-target neurons are color coded by spike
probability. (b) Average of the spike probability of all off-target neurons as a function of 3D-SHOT
target number (mean and standard deviation of 100 random sets of targets). (c) Ratio of the number
of reliably driven off-target neurons (> 75% spike probability) as a function of increasing num-
bers of 3D-SHOT spot targets (data represent mean and standard deviation of 100 random target
sets). (d) Cumulative probability of estimated spike probability of off-target neurons for increasing
numbers of 3D-SHOT target numbers (see colorbar). Data are the concatenations of 100 trials.
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√
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√
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FWHM : Setup 1 E-field Intensity I = |E|2 2-photon absorption I2

in B 4.0 mm 2.8 mm 2.0 mm

in C 1.3 ∗ 103
μm 9.3 ∗ 102

μm 6.6 ∗ 102
μm

in E 7.9 ∗ 102
μm 5.6 ∗ 102

μm 4.0 ∗ 102
μm

in F 20 μm 14 μm 9.9 μm

FWHM - Setup 2 E-field Intensity I = |E|2 2-photon absorption I2

in B 5.0 mm 3.5 mm 2.5 mm

in C 9.9 ∗ 102
μm 7.0 ∗ 102

μm 5.0 ∗ 102
μm

in E 4.0 ∗ 102
μm 2.8 ∗ 102

μm 2.0 ∗ 102
μm

in F 20 μm 14 μm 9.9 μm

Supplementary Table 1: Conversion table for calibration of the CTFP dimensions. We show
the dimensions (Full Width Half Max) for the Gaussian beam at selected focal planes : B, C, E,
and F. Characteristic dimensions are shown for the electric field, the Intensity, and for two-photon
absorption. Experimental values are shown for Setup 1, and Setup 2. In both cases, the CTFP is
engineered for a 10 μm diameter temporally focused disk area target in F for two-photon neural
photostimulation.
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Variable Description Setup 1 Setup 2

λ0 Laser wavelength 1040 nm 1030 nm

τ Laser pulse duration (FWHM =2
√

2ln(2)τ ) 63 fs 117 fs

s Gaussian beam diameter (FWHM = s
√
ln(2) ) 2.4 mm 2.9 mm

d Gaussian beam phase sphericity at grating
√
λ0fc

√
λ0fc

γ Grating spectral response coefficient γ = λ0/2πch γ = λ0/2πch

h Blazed grating frequency 300 mm−1 600 mm−1

f1 Focal length (demagnifier) 60 mm 100 mm

f2 Focal length (demagnifier) 20 mm 20 mm

f3 Focal length (beam expansion) 200 mm 200 mm

f4 Focal length (beam expansion) 500 mm 500 mm

f5 Focal length (Fourier hologram lens) 300 mm 200 mm

f6 Focal length (tube lens) 200 mm 200 mm

f7 Focal length (40×, resp 20× objective) 5 mm 10 mm

fc Focal length (for spherical phase curvature) 1000 mm 1000 mm

Supplementary Table 2: Experimental setup properties for 3D-SHOT. To design a 10 μm
excitation disk with the CTFP, we have implemented 3D-SHOT on two separate systems. The
reference system is Setup 1, except for Figure 4 and Figure 5, which show results obtained with
Setup 2.

Supplementary Note 1. Time-bandwidth limited femtosecond Gaussian pulses.

In the following supplementary notes, we consider the isometric definition of the Fourier Trans-
form Fu,v : f → f̂ and its inverse given by :

f̂(v) =
1√
2π

∫ ∞
−∞

f(u)eiuvdu f(u) =
1√
2π

∫ ∞
−∞

f̂(v)e−iuvdv (1)

The optical path is represented in Supplementary Figure 1. For two-photon photo-excitation in
brain tissue the light source is a femtosecond laser with a central wavelength of λ0 = 1040nm. At
80MHz repetition rate or below, pulses can be treated independently. In position A, we model the
complex amplitude of a single time-bandwidth limited pulse in time and space by:

AA(x, y,∆t) =
21/4

π3/4s
√
τ
e−

x2+y2

s2 e−
∆t2

4τ2 eic∆t/λ0 (2)
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where s is the spatial width of the Gaussian pulse at the system input, and τ the pulse duration.
Our model assumes normalized energy in a given laser pulse :∫

R3

|AA|2(x, y,∆t) dx dy d∆t = 1 (3)

In the spectral domain, ∆ω = c∆k, and we can rewrite the amplitude as:

AA(x, y,∆ω) = F∆t,∆ω [AA] (x, y, c∆k) =
23/4
√
τ

sπ3/4
e−(c∆kτ)2

e−
x2+y2

s2 (4)

A pulse compressor can be used to selectively delay the spectral components of pulses to compen-
sate for unwanted dispersion along the optical path and to ensure that the perceived pulses at the
desired temporally focused pulses are time-bandwidth limited.

Supplementary Note 2. Computer Generated Holography (CGH) with phase modulation
in Fourier space.

System Point Spread Function (PSF) for Computer Generated Holography (CGH). The ex-
perimental setup (Supplementary Figure 1) is designed to compare the respective performance of
our method and conventional holography. For this, two movable mirrors on a translation stage
enable easy switching between two different light paths, both with the same phase-only SLM in
Fourier space. Here, we first consider the optical path for conventional 3D holography (in red). In
position C, the amplitude is given by:

AC(x, y,∆k) = F(x,y),(kx,ky) [AA]

(
x

λ0f3

,
y

λ0f3

,∆k

)
(5)

AC(x, y,∆k) =
s
√
τ

21/4π3/4f3λ0
e
−c2∆k2τ2− 1

4
s2

(
x2

f2
3 λ

2
0

+ y2

f2
3 λ

2
0

)
(6)

At the input face of the SLM, in position D−, the field becomes a magnified, inverted, copy of the
field in A, and the magnification is given by M3,4 = −f3/f4.

A−D (x, y,∆k) = F(x,y),(kx,ky) [AC]

(
x

λ0f4

,
y

λ0f4

,∆k

)
(7)

A−D (x, y,∆k) = M3,4AA(M3,4x,M3,4y,∆k) (8)

At the output face of the SLM, the beam in position D+ becomes:

A+
D (x, y,∆k) = A−D (x, y,∆k)H(x, y) (9)

whereH(x, y) = eiφ(x,y) is the digital phase mask applied onto the SLM. Femtosecond pulses have
a fairly narrow bandwidth (≈ 3nm) and SLM-induced dispersion is not an issue for holography.

AE(x, y,∆k) = F(x,y),(kx,ky)

[
A+

D

]( x

λ0f5

,
y

λ0f5

,∆k

)
(10)

AE(x, y,∆k) = F(x,y),(kx,ky)

[
A+

D

]
(
x

λ0f5

,
y

λ0f5

,∆k)⊗F(x,y),(kx,ky) [H] (
x

λ0f5

,
y

λ0f5

) (11)

AE(x, y,∆k) = PSFE(x, y,∆k)⊗ Ĥ(
x

λ0f5

,
y

λ0f5

) (12)
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where ⊗ represents the convolution product and,

PSFE(x, y,∆k) =
s
√
τ

21/4π3/4f5λ0M3,4

e
−c2∆k2τ2−

s2(x2+y2)
4f2

5 λ
2
0M

2
3,4 (13)

is the normalized Point Spread Function (PSF) of the optical system, at the focal plane in E. Finally,
the tube lens L6 and objective, L7 further demagnify the synthesized wave-front, and the resulting
holographic pattern at the focal plane of the objective F is given by :

AF(x, y,∆k) = M6,7PSFE(M6,7x,M6,7y,∆k)⊗ Ĥ(
xM6,7

λ0f5

,
yM6,7

λ0f5

) (14)

where with M6,7 = −f6/f7 is the magnification of the microscope assembly.

Supplementary Note 3. 3D Scanless Holographic Optogenetics with Temporal focusing.

Space, phase, and spectral shaping of femtosecond pulses. We now consider the secondary
path (Supplementary Figure 1, blue path) for 3D-SHOT. We apply a spherical phase pattern to the
laser beam using lens LC to adjust the size, s, and the sphericity, d, of the field before frequency-
specific diffraction on the blazed grating. The distance between lens LC and the diffraction grating
is effectively reduced to zero using a set of 200mm lenses in a 4-f configuration which places a
virtual image of the lens directly onto the diffraction grating. In location B, the field just before
reflection on the diffraction grating is therefore given by the time-dependent amplitude AB :

A−B (x, y,∆k) = AA(x, y,∆k)ei
x2+y2

d2 (15)

The grating implements a wavelength dependent phase-shift given by : eiγc∆kx, where γ represents
the wavelength-specific response of the grating (Supplementary Table 1), and ∆k represents the
variation of the wavevector distribution around the central wavelength, λ0 = 1040nm, of the laser.
The actual wavelength to be considered within the bandwidth of the pulse is given by : λ = λ0+∆λ.

∆λ =
λ

2
0

2π
∆k x (16)

At the output face of the grating, the complex amplitude in the first diffracted order is given by :

A+
B (x, y,∆k) = A−B (x, y,∆k)eiγc∆kx (17)

We use a blazed grating optimized for diffraction in the near-infrared range (1000nm blaze depth).
Lens L1 and L2 are placed in a 4-f configuration, with M1,2 = −f1/f2. A large demagnification
has the advantage of allowing high average power levels (up to 18W average power tested) without
damaging the diffraction grating. The amplitude in location C is given by :

AC(x, y,∆k) =

(
2

π

)3/4
M1,2

√
τ

s
e−c

2∆k2τ2−icγ∆kM1,2x+
iM2

1,2(x2+y2)
d2

−
M2

1,2(x2+y2)
s2 (18)
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In the SLM plane D, the amplitude is given by :

AD(x, y,∆k) = F(x,y),(kx,ky) [AC]

(
x

λ0f4

,
y

λ0f4

,∆k

)
(19)

AD(x, y,∆k) =
d2s
√
τ

4
√

2π3/4f4λ0M1,2 (d2 − is2)
e
−c2∆k2τ2−

d2s2(−cγ∆kf4λ0M1,2+x−iy)(−cγ∆kf4λ0M1,2+x+iy)

4f2
4 λ

2
0M

2
1,2(d2−is2)

(20)

We display |AD(x, y,∆k)|2 for various values of ∆λ = 2π/∆k (Supplementary Figure 2a). Sum-
ming across the frequency spectrum, the intensity on the SLM, in D (Supplementary Figure 2b)
becomes :

ID(x, y) =

∫
|AD(x, y,∆k)|2d∆k =

d4s2τe
−
d4s2(d4(γ2s2y2+4τ2(x2+y2))+4s4τ2(x2+y2))

2f2
4 λ

2
0M

2
1,2(d4+s4)(d4(γ2s2+4τ2)+4s4τ2)

2πcf 2
4 λ

2
0M

2
1,2

√
(d4 + s4) (d4 (γ2s2 + 4τ 2) + 4s4τ 2)

(21)

The beam size, s, determines the dimensions of the temporally focused disk image at the focal
plane of the objective. The ability to spatially distribute the hologram within the volume of interest
relies on efficient diffraction of coherent light by the SLM. This requires that each wavelength
within the pulse spectrum should be spatially distributed on a significant effective area of the SLM
to maximize the number of pixels contributing to the hologram. For this purpose, the sphericity of
the input beam, d, is a degree of freedom independent from the beam size, which we can adjust to
control how light is spatially distributed in the Fourier domain.

This fundamental aspect of our method is illustrated in Supplementary Figure 2. In the absence
of phase patterning of the incoming beam, for instance by removing lens LC, the amplitude in D
simplifies to A?D:

lim
d→+∞

A?D(x, y,∆k) =
s
√
τ

4
√

2π3/4f4λ0M1,2

e
−c2∆k2τ2−

s2((x−cγ∆kf4λ0M1,2)2+y2)
4f2

4 λ
2
0M

2
1,2 (22)

and is shown in Supplementary Figure 2c. The corresponding intensity on the SLM (Supplemen-
tary Figure2d) becomes :

I?D(x, y) =

√
2s2τ

π3/2f 2
4 λ

2
0M

2
1,2 (γ2s2 + 4τ 2)

e
−

4∆t2f2
4 λ

2
0M

2
1,2+γ2s4y2+4s2τ2(x2+y2)

2f2
4 λ

2
0M

2
1,2(γ2s2+4τ2) (23)

Not applying a well calibrated phase mask to the laser beam results in the effective coverage of the
SLM being reduced to a diffraction limited spot, with a wavelength-specific displacement along
the direction of the diffraction grating, as illustrated in Supplementary Figure 2c,d. In this case
the SLM would be partially illuminated with a line object, and each portion of the spectrum would
span across a small (≈ 30) number of pixels. Besides potential damage to the SLM, diffraction ef-
ficiency is reduced to a minimum, and the corresponding temporally focused image at the objective
cannot be efficiently focused at desired locations within the 3D imaging volume by the SLM.
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To address this potential issue and enable holographic replication of the CTFP at custom 3D loca-
tions while keeping the SLM in Fourier space, a well calibrated phase pattern needs to be applied
to the beam just before reflection on the diffraction grating (here the phase mask and the diffraction
grating are virtually superimposed with relay lenses). Many types of phase masks can be consid-
ered to ensure proper coverage of the SLM throughout the pulse spectrum. Here, we choose a
simple lens LC. This strategy is not only simple, but also has the additional advantage to provide
an analytical expression of the electric field in space and time throughout the optical setup. The
spectral distribution of light on the SLM is shown in Supplementary Figure 2a. The ability of
the SLM to diffract light for holography is restored to similar diffraction efficiency levels as in
conventional holography methods, and the accessible volume compares to conventional CGH.

AE(x, y,∆k) = F(x,y),(kx,ky)

[
A+

D

]( x

λ0f5

,
y

λ0f5

,∆k

)
(24)

AE(x, y,∆k) = CTFPE(x, y,∆k)⊗ Ĥ(
x

λ0f5

,
y

λ0f5

) (25)

where ⊗ represents the convolution product. CTFPE(x, y) represents the complex valued, nor-
malized, Custom-made Temporally Focused Pattern of the optical system, at the focal plane in
F.

CTFPE(x, y,∆k) =

(
2
π

)3/4
M1,5

√
τ

s
e−c

2∆k2τ2+icγ∆kM1,5x+
iM2

1,5(x2+y2)
d2

−
M2

1,5(x2+y2)
s2 (26)

where M1,5 = f1

f2

f4

f5
. The microscope tube lens and objective further demagnify the signal by a

factor f6/f7, and the resulting CTFP, designed to match the characteristic size of a neuron for
photostimulation applications, is given by :

CTFP(x, y,∆k) =

(
2
π

)3/4
M1,7

√
τ

s
e−c

2∆k2τ2+icγ∆kM1,7x+
iM2

1,7(x2+y2)
d2

−
M2

1,7(x2+y2)
s2 (27)

where M1,7 = −f1

f2

f4

f5

f6

f7
.

Custom-made Temporally Focused Pattern (CTFP). Assuming no phase pattern is present on
the SLM, AF(x, y,∆k) = CTFP(x, y,∆k), the intensity is given by :

IF(x, y,∆t) = |F∆ω,∆t [AF(x, y,∆ω/c)]|2 (28)

IF(x, y,∆t) =

√
2M2

1,7

π3/2s2τ
e−

2M2
1,7(x2+y2)

s2
−

(∆t+γM1,7x)2

2τ2 (29)

and the time-averaged two-photon absorption profile in F is given by :

I2
F(x, y) =

∫
I2

F(x, y,∆t)d∆t =

(
2M2

1,7

πs2
e−

2M2
1,7(x2+y2)

s2

)2

(30)

To compute the CTFP in 3D, we use Fresnel propagation and we define :

ÃF(kx, ky,∆k) = F(x,y),(kx,ky) [AF] (31)

13



P(kx, ky) = F(x,y),(kx,ky)

[
e
iπx2

λ0z e
iπy2

λ0z

]
= ie−

iλ0z(k2
x+k2

y)
4π (32)

The defocused field is given by propagating each wavelength independently :

AF(x, y, z,∆k) = F−1
(kx,ky),(x,y) [P(kx, ky)AF(kx, ky,∆k)] (33)

Which can be then expressed as a function of time :

AF(x, y, z,∆t) =F∆ω,∆t [AF(x, y, z,∆ω/c)] (34)

AF(x, y, z,∆t) =K0e

−iπM2
1,7(d2−is2)(x2+y2)(d2(λ0M2

1,7z(γ2s2+4τ2)−4iπs2τ2)−4iλ0M
2
1,7s

2τ2z)
(λ0M2

1,7s
2z+d2(πs2+iλ0M

2
1,7z))(4λ0M

2
1,7s

2τ2z+d2(4πs2τ2+iλ0M
2
1,7z(γ

2s2+4τ2)))×

e

(d2(∆tλ0M
2
1,7z+iπγM1,7s

2x−iπ∆ts2)−i∆tλ0M
2
1,7s

2z)
2

(λ0M2
1,7s

2z+d2(πs2+iλ0M
2
1,7z))(4λ0M

2
1,7s

2τ2z+d2(4πs2τ2+iλ0M
2
1,7z(γ

2s2+4τ2))) (35)

where K0 is the normalization constant.

Simulation results are shown in Supplementary Figure 3. The CTFP shows temporal focusing at
z = 0 μm, a virtual image of the diffraction grating where simultaneous constructive interference of
multiple-wavelength specific light paths (Supplementary Figure 3a) re-creates a femtosecond pulse
image and yields the strong nonlinear response needed for two-photon response(Supplementary
Figure 3b). At the temporal scale of a single pulse, the temporal focus is a line object along the
y axis swept along the x axis. Additionally, a secondary focus at z = 25 μm corresponds to a
geometric focus (from lens LC) which is different for each wavelength in the pulse bandwidth. At
any point in space along the secondary focus line, the perceived pulse is narrow in the frequency
domain, and therefore broadened in time (Supplementary Figure 3c), which reduces two-photon
absorption (Supplementary Figure 3d).

For 3D-SHOT simulation (Fig. 2d), we computed the evolution of pre-shaped wave-packets in time
and space step-by-step through the optical system (Supplementary Notes 1-3). Simulation closely
matches the measured fluorescent response for 3D-SHOT. Simulation also provides space-time
projections (Fig. 2e) showing the fundamental difference between the primary and the secondary
focus (Fig. 1, green and pink dashed line, respectively). The primary focus (green arrow) is a vir-
tual image of the diffraction grating and shows constructive interference that locally reconstructs
the temporally focused beam. The phase-shaping lens, Lc, introduces a secondary geometrically
focused line image 25 m above the primary focus (pink arrow). Space-time projections from
simulation indicate that the secondary focus corresponds to a spectral decomposition of the fem-
tosecond pulse, and is not temporally focused. Since two-photon photo-activation is proportional
to the time-averaged square of the light intensity, the amount of photostimulation in the secondary
focus is proportional to the inverse of the perceived pulse duration. The secondary focus benefits
from attenuation from temporal stretching despite being more spatially confined than the primary
focus, and therefore does not significantly affect spatial resolution, as shown experimentally and
in simulation.

The experimental setup is designed for specific CTFP dimensions designed by the user. Supple-
mentary Table 1 summarizes the scaling of the CTFP throughout the system at each repetition of
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the temporally focused plane. The SLM is a Hamamatsu LCOS (X10468-03) with 600× 800 pix-
els (20 μm pixel size). In setup 1, the objective is a water immersion, 40×, NA= 0.8 objective,
and the laser is a fidelity HP18, providing 150 fs pulses with 18W average power at a repeti-
tion rate of 80MHz. Setup 2 uses an Amplitude Satsuma HP2 laser providing 280fs pulses with
20W average power at 1MHz, and a water immersion, 20X, NA= 1.0 microscope objective. By
design, setup 2 enables a larger volume of operation with similar CTFP dimensions. All lenses
are achromatic doublets with anti-reflection coating for near-IR applications. The Group Velocity
Dispersion (GVD) can be compensated in the laser unit by applying a spectral chirp to the laser
beam that minimizes pulse duration at the objective. To facilitate the replication of our system, the
experimental setup properties are summarized in Supplementary Table 2.

Supplementary Note 4. Accessible volume

The area of the experimental setup that synthesizes holograms is shown in Supplementary Figure 4.
By definition, the microscopes magnification, M , is given by:M = f6

f7
. To optimize the resolution

of the microscope, the SLM image is matched to the dimensions of the back aperture: p
d

= f5

f6
.

The accessible range of the hologram at the objective is given by considering the maximal acces-
sible angle for a first order diffraction (one wavelength phase shift over the size of one pixel). We
deduce the accessible range in the image (x,y) plane:

∆xy =
λ0f5

Mp
, (36)

and the accessible range along the optical (z) axis:

∆z =
λ0f

2
5

M2ph
, (37)

with the wavelength of the laser λ0 = 1030nm. With a 20X microscope objective, the theoretical
limits of the accessible volume in our system (Setup 2, Supplementary Table 1) are: ∆xy = 500 μm
and ∆z = 650 μm. We note that the accessible range can be improved by reducing the pixel size
p. SLMs with smaller pixels are commercially available, but resolution comes at the expense of
diffraction efficiency. Here, we have purposefully selected an SLM with pixels to minimize photon
losses in high power applications. For high resolution SLMs with smaller pixel size, new limiting
factors such as the diameter of the tube lens, and the microscopes ability to accept high incidence
angles, should be taken into account in determining the accessible volume for photostimulation
purposes. In practice, the accessible volume and spatial resolution can be improved by considering
larger SLMs with higher pixel count, and performance can be improved if desired up until the
microscope objective becomes again the limiting factor for resolution and imaging volume.

Supplementary Note 5. Optimizing two-photon intensity levels for photostimulation.

Selecting the appropriate amount of power for neural photostimulation relates both to the spa-
tial distribution of two photon absorption and cell physiology. For two photon absorption, we
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consider a simple Gaussian response model for photostimulation with the CTFP with FWHM=
2
√

2ln(2)σ ≈ 30 μm (Supplementary Figure 5a). The photocurrent, J , is shown for various levels
of normalized photostimulation light intensity, I0, and is given, in first approximation, by:

J(z) = I2
0e
−z2/2σ2

(38)

This corresponds for instance to the spatial distributions of photocurrents observed in each peak of
the two-target experiment (Fig. 6b,c). Here, we consider a simple threshold model for which the
spike probability, P , is given by a sigmoidal response profile:

P =
1

1 + e−(J−Jt)/∆J
(39)

where Jt is the average threshold photocurrent required to trigger an action-potential, and ∆J de-
termines the spiking probability of neurons near threshold value (Supplementary Figure 5b). Com-
bining Equations 38 and 39 yields the spiking probability distribution as a function of light intensity
(Supplementary Figure 5c) and shows three characteristic regimes. The first case, I2

0 < Jt − ∆J
(I), represents a below-threshold photostimulation for which action potentials are unlikely to be
triggered. For Jt −∆J < I2

0 < Jt + ∆J (II), the amount of power received by the neuron is near
the threshold value and action-potential are likely be triggered. For intensities above this range
(III), the probability of spiking the cell is almost certain, but the FWHM gradually increases as
photocurrents induced by defocused light remain intense enough to permit action-potentials (Sup-
plementary Figure 5d). Near the optimal value, we observe that the nonlinearity of action potential
response has the advantage of further narrowing the FWHM. For instance, a 30 μm FWHM for
photocurrent can yield a 20 μm FWHM for spiking probability.

To quantify the degree of photostimulation cross-talk, we defined the spatial contrast coefficient
γ = I0/(I1 + I2) where I1 and I2 are the photocurrents at either peak corresponding to each target,
and I0 is the photocurrent recorded when the cell is exactly between targets. With conventional
holography, γ = 3.2 ∗ 10−1 in CHO cells (Fig. 6b), and γ = 6.9 ∗ 10−1 in mouse brain slice (Fig.
6c). With 3D-SHOT, γ = 1.3 ∗ 10−5 in CHO cells (Figure 6b), and γ = 1.9 ∗ 10−2 in mouse brain
slice (Fig. 6c) . When considering spiking probability in neurons, we observed γ = 0 with 3D-
SHOT (Fig. 6d) indicating that a neuron surrounded by two targets can be successfully protected
from undesired photo-activation. (Supplementary Note 5)

Depending on the end-user preference, this model shows how different power levels can be con-
sidered to either guarantee single cell resolution at the risk of affecting the spiking probability (II),
or to ensure the photo-activation of a given neuron and triggering at least one action potential on
demand at the risk of stimulating other cells in the vicinity of the target (III). Since 3D-SHOT
offers the narrowest possible depth selectivity for inducing photocurrents in any set of neurons
in a large volume, the necessary trade-off between spike probability and spatial resolution is not
incompatible with offering both single cell spatial resolution and enabling all-optical triggering of
action potentials with a high probability of success.
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Supplementary Note 6. Spatial power calibration

To activate n neurons located at positions ri within the previously described accessible volume,
our goal is to compute a hologram and select the appropriate amount of laser intensity, I , that will
achieve a custom distribution of intensity Ii,i=1...n in selected neurons given by while minimizing
the amount of light received by other neurons within the volume of interest.

In general, I >
∑n

i=1 Ii , since a fraction of the photons emitted by the laser will not reach
any of the targets. There are two mechanisms responsible for inefficiency in the system. First,
physical-losses along the optical path that relate to reflections at optical interfaces, limited numeri-
cal aperture, or absorption, which are common to any optical system. Second, the SLM introduces
additional holographic losses which correspond to photons that are not focused onto any of the
desired targets, but wrongly deflected by the SLM either somewhere else in the volume of interest
or outside the optical system in higher order interferences. Such losses are specific to the pat-
tern placed on the SLM (finite pixel size, discrete dynamic range, electronic noise and phase-only
control of the wavefronts).

Both sources of photon loss need to be fully characterized to compute holograms that accurately
provide the desired distribution of light intensity on each targeted neuron. Physical losses are
specific to each targeted location and can be accounted for and compensated with a simple 3D
calibration. However, a power calibration is not sufficient to address both categories, because
holographic losses related to the SLMs response depend on the respective 3D location of all targets.

Since holographic losses are unique to each point cloud distribution, we have developed a simu-
lation tool to quantify them. We simulate the volume distribution of intensity for any given phase
mask on the SLM. This simulation is quantitative and provides a reliable estimate of the expected
intensity profile at any depth under the microscope objective (neglecting for system-related losses).
The simulation allows us to estimate what fraction of a unitary amount of light intensity, µi , would
reach each target (Supplementary Figure 6a) in a perfect optical system.

To quantify the physical losses induced by unavoidable imperfections of the optical elements along
the light path, we proceed to a spatial calibration. For this, we compute N = 15000 calibration
holograms that each target one random location within the volume of interest, and we use the
previous simulation to estimate the holographic diffraction efficiency (DE) for each hologram. We
then set the laser power to a reference intensity level, I , and we measure the collected intensity
under the microscope objective, Ii , either with a photodiode, or by recording the two-photon
response in a thick slide of fluorescent material (Supplementary Figure 6b). The physical loss, pi,
for the optical system at the location is therefore given by:

pi(ri) =
Ii
Iµi

(40)

Calibration results are shown in Supplementary Figure 6c. We then estimate physical losses at any
location within the volume of interest by direct interpolation on calibration data points.
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Lets now consider a set of n neurons located at positions ri. To compute a holographic pattern
that will illuminate each target with intensity Ii, we start by estimating the amount of attenuation
induced by the optical system, pi. This step is made possible by spatial interpolation of data points
acquired during the power calibration (Supplementary Figure 6c). We then compute a hologram
for a point cloud at positions for which we specify the desired power distribution given by: Ii/pi.

The hologram computation yields the phase mask to be displayed onto the SLM, as well as a total
diffraction efficiency (DE) that corresponds to the fractional amount of incoming photons that will
reach at least one of the desired targets. The laser power required to illuminate the targets with the
desired intensity level is therefore given by:

I =
1

DE

n∑
i=1

Ii
pi(ri)

(41)

Due to variations in intrinsic excitability and opsin expression levels, different neurons will require
different amounts of light to be photo-activated. In practice, the proposed method can tailor the
excitation energy directed into each spot to match the needs of each targeted neuron. This capa-
bility is critical especially in large scale excitation experiments with scanless holographic systems
operating near the range limits of their microscope objective. Finally, combining the spatial power
calibration and hologram simulation provides a simple feasibility criteria for each photostimula-
tion pattern by indicating directly if the desired power distribution in a given set of simultaneous
targets can be physically achieved with the available laser power.

Supplementary Note 7. 3D-SHOT performance with multi-target holograms through brain
tissue.

We recorded two-photon absorption for various holograms through mouse brain slices of increas-
ing thickness (Supplementary Figure 7a), ranging from 0 to 800 μm, with various locations in
space and typical separation distance (Supplementary Figure 7b).

Our findings is that 3D-SHOT spatial resolution through brain tissue performs equally or better
than similar technologies using two-photon photostimulation and temporal focusing. The FWHM
of the effective targeted area degrades along the radial (Supplementary Figure 7c) and axial (Sup-
plementary Figure 7d) directions in deeper layers of the brain. In addition to gradual losses of
spatial resolution near the targeted location, intense scattered light in deeper layers of brain tissue
reduce contrast and create a non-zero speckled background illumination pattern near non-targeted
locations within the volume of interest. The system eventually fails as non targeted neurons re-
ceive significant amounts of light leading to inadvertent photostimulation. We computed the total
amount of two-photon absorption induced in the non-targeted volume (Supplementary Figure 7e),
as a function of brain tissue thickness, and we deduce that a depth through brain tissue of 500 μm
represents a practical operational limit for spatial resolution.

Statistical data is shown in Supplementary Figure 8. For each target and for each hologram, the
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dimensions of the targeted volume were measured and recorded along with relevant quantities such
as the target location in space, the target distance to the nearest target, and the number of targeted
locations in the volume being recorded. Using principal component analysis (PCA) by Singular
Value Decomposition (SVD) of statistical datasets, we were able to identify the relevant properties
of the hologram that determine the FWHM of the targeted area.

Scattering and optical aberrations through brain tissue are the dominant factor affecting spatial
resolution. With a Gaussian model for scattering, we estimated the following relationship between
the radial (Supplementary Figure 8a) and axial (Supplementary Figure 8b) FWHM and scattering
depth, T .

FWHM (Radial) = 9.0 μm ∗ exp
[

T (μm)

9.8 ∗ 102 μm

]
(42)

FWHM (Axial) = 16.3 μm ∗ exp
[

T (μm)

1.8 ∗ 103 μm

]
(43)

The second most significant coefficient affecting spatial resolution is depth. This phenomenon is
common in 3D holography setups and corresponds to asymmetric optical properties of the effec-
tive magnification numerical aperture of microscope objectives above and below the native focal
plane.Using SVD, we estimate that :

FWHM (Radial) = 12.2μm + 8.7 ∗ 10−3 x(μm) + 3.9 ∗ 10−3 y(μm) + 1.1 ∗ 10−2 z(μm) (44)
FWHM (Axial) = 20.1μm + 5.5 ∗ 10−4 x(μm) + 2.7 ∗ 10−3 y(μm) + 2.2 ∗ 10−2 z(μm) (45)

In first approximation, this model reduces to :

d
dz

(FWHM (Radial)) = 1.1 ∗ 10−2 d
dz

(FWHM (Axial)) = 2.2 ∗ 10−2 (46)

We note that characterization of how target location within the hologram affects the spatial resolu-
tion in a dataset where various amounts of optical scattering have been considered does not allow
us to evaluate the hologram properties independently from optical aberrations, we therefore con-
ducted a separate set of recordings without optical scattering through brain tissue to better evaluate
this property.

Supplementary Note 8. Spatial resolution with large and dense 3D distributions of targets.

3D SHOT performance degradation through thick brain tissue compares to similar photostimula-
tion instruments that rely on two-photon absorption with temporal focusing for enhanced depth
selectivity, and the operational range is defined for targets no deeper than 500 μm in mouse brain
tissue. Therefore, the next goal is to determine what other factors affect spatial resolution and how
many neurons within this depth range can be reliably photo-stimulated.

The following results have been obtained through a very sensitive thin fluorescent film of fluo-
rescent paint (TS-36 fluorescent Tamiya Color for plastics) sprayed on a clear microscope slide,
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allowing us to characterize the performance limitations of 3D-SHOT independently of laser power
considerations. In practice, we emphasize that laser power currently remains the limiting factor for
simultaneous single shot photo activation of multiple neurons with present opsin technology.

We considered several holograms with variable numbers of targets (between 20 and 750), and with
variable target density by scaling the point cloud around the center of the target area.

Statistical results are shown in Supplementary Figure 9 where we display the radial and axial
FWHM as a function of target location (x,y,z) (Supplementary Figure 9a,c) and by color coding
tour data with respect to the distance to the nearest target in the hologram, which characterizes the
local density of targets.

We find (Supplementary Figure 9b,d) that the local density of targets is not a relevant parameter
affecting FWHM. However, as observed through scattering tissue, we observe that FWHM depends
on the target location.

We used SVD to parametrize the dependence from statistical data and estimate that :

FWHM (Radial) = 8.6μm− 1.7 ∗ 10−3 x(μm) + 8.0 ∗ 10−4 y(μm)− 1.0 ∗ 10−3 z(μm) (47)
FWHM (Axial) = 14.4μm− 2.1 ∗ 10−3 x(μm) + 4.2 ∗ 10−3 y(μm) + 1.8 ∗ 10−2 z(μm) (48)

We find similarly, that spatial dependence of the FWHM, observed independently from the pres-
ence of optical scattering simplifies to :

d
dz

(FWHM (Axial)) = 1.8 ∗ 10−2 (49)

which is most likely related to the non-symmetrical numerical aperture and magnification proper-
ties on either side of the objective’s focal plane. Overall, these results confirm that spatial resolution
does not significantly degrade based on the physical location of targets within a given hologram,
as long as they remain within the operating volume determined by both the optical system’s mag-
nification, and by the SLM’s pixel density.

Finally, the ability of 3D SHOT to precisely trigger action-potentials relates to precise timing of
illumination and to the characteristic response of the photosensitive opsin. The speed at which
different sets of neurons can be activated in a sequence is defined by the the refresh rate of the
SLM (60Hz with our hardware, however faster SLMs are now commercially available.) For each
hologram displayed on the SLM, 3D-SHOT can simultaneously illuminate multiple targets with a
single hologram on the SLM, and the photo-excitation timing of simultaneously targeted neurons
is then only limited by our ability to gate the photo-excitation laser (Supplementary Figure 10).
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Supplementary Note 9. Physiological spatial resolution with multi-target holograms.

To evaluate the ability of 3D-SHOT to photoactivate a specific set of neurons without inducing
action-potentials anywhere else within the volume of interest, we simulate a piece of mouse brain
tissue by considering a set of randomly distributed virtual neurons with a spatial density that com-
pares to typical L2/3 barrel cortex. We then simulate a 3D-SHOT hologram targeting a specific
subset of neurons within this volume, and for each neuron in the volume of interest, we compute
the probability to spike given the 3D physiological point spread functions of the 3D-SHOT targets,
which we treat as independent.

The simulation is repeated 100 times with randomly seeded 3D-SHOT targets on each trial. Sim-
ulation results are shown in Supplementary Figure 11a. 1,50, and 300 targeted neurons (in red)
are intermixed within a dense network of non targeted neurons. Extreme spatial confinement of
the two-photon absorption, combined with the natural threshold response of neurons indicates that
3D-SHOT could enable single neuron spatial resolution for up to 300 targets when laser power
and opsin sensitivity can be made compatible for activating this number of simultaneous targets.
While increasing the number of 3D-SHOT targets increases the number of action potentials gen-
erated from off-target neurons, most of these action potentials are expected to arise from neurons
with a low probability of firing; that is, relatively few off-target neurons will be reliably driven by
any given 3D-SHOT stimulus.
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