Cross platform analysis of transcriptomic data identifies ageing has distinct and opposite effects on tendon in males and females

Louise. I. Pease¹, Peter. D. Clegg^{1,2}, Carole. J. Proctor^{1,3}, Daryl. J. Shanley^{1,4}, Simon. J. Cockell⁵, and Mandy. J. Peffers^{*1,2}

The sample identifier allows the sample origins to be traced for instance T24XR3 identifies a Tissue engineered tendon (T) sample from young (24), female (X) donor replicate three (R3). For RNAseq three replicates are available however no old females were sampled and only one young male was assayed; gender affects global gene expression; male and female samples are not comparable.

Cell	Age	Gender	Replicate	sample identifier	Processing and data deposits
Tissue	20	Х	3	T24XR3	Mandy Peffers Liverpool University 2016
engineered tendon	22	Х	5	T24XR5	E-MTAB-4879
	20	Х	6	T24XR6	
	25	Y	8	T24YR8	
Tissue	67	Y	3	T68YR3	Mandy Peffers Liverpool University 2016
tendon	74	Y	4	T68YR4	E-MTAB-4879
	54	Y	5	T68YR5	
	67	Y	6	T68YR6	
Tendon	21	Y	1	TP24YR1	Mandy Peffers Liverpool University
	16	Y	2	TP24YR2	E-MTAB-2449 (April 2014)
	27	Y	3	TP24YR3	
	14	Y	4	TP24YR4	
Tendon	66	Х	1	TP68XR1	Mandy Peffers Liverpool University
	68	Х	2	TP68XR2	E-MTAB-2449 (April 2014)
	74	Y	3	TP68YR3	
	60	Y	4	TP68YR4	
	79	Х	5	TP68XR5	

Table M1S1 Details of tissue engineered tendon sample donors (left) and Tendon donors (right) for biological replicates of RNAseq data

Reg	ulation	Up	Down
	RNAseq	82	77
Male	Array	16	0
	Array (balanced)	0	1
	RNAseq	297	452
Female	Array	618	618

Table M1S2 The number of significantly (q<0.05) differentially expressed genes RNAseq and microarray in age for each gender with 1.5 fold change in expression.

Table M1S3 The number of significant (p<0.05) genes 1.5 fold up and down regulated identified in combinations of gender, age and technology comparisons

Comparison	Technology	Up	Down
	RNA-seq	0	1
Both genders	Array	0	0
	Both Technologies	0	0
Males	Both Technologies	0	0
Females	Both Technologies	0	0
old male tendon V old male tissue engineered tendon	RNA-seq	5	1
young male tendon V young male tissue engineered tendon	RNA-seq	1	0
Male V Female	Array	0	0
Male V Female	RNA-seq	24	43
Young female vs Young male	RNA-seq	297	71
Old female vs Old male	RNA-seq	278	9

	Both genders					
Regulation	Up	Down				
Array significant (q<0.05)	0	0				
RNAseq significant (q<0.05)	51	62				

Table M1S4 The number of significant (q<0.05) genes with 1.5 fold up and down regulated genes measured using microarrays and RNAseq using BH-MTC without gender separation.

Table M1S5 Pathways significantly (q<0.05) represented by significantly (q<0.05) differentially expressed genes that were 1.5 fold up and down regulated measured using microarrays and RNAseq, upregulated genes and pathways, genes with high (<3) fold changes are noted with an asterisk (*).

	Pathways microarrays	Gene Symbols / enzyme names	Pathways RNAseq	Gene Symbols / enzyme names	
Male genes increased	Nitrogen metabolism	4.2.1.1 (carbonate dehydratase), 6.3.4.16	Calcium signalling	GPCR, PHK	
in expression		(carbamoyl-phosphate synthase), 1.4.1.3	cytokine -cytokine receptor pathway	IL8, LIF, LEP, SF10D	
		(glutamate dehydrogenase), 6.3.1.2	Neuroactive ligand receptor pathway	HTR, BDKRB, OXTR, LEP	
		(glutamine synthetase)	Focal adhesion caveolin	Caveolin, Shc, CycD	
			JAK-stat signalling pathway	Cytokines, Hormones, CycD	
			Bacterial invasion of epithelial cells	Shc, Caveolin	
			CHAGAS disease	B2R, IRAK, IL8	
			GLIOMA	Shc, cyclinD	
			Melanoma	GF, cyclinD	
			Bladder cancer	Cyclin D1, IL-8	
			Chronic myeloid leukemia	Shc, CyclinD1	
Male genes decreased			Antigen processing and presentation	MHCII, KIR	
in expression			Natural killer cell mediated cytotoxicity	NKG2C/E, NKG2D, NKG2DL	
			Leishmaniasis	TGFβ, MHCII	
			Malaria	NKC, TGFβ	
			Toxoplasmosis	MHCII, TGFβ	
			Amoebiasis	TGFβ	
			Colorectal cancer	TGFβ	
			Renal cell carcinoma	TGFBeata	
			Pancreatic cancer	TGFβ	
			Chronic myeloid leukemia	TGFβ	
			Asthma	MHCII, FceR1	
			Rheumatoid arthritis	MHCII, TGFBeata	
Females genes	Sphingolipid metabolism	DEGS,	Glycolysis / gluconogenesis	Aldehyde dehydrogenase, alcohol dehydrogenase	

increased in expression		3-dehydrosphinganine reductase,	Fatty acid degradation	Aldehyde dehydrogenase, alcohol dehydrogenase, long
		Ceramidase,		chain acyl-CoA dehydrogenase
		ceramide synthetase,	Tyrosine metabolism	Tyrosine monooxygenase, monoamine oxidase, alcohol
		acylsphingosine deacylase,		dehydrogenase (oxidoreductases)
		sphingomyelin synthase,	Retinol metabolism	ADH, DHRS
		Ceramide glucosyltransferase,	Xenbiotics	Alcohol dehydrogenase
		Galactosylceramidase,	Drug metabolism	Alcohol dehydrogenase, monoamine oxidase
		Sphingolipid Delta(4)-Desaturase 1,	ABC transporters	ABCA5-10
	Protein export	SRP19, SRPRB, SEC11, SRP72, SEC61β	Phagosome	Dynein, MHCII, TLR4, CD36, TSP, iC3b, cathepsin
	Non-homologous end joining	Mre11, XRCC4, Artmeis	Vascular smooth muscle contraction	CRLR, AC, PKC, IRAG, s-GC, MLCP, MHC
	Ubiquitin mediated proteolysis	E6AP, UBE3B, Itch, HERC4, UBE4B, Skp1,	Coagulation cascade	VWF, TM, PAR3,4, FH, C3, Clusterin, C6,7,8,9
		HIP2, Mdm2, cIAPs, PIAS, PML, BTB,	Antigen processing and presentation	HSP70, Ii, MHCII, SLIP, CTSB/LS, CLIP,
	Dorso ventral axis formation	Cul3, UBE2N	MHCI pathway	TLR2/4, C3b, C3bi, MHCII
	Neurotrophin signalling	Sos, Notch, Ras85D, Rolled, Yan, Orb*	MHCII pathway	TLR4, Laminin, tgHSP70, MKK3/6, MHCII,
		SOS, Ras, Shc, TrkC, cAMK, PSEN*, SC-1,	Leishmaniasis	РІЗК
		ASK1, JNK, MEK1/2, Erk1/2, FKHRL1,	Toxoplasmosis	C3, HF, MHCII
		GSK3β	Staphylococcus aureus	MHCII, MB
	Long term depression	Ras, MEK1/2, ERK1/2, PP2A, G, PLC,	Asthma	H2A. H2B. MHCII. C7. MAC. C3
	0 1	IGF1	Systemic lupus erythematosis	ITGA, Desmin, Laminin, DHPR, Titin
	Insulin signalling	INSR. JNK. SHC. SOS. Ras. MEK1/2.	Hypertrophic cardiomyopathy	ITGA, Desmin, Titin, DHPR, AC, Laminin
		ERK1/2, GSK-38, AMPK, GK*, PYG,	Dialated cardiomyopathy	MHCIL laminin
	GnRH signalling	$PKA, PGC-1\alpha, aPKC$	Viral myocarditis	
		PLCB, Sos, Ras, MEK1/2, ERK1/2, JNK.		
		MEKK* CaMK IP3R		
	Colorectal cancer	Axin GSK-38 K-Bas TGF8 TGF8R1		
		hMSH2 FRK hMSH6 c-Fos		
Females genes	RNA transport	RNAseaP. Nup43. Nup54. Gemin8. eIF4E.	Glycolysis / gluconeogenesis	Glucose phosphomutase, phosphoglyceraldehyde
decreased in expression	F	FMRP EIF2B ACIN1 THOC5		dehvdrogenase, aldehvder dehvdrogenase.
decreased in chipression				nhosnhoglyceralkinase glycerate nhosnhomutase nyruvate
	DNA replication	RFC1 a1 e3 RNaseH2B		kinase lactate dehydrogenase thiose phosphoisomerase
	Divireplication	SSB		Phosphofructokinase fructose aldolase
			Fructose and manose metabolism	hevokinase
	Base Excision repair	MBD4 XRCC1 Pols	Galactose metabolism	Squalene synthase squalene monooyygenase methylsterol
	Dase Excision repair	WIDD4, XRCC1, 1012	Steroid biosynthesis	monooxygenase, 7-dehydrocholesterol reductase, DWE5
			Steroid biosynthesis	Hovocaminidaco hovokinaso phosphoglucomutaso
			Amino sugar and nucleotide sugar metabolism	Hevokinase, phosphogracomatase
			Butiriosin and noomycin biosynthesis	CD1
			Neuropative ligand receptor inter-	UKI DALADE ICE DD2 DAL Nova DACGO0 TEADC CJ-2
			DE2 cignolling anth-sector	PI4ARF, IGF-BP3, PAI, NOXA, PAGOUS, ISAPD, CC2
			P53 signalling pathway	TED VATDAGE Daby THDA THDA CALD CDA1
				TIK, VALPASE, KAD/, TUBA, TUBB, CALK, SRA1,
			Lysosome	SRB1, $\alpha \vee \beta 5$, TSP, $\alpha 5\beta 1$

Phagosome	ECM, ITGA, ITGB, Actinin, Fuilamin, PI3K, GF, Shc,
Focal adhesion	MLC, CycD, RhoGAP
	Collagen, Laminin, THBS, Integrin α3, Integrin α5,
	Tenascin, Integrinβ5,Agrin, CD44
ECM receptor interaction	MME, CTSA, AP-N
RENIN Angiotensim	Shc, PI3K, CaMK, RhoGD1, NRAGE, NADE, IRAK, 14-
Neurotrophin signalling pathway	3-3E
	Peptidase, collagen
Protein digestion and absorption	
Parkinsons	Hsp27, COL, Laminin, EhRab, Actinin, PI3K
Amoebiasis	Wnt, Frizzlebox, ECM, ITGA, HSP, Fu, Glut1, VEGF,
Pathways in cancer	HIF-α, p14/ARF, p21, p16/INK4, CyclinD1, p15INK4b
	Shc, PI3K, p21, p14ARF, CyclinD1, p16INK4
Glioma	MMPs, VEGF, p21, p16INK4, CyclinD1
Bladder cancer	ECM, ITGA, PI3K, COX-2, CyclinD1, p15INK4b
Small cell lung cancer	

Figure M1S1 Squared cumulative variance plot (left) of RNAseq samples from old and young tissue engineered tendon and tendon from males and females shows young males and females have similar variances, as cells age variance in gene expression reduces in female cells, and increases in male cells. PCA plot (right) of RNAseq samples from tissue engineered tendon (T) and tendon (TP) from young (24) and old (68) males (blue) and females (pink) shows that young males cluster with old females and old males cluster with young females.

regulation of p38MAPK cascade	positive regulation of developmental process	response to abiotic stimulus	negative regulation of biological process	lung alveolus development	regulation of digestiv system process	ve single-organism behavior	secondary alcohol metabolism	
response to chemical	regulation of fat cell differentiation	positive regulation of cellular protein metabolism una	enzyme linked receptor protein signaling attopathway	fat cell differentiation	negative regulatic of cellul process	n protein ar phosphorylation	sterol metabolism	
regulation of system process	regulation of developmental process	Casca response to UV-A	regulation of multicellular organismal process	sleep	regulation of cell death	negative regulation of transport	response to stimulus	
			regulation	tyrosine	positive	camera-type eye development		
response to organic substance	regulation of cell proliferation	response to lipid	of cellular response to stress	phosphorylation of STAT protein	of biological process	secretion by tissue	fatty acid transport	

Significant Gene Ontology categories represented by genes increased in expression in old males

Figure M1S2 REVIGO output TreeMap of Gene Ontology Biological Process terms over-represented by genes significantly increased in expression in old males (n=70) identified using RNASeq. Maps are coloured by category and sized by log10 p-value

Figure M1S3 REVIGO output scatter plot of Gene Ontology Biological Process (left), Molecular Function (middle), Cellular Component (right) terms over-represented by genes significantly increased in expression in old male cells identified using microarrays

negative regulation of multicellular organismal process	regulation of multice organism process	l Ilular regulation al process		tal r	negative regulation of biological process		pur nuc rec sig pat	rinergic cleotide septor inaling thway respo sportse	response to endogenous stimulus		regulation of response to stimulus	signal transduction response to
positive regulation regulation of phosphorus metabolism					gulation phosphate tabolism	response	to ch	to chemi@KYg6 COMP		ainin	g	acid chemical
process	positivegularigina		gülätion		regulation	to organic substance	cel res to org	llular sponse janic	cellular response to		protein activation cascade	
negative regulation of ERK1	of cellular process	oxygen species	lular system		of protein metabolism		sul	bstance	stimulus	us	cuscult.	
and ERK2 cascade	positive OCC regulation of macrophage	periphera nervous system	tipheral rvous digestin stem system			ethanol		lipid lip	negativ regulat of cello compo		actin filament organizat	cell projection on organization
negative	cytokine production	neuron developm	proces	s		oxidation	n	transport	ansport	moveme	nt Orga	inization
regulation of cellular	skeletal	regulation	negative		regulation	ethano			regulati of trans	on porter	ce	cell
process	muscle tissue development	of molecu function	lar regulation of cell differentia	n ation	modification process	oxidati	on		activity		ad	heston
	regulation of angiogenesis	negative regulation of locomo	regulation of chemo tion productio	n kine m		primary alcohol metabolism		Keratatio OS Sulfate CatabolismO	aminog lism	lycar	developme process	ental biological adhesion

Significant Gene Ontology categories represented by genes increased in expression in old females

Figure M1S4 REVIGO output TreeMap of Gene Ontology Biological Process terms over-represented by genes significantly increased in expression in old females (n=123) identified using RNASeq. Coloured by category and sized by log10 p-value

cellular macromolecul metabolism	cellular macromolecule macromolecule metabolism		cellular regulation protein of RNA modification metabolism		egulation f RNA tetabolism	cellular		nucleic acid metabolism		nucleobase-containir compound metabolism		ontaining	ing cellular nitrogen compound biosynthesis		
				proce	ocess metabolism		metaboli	etabolism heteroo metabo		ellulai Netabo	aromal compo biosyn	ic und thesis	cellular biosynthes	is	
protein modification by small protein conjugation or removal	cel pro me	ular regulation ein of metabolisi cellular		ion bolism	protein modification by RNA sm small metabolism protein conjugation		cellular nitrogen compour metaboli	nd sm	cellular aromatic compound metabolism		heterocycle biosynthesis		organic cyclic compound biosynthes	is	
regulation of nucleic acid-templated	prote meta	ein bolismpro	acromolec atabolism	tion o	rganic ubstance atabolism	ni ai tr	ucleic cid-templated anscription	regulation of T cell regu anergy of T	Golgi orgar Ulatic	i nization) N	organic substan metabol	ice lism	pro loc: to nuc	tein alization :leus uclear	cellular process
transcription	orga cycli	nic c	membrane protein					Cell activatione	rgy				ir	nport	
	compound ectod metabolism protec		ectodomai proteolysis	in 5				ormelosis					nitr con met	ogen npound tabolism	biosynthesis
macromolecule modification	icromolecule dification		r r t s	regulation of cellular response to stress		primary metabolismsn		sm	metabolisi M		catabolism				

Figure M1S5 REVIGO output tree map of Gene Ontology Biological Process terms (n=84) over-represented by genes significantly increased in expression in old female cells identified using microarrays. Coloured by category and sized by log10 p-value

Figure M1S6 REVIGO output tree map of Gene Ontology Molecular Function terms (n=27) over-represented by genes significantly increased in expression in old female cells identified using microarrays Coloured by category and sized by log10 p-value

Significant Gene Ontology represented by genes decreased in expression in old females

Figure M1S7 REVIGO output TreeMap of Gene Ontology Biological Process terms over-represented by genes significantly decreased in expression in old males (n=48) cells identified using RNASeq. Coloured by category and sized by log10 p-value

			NADH metabolism	NAD metabolism	negative regulation of cellular process	negative regulation of biological process	regulation of cellular component movement	extracellular matrix organization	llular	collagen metabolism
ADP metabolism	canonic glycolys	al is ADP			ne re	gative gulation		extracellular extracellular structure organization	ation	multicellular organismal metabolism
purine nucleoside diphosphate metabolism	nucleosid		im		pr	OCESS			developmental process	single-organism process
response to chemical	diphosph metabolis response to abiotic	ate im			single-organism developmental process	n angiogenesi	5	cell adhesiion	cellular component movement	biological adhesion
response to organic substance	response to hypoxia	response to chemica	e I		single ofganish cellular process TOCO	e-organ opment ess	ism al	adhe <mark>sion</mark>		cellular process
response to oxygen levels			h	ound ealing	endodermal cell differentiation	cell aging			biological regulation	

Figure M1S8 REVIGO output TreeMap of Gene Ontology Biological Process terms over-represented by genes significantly decreased in expression in old females (n=334) cells identified using RNASeq. Coloured by category and sized by log10 p-value

Figure M1S9 REVIGO output tree map of Gene Ontology Biological Process terms (n=37) over-represented by genes significantly decreased in expression in old female cells identified using microarrays Coloured by category and sized by log10 p-value

Figure M1S10 REVIGO output scatter plot of Gene Ontology Molecular Function (n=4, left), Cellular Component (n=7, right) terms over-represented by genes significantly decreased in expression in old female cells identified using microarrays

Figure M1S11. Kegg pathway map of regulation of autophagy, genes and pathways identified as affected by ageing in females are circled (Image courtesy of KEGG: Kanehisa, M. and Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. *Nucleic Acids Research* 2000;28(1):27-30. Kanehisa, M., *et al.* KEGG as a reference resource for gene and protein annotation. *Nucleic Acids Research* 2016;44(D1):D457-D462.)

Cross platform analysis of transcriptomic data identifies ageing has distinct and opposite effects on tendon in males and females

Louise. I. Pease¹, Peter. D. Clegg^{1,2}, Carole. J. Proctor^{1,3}, Daryl. J. Shanley^{1,4}, Simon. J. Cockell⁵, and Mandy. J. Peffers^{*1,2}

The sample identifier allows the sample origins to be traced for instance T24XR3 identifies a Tissue engineered tendon (T) sample from young (24), female (X) donor replicate three (R3). For RNAseq three replicates are available however no old females were sampled and only one young male was assayed; gender affects global gene expression; male and female samples are not comparable.

Cell	Age	Gender	Replicate	sample identifier	Processing and data deposits
Tissue	20	Х	3	T24XR3	Mandy Peffers Liverpool University 2016
tendon young	22	Х	5	T24XR5	E-MTAB-4879
	20	Х	6	T24XR6	
	25	Y	8	T24YR8	
Tissue	67	Y	3	T68YR3	Mandy Peffers Liverpool University 2016
tendon old	74	Y	4	T68YR4	E-MTAB-4879
	67 Y 6 T68Y		T68YR6		
Tendon	Tendon 21 Y 1		TP24YR1	Mandy Peffers Liverpool University	
young	16	Y	2	TP24YR2	E-MTAB-2449 (April 2014)
	27	Y	3	TP24YR3	
	14	Y	4	TP24YR4	
Tendon old	66	Х	1	TP68XR1	Mandy Peffers Liverpool University
	68	Х	2	TP68XR2	E-MTAB-2449 (April 2014)
	74	Y	3	TP68YR3	
	60	Y	4	TP68YR4	
	79	Х	5	TP68XR5	

Table M2S1 Details of tissue engineered tendon sample donors and Tendon donors for biological replicates of RNAseq data

Table M2S2 The number of significantly (q<0.05) differentially expressed genes identified in old age using Method 2 for each gender with 1.5 fold change in expression.

Regulation		Up	Down
RNAseq (tendon)		43	90
Male	RNAseq (TET)	100	56
	RNAseq (mixed)	862	11
Female	RNAseq (TET vs tendon)	1637	4907

Table M2S3 The number of significant (p<0.05) genes 1.5 fold up and down regulated identified using Method 2 in combinations of gender, age and technology comparisons

Comparison	Technology	Up	Down
	RNAseq	0	1
Both genders	Array	0	0
	Both Technologies	0	0
Males (Tendon Method 2)	Both Technologies	0	0
Males (tissue engineered tendon Method 2)	Both technologies	0	0
Males (mixed Method 2)	Both technologies	0	0
Females (Method 2)	Both Technologies	0	0

Table M2S4 Pathways significantly (q<0.05) represented by significantly (q<0.05) differentially expressed genes that were 1.5 fold up and down regulated measured using Method 1 and Method 2 for the analysis of RNAseq data, upregulated genes and pathways, downregulated genes and pathways, genes with high (<3) fold changes are noted with an asterisk (*).

	Pathways M1 RNAseq	Gene Symbols / enzyme names	Pathways M2 RNAseq	Gene Symbols / enzyme names
Male genes	Calcium signalling	GPCR, PHK	ABC transporters	ABCA3, ABCB7, ABCC5
increased in	cytokine -cytokine receptor pathway	IL8, LIF, LEP, SF10D	Ubiquitin mediated protelysis	PIRH2, Apc2, NEDD4, WWP1, ARF-BR1,
expression	Neuroactive ligand receptor pathway	HTR, BDKRB, OXTR, LEP		SOCSbox
_	Focal adhesion caveolin	Caveolin, Shc, CycD	Cardiac Muscle contraction	DHPR, Cyto
	JAK-stat signalling pathway	Cytokines, Hormones, CycD	Pathways in cancer	CyclinD, GLI, COX-2, VEGF, TRAFs, Cyclin D1,
	Bacterial invasion of epithelial cells	Shc, Caveolin		PKB, ECM, EGFR, HGF, FGF, MST1, JNK, Bax,
	CHAGAS disease	B2R, IRAK, IL8	PI3k-AKT signalling	MMPs, PMLRAR alpha, Dvl
	GLIOMA	Shc, cyclinD		TSC1, GF, RTK, ECM, ITGA, AKT, p21, CCND1,
	Melanoma	GF, cyclinD	Focal adhesion	Cyclin, GYS, GbetaL, Bim
	Bladder cancer	Cyclin D1, IL-8		ECM, ITGA, PIP5K, AktPKB, Cyclin D, JNK,
	Chronic myeloid leukemia	Shc, CyclinD1	Endocytosis	Rap1, P130Cas, GF, RTK
	5		proteoglycans in cancer	cPML, RTK, EPS15, clathrin, AP-2, ARH, GRK,
				PIP5K, EHD1, ACP33, His, ArfGAP
				IP3R, Ankynn, Cyclin D, FN, HGF, FN,
				alpha5beta1, EGFR, VEGFA, MMP2, uPAR, AKT
Male genes	Antigen processing and presentation	MHCII, KIR		
decreased in	Natural killer cell mediated cytotoxicity	NKG2C/E, NKG2D, NKG2DL		
expression	Leishmaniasis	TGFβ, MHCII		
	Malaria	NKC, TGFβ		
	Toxoplasmosis	MHCII, TGFβ		
	Amoebiasis	TGFβ		
	Colorectal cancer	TGFβ		
	Renal cell carcinoma	TGFBeta		
	Pancreatic cancer	TGFβ		
	Chronic myeloid leukemia	TGFβ		
	Asthma	MHCII, FceR1		
	Rheumatoid arthritis	MHCII, TGFBeta		
Females genes	Glycolysis / gluconogenesis	Aldehyde dehydrogenase, alcohol dehydrogenase	RNA transport	Nup58/45, Nup54, Nup214, pom121, eIF2, PABP,
increased in	Fatty acid degradation	Aldehyde dehydrogenase, alcohol dehydrogenase, long		THOC6
expression		chain acyl-CoA dehydrogenase	Tyrosine metabolism	Alcohol dehydrogenase
	Tyrosine metabolism	Tyrosine monooxygenase, monoamine oxidase, alcohol		
		dehydrogenase (oxidoreductases)	Vitamin digestion and adsorption	IF-R
	Retinol metabolism	ADH, DHRS	ABC transporters	ABCA3, ABCB2, ABCC10, ABCG5
	Xenbiotics	Alcohol dehydrogenase	non-homologous end joining	RAd50, XLF
	Drug metabolism	Alcohol dehydrogenase, monoamine oxidase	Photo transduction	RK, PDE, GCAP
	ABC transporters	ABCA5-10		
	Phagosome	Dynein, MHCII, TLR4, CD36, TSP, iC3b, cathepsin		
	Vascular smooth muscle contraction	CRLR, AC, PKC, IRAG, s-GC, MLCP, MHC		
	Coagulation cascade	VWF, TM, PAR3,4, FH, C3, Clusterin, C6,7,8,9		
	Antigen processing and presentation	HSP70, Ii, MHCII, SLIP, CTSB/LS, CLIP,		

	MHCI pathway	TLR2/4, C3b, C3bi, MHCII		
	MHCII pathway	TLR4, Laminin, tgHSP70, MKK3/6, MHCII,		
	Leishmaniasis	РІЗК		
	Toxoplasmosis	C3, HF, MHCII		
	Staphylococcus aureus	MHCII, MB		
	Asthma	H2A, H2B, MHCII, C7, MAC, C3		
	Systemic lupus erythematosis	ITGA, Desmin, Laminin, DHPR, Titin		
	Hypertrophic cardiomyopathy	ITGA, Desmin, Titin, DHPR, AC, Laminin		
	Dialated cardiomyopathy	MHCII, laminin		
	Viral myocarditis			
Females genes	Glycolysis / gluconeogenesis	Glucose phosphomutase, phosphoglyceraldehyde	Oxidative phosphorylation	COX7A, QCR7, OSCP, V-tupe ATPase (d.F.G),
decreased in		dehydrogenase, aldehyder dehydrogenase,		cytochrome c reductase, cytochrome c oxidase, ATP
expression		phosphoglyceralkinase, glycerate phosphomutase,		phosphohydrolase,
		pyruvate kinase, lactate dehydrogenase, thiose	Ether lipid metabolism	Phospholipase D
		phosphoisomerase		
	Fructose and manose metabolism	Phosphofructokinase, fructose aldolase	Cytokine-cytokine receptor	CXCL6, CXCR7, CCL4, CCL3, OSMR, CCL23,
	Galactose metabolism	hexokinase	interaction	CCL8, CCL11, CCL18, SF21, TGFBR1, IL17B,
	Steroid biosynthesis	Squalene synthase, squalene monooxygenase,		IL17RC, SF19L
	Amino sugar and nucleotide sugar	methylsterol monooxygenase, 7-dehydrocholesterol	Apoptosis	Calpain, Lamin, PARP, CASP9, Actin,
	metabolism	reductase, DWF5		alpha_tubulin, FAP1, A1
	Butiriosin and neomycin biosynthesis	Hexosaminidase, hexokinase, phosphoglucomutase	Hedgehog signalling pathway	Kif7
	Neuroactive ligand-resecptor interaction	Hexokinase	Toll-like receptor signalling	TLR6, MIP-1alpha, MIP-1beta,
		GR1	Aminoacyl-tRNA biosynthesis	glutamate tRNA ligase, alanine tRNA ligase
	P53 signalling pathway	p14ARF, IGF-BP3, PAI, Noxa, PAG608, TSAP6, Cdc2	Endocytosis	TGF-BetaR, SARA, endophilin, Epsin, EPS15,
		AP3, cathepsins, TPP1, HEXA/B, LIMP, NPC, LALP70		Arp2/3, ARH, Dab2, Hsc70, CAPZA, FAM21,
	Lysosome	TfR, vATPase, Rab7, TUBA, TUBB, CALR, SRA1,		ArfGAP, ArfGEF, STAM, VPS26, CHMP6, VPS4,
	Phagosome	SRB1, αVβ5, TSP, α5β1		FIP3, Src, PAR3, WIPF, dynamin
	Focal adhesion	ECM, ITGA, ITGB, Actinin, Fuilamin, PI3K, GF, Shc,	Proteasome	Rpn5, Rpn7, Rpn11, PA28alpha, Rpn13, Rpt6, Rpt2,
		MLC, CycD, RhoGAP		Rpt4, Beta5t, alpha1, alph3, alpha6, alpha7, beta1,
	ECM receptor interaction	Collagen, Laminin, THBS, Integrin α 3, Integrin α 5,		beta2
		Tenascin, Integrinβ5,Agrin, CD44	MAPK signalling pathway	FGF, CACN, RasGRF, RasGRP, Rap1, SRF, HSP72,
	RENIN Angiotensim	MME, CTSA, AP-N	Focal adhesion	MEF2C, TGF-BetaR, Cdb42/Rac
	Neurotrophin signalling pathway	Shc, PI3K, CaMK, RhoGD1, NRAGE, NADE, IRAK,		ECM, ITGB, Src, FAK, RhoGEF, MLCK, Rac,
	Protein digestion and absorption	14-3-3E		Rap1
		Peptidase, collagen	JAK-stat signalling	
	Parkinsons		Natural killer cell mediated	STAM
	Amoebiasis	Hsp27, COL, Laminin, EhRab, Actinin, PI3K	cytotoxicity	
	Pathways in cancer	Wnt, Frizzlebox, ECM, ITGA, HSP, Fu, Glut1, VEGF,	Pathways in cancer	CD94, NKG2CE, CD94, 3BP2, Rac, Rae-1,
		HIF-α, p14/ARF, p21, p16/INK4, CyclinD1, p15INK4b		ULBP1-3
	Glioma	Shc, PI3K, p21, p14ARF, CyclinD1, p16INK4		GPCR, RhoGEF, FAK, ECM, FGF, RasGEF,
	Bladder cancer	MMPs, VEGF, p21, p16INK4, CyclinD1		DAPK, Rac/Rho, RalGDS, Cdb42/Rac, RXR,
	Small cell lung cancer	ECM, ITGA, PI3K, COX-2, CyclinD1, p15INK4b	p53 signallling pathway	PLZFRARalpha, cyclinE, HPH, Rbx1, HDAC,
				TGFbetaR1, CASP9, Fu
			Vitamin digestion and adsroption	Cyclin D, MDM2, MDM1, PIGs, PAG608, Cyclin
				E, KAI

	THTR, SMVT

Table M2S5 Pathways significantly (q<0.05) represented by significantly (q<0.05) differentially expressed genes measured using Method 2 for the analysis of male tendon and tissue engineered RNAseq data, upregulated genes and pathways, downregulated genes and pathways.

	Pathways Males tendon RNAsea	Cone Symbols / enzyme names	Pathways Males tissue engineered	Gana Symbols / anzyma names
	i alliways males tendon terviseq	Gene Symbols / enzyme names	tondon PNAsoa	Gene Symbols / enzyme names
Male genes	Pentose and gluconerate interconversions	D-xvlose 1-dehvdrogenase (NADP(+)).	Glycosphingolipid biosynthesis	ST3GAL4
increased in	Proteasome	Rnt2	RIG-I like recentor signalling	SIKE, IFNkappa
expression	Vasopressin regulated water re-absorption	AOP4	Fcgamma R- mediated	MARCKS, Arp2/3, VAV, AMPHIIm
	Prostate cancer	MAPK1, SOS2, ATF4, CREB3L3, CREB3L1, CREB3.	phagocytosis	
		CDK2, SOS1, MTOR, MAPK3, E2F1, TP53, NFKBIA	Regulation of actin cytoskeleton	Arp2/3
	Epstein Barr virus	TRAF6, CDK2, PTMA, TRAF2, GTF2E1, MAPK8,	Pathways in cancer	AC. MITF. CtBP
	r	MAPK14, TP53, NFKBIA, JUN, TAB2	Bile secretion	LDLR, SR-B1, AC
	Shigellosis		Aldosterone synthesis	LDLR, SR-B1, AC
	0	MAPK1, WASL, VCL, MAPK3, WAS, MAPK8,	Protein processing in the ER	ERManI, Hsp40.
	Hepatitis C	MAPK14, NFKBIA	Ovarian steroidogenesis	AC, LDLR, SR-B1
	NOD-like receptor signalling	MAPK1, TRAF6, SOS2, IKBKE, TRAF2, SOS1,	PPAR signalling	GvK, Perilipin
		MAPK3, MAPK8, MAPK14, TP53, NFKBIA	N-glycan biosynthesis	MAN1, MGAT1
	Neurotrophin signalling pathway	MAPK1, TRAF6, TAB3, MAPK3, MAPK8, MAPK14,	Sphingolipid metabolism	CERS1, UGCG
		NFKBIA, TAB2	mTOR signalling	FNIP, SGK1
	Herpes simplex infection	SOS1, MAPK3, MAPK8, MAPK14, TP53, NFKBIA,		
		JUN, YWHAE		
	Leishmaniasis	TRAF6, CDK2, IKBKE, TRAF2, MAPK8, NFKBIA,		
	MAPK signalling pathway	JUN, TAB2, PPP1CA, SRSF5		
		MAPK1, TRAF6, MAPK3, MAPK14, NFKBIA, JUN,		
	Toxoplasmosis	TAB2		
		MAPK1, TRAF6, SOS2, DUSP4, ATF4, DDIT3,		
	Toll-like receptor signalling pathway	TRAF2, SOS1, MAPK3, HSPA8, HSPA1A, MAPK8,		
		MAPK14, TP53, JUN, TAB2		
		MAPK1, TRAF6, MAPK3, HSPA8, HSPA1A, MAPK8,		
	Protein processing in the endoplasmic	MAPK14, NFKBIA, TAB2		
	reticulum	MAPK1, TRAF6, IKBKE, MAPK3, MAPK8, MAPK14,		
	Fc gamma R-mediated phagocytosis	NFKBIA, JUN, TAB2		
	GnRH signalling pathway	ATF4, DDIT3, PARK2, PDIA4, TRAF2, UBQLN4,		
	Chronic myeloid leukemia	HSPA8, HSPA1A, MAPK8, VIMP		
	RIG-I-like receptor signalling pathway	MAPK1, ARF6, DNM2, WASL, MAPK3, WAS, ASAP1,		
		DNM1		
		MAPK1, SOS2, ATF4, SOS1, MAPK3, MAPK8,		
		MAPK14, JUN		
		MAPK1, SOS2, SOS1, MAPK3, E2F1, TP53, NFKBIA		
		TRAF6, IKBKE, TRAF2, MAPK8, MAPK14, NFKBIA		

Male genes	Metabolic pathways	PLD, NFKB	Regulation of actin cytoskeleton	Arp2/3
decreased in	cAMP signalling	EPAC, VAV2, PLD, NFkappaB	Transcriptional misregulation in	AML1, CEBPalpha, ETO, PML, PLZF, RARalpha,
expression	Pathways in cancer	SDF1, NfkappaB, RhoGEF, , PLD1, AML1ETC	cancer	E2A, PBX1, TEL, AML1, MLL, AF4, ENL, TLX3,
	Ras signalling pathway	NfkappaB, PLD		TLX1, LMO2, c-Rel, Bcl-6, IgH, MAF, MMSET,
	Fc gamma R mediated phagocytosis	PLD, VAV		PAX5, PAX8, PRCC, TMPSS2, ERG, ETV1, ETV4,
	Endocytosis	PLD, Rab22,		ETV5, ELK4, SLC45A3, DDX5, MYCN, Menin,
	Sphingolipid signalling pathway	PLD, NfkappaB		EWSR1, FLI1, ETV1, ERG, ETV4, FEV, ATF1,
	Regulations of actin cytoskeleton	VAV, RhoGEF, IRSp53		WT1, TAF15, FUS, DDIT3, PAX3, FOXO1A, SSX,
	chemokine signalling pathway	NfkappaB, VAV		SYT, ASPL, TFE3
	Ether lipid metabolism	PLD	PI3K-AKT signalling	GF, PKCs, YWHAE
	cytokine-cytokine receptor pathway	IL1RAP	Proteoglycan in cancer	Sdc-1, HGF, PKCalpha, PKC
			N-glycan biosynthesis	MGAT5, B4GALT3

Table M2S6. MicroRNAs (MIR), long non-coding RNAs (LINC) and small nuclear RNAs (snoRNA) identified as differentially expressed in old females. Where transcripts were also identified as significantly (q<0.05) differentially expressed in males the locus is given, if the transcript was not identified as differentially expressed in old males the column contains NA

Transcript IDs	locus female	locus male
MIR1257,TAF4	20:60528524-60640866	NA
MIR125B1	11:121899062-121988132	NA
MIR1287,PYROXD2	10:100143171-100175149	10:100143307-100175030
MIR1304,SNORA1,SNORA18,SNORA25,SNORA32,SNORA40,SNORA8,SNORD5,TAF1D	11:93394804-93547861	11:93394804-93547861
MIR130B,PPIL2	22:22006558-22090123	NA
MIR1909,REXO1	19:1815247-1848452	19:1815247-1848452
MIR22HG	17:1614775-1641893	NA
MIR3605,PHC2	1:33772366-33896653	NA
MIR3614,TRIM25	17:54965269-54991399	17:54965269-54991399
MIR3671	1:65509411-65532186	NA
MIR3917,STMN1	1:26210671-26233482	NA
MIR423,NSRP1	17:27887564-28514994	NA
MIR4435-1HG	2:111953539-112268567	NA
MIR4435-1HG	2:111953539-112268567	NA
MIR4517,NFATC2IP	16:28962127-28978418	NA
MIR4523,TAOK1	17:27679086-27878922	NA
MIR4647,SLC35B2	6:44214823-44225291	NA

MIR4651,POR	7:75528517-75623977	7:75528517-75623977
MIR4680,PDCD4	10:112629500-112679032	NA
MIR4741,RBBP8	18:20279443-20606451	NA
MIR4745,PTBP1	19:797074-812327	NA
MIR4750,TBC1D17	19:50372294-50392005	NA
MIR4784,MZT2A	2:132222472-132250316	NA
MIR5187,TOMM40L	1:161195792-161208092	NA
MIR600HG,STRBP	9:125871772-126030855	NA
MIR639,TECR	19:14625581-14676792	NA
LINC00094	9:136890560-136933657	NA
LINC00152	2:87754886-87907311	NA
LINC00338,SEC14L1	17:75082797-75213179	NA
LINC00342	2:96472293-96486935	NA
LINC00630,LL0XNC01-237H1.2	X:102024088-102161086	NA
LINC00657	20:34633265-34638893	NA
LINC00662	19:28175487-28475892	19:28175487-28475892
LINC00843,PARGP1	10:51592079-51742743	10:51623416-51742596
LINC00854	17:41363853-41383338	NA
LINC00863,NUTM2D	10:89102492-89130452	NA
LINC00894	X:149097744-149392815	NA
LINC00969,MUC20,SDHAP2	3:195384932-195467994	NA
LINC00998	7:112740717-112786385	NA
LINC01011,NQO2,RP1-90J20.12	6:2988200-3024006	NA
LINC01122	2:58654933-59290901	NA
LINC01155	X:53122891-53200096	NA
snoU13	7:56168307-56174269	NA

Pathway	Total	Expected	Hits	P.Value	FDR
Chronic myeloid leukemia	73	5.51	27	5.68E-13	1.23E-10
Pathways in cancer	310	23.4	60	1.74E-12	1.89E-10
RNA transport	126	9.5	35	3.17E-12	2.29E-10
Cell cycle	124	9.35	33	4.94E-11	2.68E-09
Prostate cancer	87	6.56	25	2.13E-09	9.26E-08
Neurotrophin signaling pathway	123	9.28	30	3.86E-09	0.0000014
Herpes simplex infection	103	7.77	25	9.02E-08	0.000028
ErbB signaling pathway	87	6.56	22	0.00000253	0.0000687
Protein processing in endoplasmic reticulum	129	9.73	27	0.00000701	0.0000169
NOD-like receptor signaling pathway	49	3.7	15	0.00000159	0.0000346
T cell receptor signaling pathway	98	7.39	22	0.0000228	0.000045
Shigellosis	47	3.55	14	0.00000513	0.0000928
Glioma	65	4.9	16	0.0000165	0.000276
mRNA surveillance pathway	82	6.19	18	0.0000268	0.000416
Epstein-Barr virus infection	91	6.86	19	0.0000339	0.000491
Ribosome biogenesis in eukaryotes	55	4.15	14	0.0000374	0.000508
Non-small cell lung cancer	52	3.92	13	0.000087	0.00111
Hepatitis C	100	7.54	19	0.000131	0.00158
Focal adhesion	200	15.1	30	0.000175	0.002
Bacterial invasion of epithelial cells	56	4.22	13	0.000196	0.00213
Small cell lung cancer	80	6.03	16	0.000241	0.00249
Renal cell carcinoma	60	4.53	13	0.000407	0.00401
Pancreatic cancer	69	5.2	14	0.000502	0.00474
Adherens junction	70	5.28	14	0.000586	0.0053
Pathogenic Escherichia coli infection	35	2.64	9	0.000865	0.00751
Influenza A	107	8.07	18	0.000922	0.00769
Bladder cancer	29	2.19	8	0.00102	0.00816
Apoptosis		6.26	15	0.00115	0.0089
Endometrial cancer	44	3.32	10	0.00128	0.00956
Melanoma	68	5.13	13	0.00142	0.0103
Legionellosis	40	3.02	9	0.00239	0.0167
Alzheimer's disease	49	3.7	10	0.00301	0.0198
Colorectal cancer	49	3.7	10	0.00301	0.0198
Toxoplasmosis	93	7.01	15	0.00369	0.0235

Table M2S7. Network Analyst KEGG enriched pathways identified for significantly (q<0.05) differentially expressed transcripts with different expression levels and GC content in males and females

p53 signaling pathway	68	5.13	12	0.00431	0.0267
RNA degradation	60	4.53	11	0.00457	0.0273
Circadian rhythm - mammal	22	1.66	6	0.00466	0.0273
Epithelial cell signaling in Helicobacter pylori infection	37	2.79	8	0.00536	0.0306
Chemokine signaling pathway	189	14.3	24	0.00742	0.0413

Table M2S8. Network analyst enriched reactome categories for transcripts identified as significantly (q<0.05) differentially expressed in old females that have different GC content in males and females

Pathway	Total	Expected	Hits	P.Value	FDR
Gene Expression	1090	86.9	216	6.7E-45	9.39E-42
mRNA Splicing	115	9.2	65	3.57E-42	1.48E-39
mRNA Splicing - Major Pathway	115	9.2	65	3.57E-42	1.48E-39
Processing of Capped Intron-Containing Pre-mRNA	119	9.52	66	4.21E-42	1.48E-39
Metabolism of RNA	339	27.1	108	7.38E-40	2.07E-37
mRNA Processing	140	11.2	69	1.59E-39	3.71E-37
Nonsense Mediated Decay Enhanced by the Exon Junction Complex	203	16.2	79	5.6E-36	9.82E-34
Nonsense-Mediated Decay	203	16.2	79	5.6E-36	9.82E-34
Nonsense Mediated Decay Independent of the Exon Junction Complex	184	14.7	74	7.76E-35	1.21E-32
Metabolism of mRNA	317	25.4	98	8.71E-35	1.22E-32
Influenza Infection	185	14.8	74	1.2E-34	1.53E-32
Translation	249	19.9	86	1.55E-34	1.81E-32
Eukaryotic Translation Elongation	186	14.9	74	1.86E-34	2E-32
Peptide chain elongation	178	14.2	72	4.32E-34	4.32E-32
Influenza Life Cycle	180	14.4	72	1.04E-33	9.73E-32
GTP hydrolysis and joining of the 60S ribosomal subunit	201	16.1	76	1.38E-33	1.08E-31
3' -UTR-mediated translational regulation	201	16.1	76	1.38E-33	1.08E-31
L13a-mediated translational silencing of Ceruloplasmin expression	201	16.1	76	1.38E-33	1.08E-31
Disease	945	75.6	180	2.3E-33	1.7E-31
Eukaryotic Translation Initiation	209	16.7	77	4.09E-33	2.73E-31
Cap-dependent Translation Initiation	209	16.7	77	4.09E-33	2.73E-31
Influenza Viral RNA Transcription and Replication	176	14.1	70	1.38E-32	8.43E-31
Viral mRNA Translation	176	14.1	70	1.38E-32	8.43E-31

178	14.2	70	3.26E-32	1.9E-30
204	16.3	75	3.52E-32	1.97E-30
189	15.1	71	3.65E-31	1.97E-29
689	55.1	117	1.41E-16	7.12E-15
45	3.6	25	1.52E-16	7.12E-15
45	3.6	25	1.52E-16	7.12E-15
45	3.6	25	1.52E-16	7.12E-15
26	2.08	19	4.1E-16	1.85E-14
92	7.36	35	5.48E-16	2.4E-14
93	7.44	35	8.14E-16	3.39E-14
83	6.64	33	8.21E-16	3.39E-14
91	7.28	34	2.76E-15	1.1E-13
30	2.4	19	2.51E-14	9.77E-13
45	3.6	23	2.88E-14	1.09E-12
36	2.88	20	1.77E-13	6.37E-12
36	2.88	20	1.77E-13	6.37E-12
107	8.56	33	3.76E-12	1.32E-10
199	15.9	46	1.91E-11	6.53E-10
24	1.92	14	3.44E-10	1.15E-08
37	2.96	17	6.14E-10	0.0000002
149	11.9	36	8.92E-10	2.84E-08
181	14.5	40	1.75E-09	5.45E-08
19	1.52	12	1.82E-09	5.55E-08
164	13.1	37	0.00000004	0.000000119
158	12.6	36	4.93E-09	0.000000144
173	13.8	38	5.43E-09	0.00000155
152	12.2	35	6.05E-09	0.0000017
163	13	36	1.19E-08	0.00000328
178	14.2	38	1.25E-08	0.00000337
179	14.3	38	1.47E-08	0.00000389
290	23.2	52	1.54E-08	0.00000399
162	13	35	3.48E-08	0.00000887
	178 204 189 689 45 45 45 26 92 93 83 91 30 45 36 107 199 24 37 149 181 19 164 158 173 152 163 178 179 290 162	17814.220416.318915.168955.1453.6453.6262.08927.36937.44836.64917.28302.4453.6362.881078.5619915.9241.92372.9614911.918114.5191.5216413.115812.617313.815212.21631317914.329023.216213	17814.27020416.37518915.17168955.1117453.625453.625262.0819927.3635937.4435836.6433917.2834302.419453.623362.8820362.88201078.563319915.946241.9214372.961714911.93618114.540191.521216413.13715812.63617313.83815212.235163133617914.3382902.2521621335	17814.2703.26E-3220416.3753.52E-3218915.1713.65E-3168955.11171.41E-16453.6251.52E-16453.6251.52E-16453.6251.52E-16262.08194.1E-16927.36355.48E-16937.44358.14E-16836.64338.21E-16917.28342.76E-15302.4192.51E-14453.6232.88E-14362.88201.77E-13362.88201.77E-131078.56333.76E-1219915.9461.91E-11241.92143.44E-10372.96176.14E-1014911.9368.92E-1018114.5401.75E-09191.52121.82E-0916413.1370.000000415812.6364.93E-0917313.8385.43E-0916313361.19E-0817914.3381.47E-0829023.2521.54E-0816213353.48E-08

Signaling by SCF-KIT	142	11.4	32	4.77E-08	0.00000119
Signaling by NOTCH	95	7.6	25	5.85E-08	0.00000144
snRNP Assembly	24	1.92	12	6.72E-08	0.0000016
Metabolism of non-coding RNA	24	1.92	12	6.72E-08	0.0000016
Activation of BAD and translocation to mitochondria	17	1.36	10	0.00000115	0.0000268
Signaling by PDGF	189	15.1	37	0.00000211	0.00000484
Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants	52	4.16	17	0.00000272	0.00000614
DAP12 signaling	164	13.1	33	0.00000504	0.0000112
GAB1 signalosome	106	8.48	25	0.00000578	0.0000125
PI3K/AKT activation	106	8.48	25	0.00000578	0.0000125
Downstream signaling of activated FGFR	150	12	31	0.00000609	0.0000129
NGF signalling via TRKA from the plasma membrane	207	16.6	38	0.00000798	0.0000167
NOTCH1 Intracellular Domain Regulates Transcription	50	4	16	0.0000085	0.0000175
PI3K events in ERBB4 signaling	103	8.24	24	0.00000123	0.0000237
PIP3 activates AKT signaling	103	8.24	24	0.00000123	0.0000237
PI-3K cascade	103	8.24	24	0.00000123	0.0000237
PI3K/AKT Signaling in Cancer	103	8.24	24	0.00000123	0.0000237
PI3K events in ERBB2 signaling	103	8.24	24	0.00000123	0.0000237
SLBP independent Processing of Histone Pre-mRNAs	10	0.8	7	0.00000195	0.000037
Constitutive Signaling by NOTCH1 PEST Domain Mutants	59	4.72	17	0.00000202	0.0000378
G0 and Early G1	27	2.16	11	0.00000309	0.0000569
Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant	74	5.92	19	0.00000346	0.0000584
Signaling by NOTCH1 in Cancer	74	5.92	19	0.00000346	0.0000584
Signaling by NOTCH1 PEST Domain Mutants in Cancer	74	5.92	19	0.00000346	0.0000584
FBXW7 Mutants and NOTCH1 in Cancer	74	5.92	19	0.00000346	0.0000584
Signaling by NOTCH1 HD Domain Mutants in Cancer	74	5.92	19	0.00000346	0.0000584
Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer	74	5.92	19	0.00000346	0.0000584
Signaling by NOTCH1	74	5.92	19	0.00000346	0.0000584
Membrane Trafficking	203	16.2	36	0.00000363	0.0000607
SLBP Dependent Processing of Replication-Dependent Histone Pre-mRNAs	11	0.88	7	0.000005	0.0000825
DAP12 interactions	182	14.6	33	0.00000569	0.0000927
Pre-NOTCH Transcription and Translation	12	0.96	7	0.0000112	0.00018

116	9.28	24	0.0000113	0.00018
32	2.56	11	0.0000211	0.000332
521	41.7	68	0.0000241	0.000375
51	4.08	14	0.0000298	0.00046
214	17.1	35	0.0000308	0.00047
28	2.24	10	0.0000344	0.000519
140	11.2	26	0.0000366	0.000539
23	1.84	9	0.0000369	0.000539
23	1.84	9	0.0000369	0.000539
24	1.92	9	0.0000549	0.000793
7	0.56	5	0.0000589	0.000843
508	40.6	65	0.0000689	0.000975
37	2.96	11	0.0000967	0.00136
71	5.68	16	0.000114	0.00158
86	6.88	18	0.00012	0.00165
654	52.3	78	0.000141	0.00191
22	1.76	8	0.000185	0.00249
5	0.4	4	0.00019	0.00249
5	0.4	4	0.00019	0.00249
89	7.12	18	0.00019	0.00249
17	1.36	7	0.000192	0.0025
34	2.72	10	0.000222	0.00285
292	23.4	41	0.000236	0.003
13	1.04	6	0.000268	0.0033
13	1.04	6	0.000268	0.0033
13	1.04	6	0.000268	0.0033
13	1.04	6	0.000268	0.0033
124	9.92	22	0.000286	0.00349
141	11.3	24	0.000295	0.00356
286	22.9	40	0.000305	0.00365
9	0.72	5	0.000309	0.00367
85	6.8	17	0.000328	0.00386
	116 32 521 51 214 28 140 23 23 24 7 508 37 71 86 654 22 5 89 17 34 292 13 13 13 13 13 141 286 9 85	1169.28322.5652141.7514.0821417.1282.2414011.2231.84241.9270.5650840.6372.96715.68866.8865452.3221.7650.450.4897.12171.36342.7229223.4131.04131.04131.04141.328622.990.72856.8	116 9.28 24 32 2.56 11 521 41.7 68 51 4.08 14 214 17.1 35 28 2.24 10 140 11.2 26 23 1.84 9 23 1.84 9 24 1.92 9 7 0.56 5 508 40.6 65 37 2.96 11 71 5.68 16 86 6.88 18 654 52.3 78 22 1.76 8 5 0.4 4 89 7.12 18 17 1.36 7 34 2.72 10 292 23.4 41 13 1.04 6 13 1.04 6 13 1.04 6 13 1.04 6 13 1.04 6 <t< td=""><td>116 9.28 24 0.000113 32 2.56 11 0.000211 521 41.7 68 0.000241 51 4.08 14 0.000298 214 17.1 35 0.000308 28 2.24 10 0.000344 140 11.2 26 0.000366 23 1.84 9 0.0000369 24 1.92 9 0.0000369 24 1.92 9 0.0000549 7 0.56 5 0.0000589 508 40.6 65 0.00014 86 6.88 18 0.0012 654 52.3 78 0.00141 22 1.76 8 0.0019 5 0.4 4 0.0019 5 0.4 4 0.0019 5 0.4 4 0.00192 34 2.72 10 0.00222 292</td></t<>	116 9.28 24 0.000113 32 2.56 11 0.000211 521 41.7 68 0.000241 51 4.08 14 0.000298 214 17.1 35 0.000308 28 2.24 10 0.000344 140 11.2 26 0.000366 23 1.84 9 0.0000369 24 1.92 9 0.0000369 24 1.92 9 0.0000549 7 0.56 5 0.0000589 508 40.6 65 0.00014 86 6.88 18 0.0012 654 52.3 78 0.00141 22 1.76 8 0.0019 5 0.4 4 0.0019 5 0.4 4 0.0019 5 0.4 4 0.00192 34 2.72 10 0.00222 292

trans-Golgi Network Vesicle Budding	64	5.12	14	0.000418	0.00485
-------------------------------------	----	------	----	----------	---------

Figure M2S1 Cullen and Frey graphs of data distributions for male and female tendon tissues analysed using separate CuffDiff analysis (method 2). Males were assessed for tendon, tissue engineered tendon and a mixture of tendon tissue engineered tendon and tendon (mixed), females were assessed based on young tissue engineered tendon and old tendon because these were the only samples available.

Significant Gene Ontology categories represented by genes increased in expression in old males

Figure M2S2 REVIGO output TreeMap of Gene Ontology Biological Process terms over-represented by genes significantly increased in expression in old males (n=21) identified using using mixed tendon and tissue engineered tendon RNASeq samples. Maps are coloured by category and sized by log10 p-value

Figure M2S3 REVIGO output TreeMap of Gene Ontology Cellular Component terms over-represented by genes significantly increased in expression in old males (n=12) cells identified using using mixed tendon and tissue engineered tendon RNASeq samples. Coloured by category and sized by log10 p-value

anion binding	adenyi ribonucleotide binding	nucleoside small phosphate molecule binding binding				transferase activity, transferring phosphorus-containing groups
		carbohydrate	bohydrate ivative rikonu		purine	kinase activity
ion binding	adenyl iOl nucleotide bin binding	n binding	ribonuc	cieotide]	ribonuc leotide binding	catalytic activity
ATP binding	nuc leotide binding	purine ribonucleoside triphosphate binding	pur nuc bin	'ine :leotide ding	heterocyclic compound binding	transferase activity activity

Figure M2S4 REVIGO output TreeMap of Gene Ontology Molecular Function terms over-represented by genes significantly increased in expression in old males (n=12) cells identified using using mixed tendon and tissue engineered tendon RNASeq samples. Coloured by category and sized by log10 p-value

.

Significant Gene Ontology categories represented by genes increased in expression in old females

Figure M2S4 REVIGO output TreeMap of Gene Ontology Biological Process terms over-represented by genes significantly increased in expression in old females (n=273) identified using RNASeq. Coloured by category and sized by log10 p-value

	intracellular membrane-bounded organelle		extracellular exosome		extracellular organelle		nuclear part				cytosol	cytoplasm part	ilc		
	intracellular organelle part	ve	vesicle n		extrac nucleoplasm region part		əllular		cyt		cytos	cell part			
		pigm grant	pigment fila granule xtracebu					ribosomal							
nucleus	ribonucleoprotein complex	extrac exoso cytosolic								subunit		ən	c	organelle	
		riboso subun	it	ribosomal subunit	extra	extracellular		ear romatin							
intro ellulor	organelle part	rganelle ribosome			matr	x	nuclear body		adnes	ion		phosphatase complex			
intracellular organelle					nuc chr	nuclear chromatin		chromatin		ng		cell ju ^{junctin} o	on		

Figure M2S5 REVIGO output tree map of Gene Ontology Cellular Components terms (n=45) over-represented by genes significantly increased in expression in old female cells identified using RNAseq Coloured by category and sized by log10 p-value

Figure M2S6 REVIGO output tree map of Gene Ontology Molecular Function terms (n=57) over-represented by genes significantly increased in expression in old female cells identified using RNAseq Coloured by category and sized by log10 p-value

cell chromatin adhesion transcription DNA nucleic heterocyclic protein **RNA** molecule factor acid compound binding complex binding binding enzyme binding binding binding binding binding protein transcription kinase coactivator kinase protein binding binding bindhing mRNA domain binding specific **RNA** binding polymerase ш chromatin cadherin organic grelatory promoter insulin transcription binding binding cyclic fibronectin collagen receptor factor compound binding enhancer binding proximal binding binding binding region binding **DNAei**C nucleic transcription binding acid factor regulatory structural activity. binding region constituent sequence-specific on transcription binding nucleic of ribosome DNA Dimining factor acid activity binding binding ion binding activity, cation macromolecular enzvme binding complex enźyme sequence-specific binding l' C régulator O DNA activity DNA binding activity protein ion binding binding binding molecular_function Wnt-activated pre-mRNA receptor binding activity

Significant Gene Ontology categories represented by genes decreased in expression in old females

Figure M2S7 REVIGO output TreeMap of Gene Ontology Biological Process terms over-represented by genes significantly decreased in expression in old females (n=527) cells identified using RNASeq. Coloured by category and sized by log10 p-value

		nucleopi	asm													proteir	'n	ca	atalytic
		nu	cleus		nucle body	ar		cyto	oplasm			nucleolus				compl	ex	c	omplex
	cell part	Golgi appara	itus	mite	ochondrior	•	centros	ome				organe membr	lle ane	cy pa	toskeletal rt		cata	membran coat Ivtic	e
									le centri		triole	iole intracelluls vesicle		r cytoplasmic vesicle			com	ubiquiti Ilgase comple	n x
			nuclear membra	, ane	extracell organelle	ular 9	extra exos	acellula some	ar		his de co	itone acetylase mplex	end part	losomal t	early endosome				
			Golgi membra	ane		mler	otubule	mito Opart	chondri	al n e	uclear nvelop	•			ciliary basal body		orga	nelle	
				_	pigment granule	p	art					PML body					adh junc		cell-substrate unction
						chro	omatin	orga	nelle					vacuale				unct	ion
			lysosor membra	mal ane						actin		nuclear		Vacuole					cell junction
			vacuola	ar ane	spindle pole	endo	osome			cytosi	eleton	matrix							envelope
			Golai			men	nbrane			fibr	illar ter				centriolar satellite	ruffle			
		nuclear speck	apparat part	tus	nucleolar part										podosome				myelin sheath

Figure M2S8 REVIGO output TreeMap of Gene Ontology Cellular Component terms over-represented by genes significantly decreased in expression in old females (n=129) cells identified using RNASeq. Coloured by category and sized by log10 p-value

heterocyclic compound binding	organic cyclic compound binding	ATP binding	adenyl ribonud binding	cleotide 3	enz bino	enzyme binding		enzyme binding		ne cadherin a ng binding i identical protein binding tubulin Ras binding binding		l hesion lecule iding		kinase activity	pr	tein				
nucleotide binding	anion binding	nucleoside phosphate	adeny	/l otide	protein complex	tubulin binding	iden prote bind ZYM6	identical protein binding Ras ymeGTPas				protein binding Ras YMEGTPas		protein binding Ras YMCGTPas		protein binding Ras YMCGTPas		p53 binding		
purine ribonucleoside triphosphate	zinc purine ion ribonucleotide	ribonucleotide	smai mole	ig Il Icule	binding	bin	rding	bindir	ng		b	biminiang		alytic tivity						
ion	RNA	nucleic acid	metal	cation	GTPase binding	kinase binding					transferase activity									
purine	binding	binding zinc ion binding	binding	binding	ATPase activity	-AT	Pase		_											
nucleotide binding	carbohydrate derivative binding	itive g				act														

Figure M2S9 REVIGO output TreeMap of Gene Ontology Molecular Function terms over-represented by genes significantly decreased in expression in old females (n=130) cells identified using RNASeq. Coloured by category and sized by log10 p-value

Significant Gene Ontology categories represented by genes decreased in expression in old males

Figure M2S10 REVIGO output TreeMap of Gene Ontology Biological Process terms over-represented by genes significantly decreased in expression in old males (n=5) cells identified using using mixed tendon and tissue engineered tendon RNASeq samples. Coloured by category and sized by log10 p-value

Figure M2S11 REVIGO output TreeMap of Gene Ontology Cellular Component terms over-represented by genes significantly decreased in expression in old males (n=1) cells identified using using mixed tendon and tissue engineered tendon RNASeq samples. Coloured by category and sized by log10 p-value

Figure M2S12 REVIGO output TreeMap of Gene Ontology Molecular Function terms over-represented by genes significantly decreased in expression in old males (n=3) cells identified using mixed tendon and tissue engineered tendon RNASeq samples. Coloured by category and sized by log10 p-value

Figure M2S13 Chord diagrams generated in Network analyst showing intersecting genes that were identified as up (left) and down (right) regulated in tendon tissue (tendon), tissue engineered tendon (tenocyte) and when a mixture of tendon and tissue engineered tendon were analysed (mixed).

Figure M2S14 Network Analyst Topology view of zero order network identified by genes significantly (q<0.05) increased (left) and decreased (right) in expression in old females . Genes are coloured according to connectivity and significance, red nodes have the highest degree and betweenness, pink nodes have medium connectivity and purple nodes have the lowest connectivity. The most significant nodes are labelled.

Figure M2S15 Network Analyst Topology view of the zero order network identified by genes significantly (q<0.05) increased (left) and decreased in expression in old males when tendon and tissue engineered tendon are mixed. Genes are coloured according to connectivity and significance, red nodes have the highest degree and betweenness, pink nodes have medium connectivity and purple nodes have the lowest connectivity. The most significant nodes are labelled.

Figure M2S16 Network Analyst Topology view of the first order network identified from genes significantly (q<0.05) increased (left) and decreased in expression in old male tendon when analysed separately from tissue engineered tendon. Genes are coloured according to connectivity and significance, red nodes have the highest degree and betweenness, pink nodes have medium connectivity and purple nodes have the lowest connectivity. The most significant nodes are labelled.

Figure M2S17 Network Analyst Topology view of the first order network identified by genes significantly (q<0.05) increased (left) and decreased in expression in old male tissue engineered tendon when analysed separately from tendon. Genes are coloured according to connectivity and significance, red nodes have the highest degree and betweenness, pink nodes have medium connectivity and purple nodes have the lowest connectivity. The most significant nodes are labelled.

Figure M2S18 REVIGO output TreeMap of Gene Ontology Biological Process terms over-represented by genes significantly increased in expression in old males tissue engineered tendon (n=33) RNASeq samples. Maps are coloured by category and sized by log10 p-value

anion transport	anion cholesterol transport transport		terol ansport	regulation of phosphatidylcholine catabolism regulation	regulatio of phosp cataboli		protein-lipid complex subunit proorganizationpid complex			
organic anion transport	cholesterol import anion	s	terol nport	catabolisn cholesterol homeostasis	aticyicho 1 lipid homeostasis	positiv regula of trig biosyn	ve ution lyceride nthesis	subu orga orga	anization rotein-lipid omplex ssembly	
lipid storage	transport organophosphate ester transport	ort ite intestinal cholesterol absorption ite low-density lipoprotein particle clearance		viral entry Vintel host Ccell Y	cholesterol metabolism Secondary		resp toto chen	onse onse	single-organism process	
intestinal absorption	lipid transport	ion trans	port	into host cell	alcohol metabolism secondary alcohol metabolism		single-or cellular process		rganism	

Figure M2S19 REVIGO output TreeMap of Gene Ontology Molecular Function terms over-represented by genes significantly increased in expression in old males tissue engineered tendon (n=6) RNASeq samples. Maps are coloured by category and sized by log10 p-value

Figure M2S20 REVIGO output TreeMap of Gene Ontology Cellular Component terms over-represented by genes significantly increased in expression in old males tissue engineered tendon (n=7) RNASeq samples. Maps are coloured by category and sized by log10 p-value

regulation of developmental process	positive regulation of signal transduction	negative regulation of cellular process	pe re of	ositive gulation f cell ommunication	single-multicellular organism process Sin Org regulation pro of multicellular organismal process		positive regulation of multicellular singleorganismaticel		regulation of system process
regulation of anatomical	regulation of signal transduction	positive regulation of signaling	sing dev prod	gle-organism elopmental cess			nism eregulation of multicellular organismal development	carti	lage lensation
structure morphogenesis positive	regulation of protein modification process proces	of response of response to opmenta of stimulus SS sti	sitive gulation response mulus	regulation of cell communication	movement of cell or cell subcellular mot	lity		aminoglycan metabolism	locomotion
regulation of developmental process	negative regulation of biological process			regulation of protein	of cell or subcellula	ar			
regulation of cellular component organization	regulation of proteolysis	regulation of signaling	posi regu of bi proc	phosphorylation tive lation ological ess	regulation of cellular component movement	nt ation I tion	multicellular organismal process	development process	al

Figure M2S21 REVIGO output TreeMap of Gene Ontology Biological Process terms over-represented by genes significantly decreased in expression in old male tissue engineered tendon (n=44) RNASeq samples. Maps are coloured by category and sized by log10 p-value

Figure M2S22 REVIGO output TreeMap of Gene Ontology Molecular Function terms over-represented by genes significantly decreased in expression in old male tissue engineered tendon (n=2) RNASeq samples. Maps are coloured by category and sized by log10 p-value

Figure M2S23 REVIGO output TreeMap of Gene Ontology Cellular Component terms over-represented by genes significantly decreased in expression in old male tissue engineered tendon (n=3) RNASeq samples. Maps are coloured by category and sized by log10 p-value

Figure M2S24 REVIGO output TreeMap of Gene Ontology Molecular Function terms over-represented by genes significantly increased in expression in old male Achilles tendon (n=1) RNASeq samples. Maps are coloured by category and sized by log10 p-value

Figure M2S25 REVIGO output TreeMap of Gene Ontology Biological Process terms over-represented by genes significantly decreased in expression in old male Achilles tendon (n=8) RNASeq samples. Maps are coloured by category and sized by log10 p-value

Figure M2S26 REVIGO output TreeMap of Gene Ontology Molecular Function terms over-represented by genes significantly decreased in expression in old male Achilles tendon (n=4) RNASeq samples. Maps are coloured by category and sized by log10 p-value

Cross platform analysis of transcriptomic data identifies ageing has distinct and opposite effects on tendon in males and females

Louise. I. Pease¹, Peter. D. Clegg^{1,2}, Carole. J. Proctor^{1,3}, Daryl. J. Shanley^{1,4}, Simon. J. Cockell⁵ and Mandy. J. Poffore^{*1,2}

⁵ Cockell⁵, and Mandy. J. Peffers^{*1,2}

⁶ ¹MRC – Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA)

⁷ ^{2*}Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, The University of Liverpool,

8 Leahurst Campus, Neston. CH64 7TE, UK

⁹ ³Institute of Cellular Medicine, Newcastle University, NE2 4HH, UK

¹⁰ ⁴Institute for Cell and Molecular Biosciences, Newcastle University, NE1 7RU, UK

⁵Faculty of Medical Sciences, Bioinformatics Support Unit, Framlington Place, Newcastle University, Newcastle,

12 NE2 4HH

¹³ *M.J.Peffers@liverpool.ac.uk

14 ABSTRACT

The development of tendinopathy is influenced by a variety of factors including age, gender, sex hormones and diabetes status. Cross platform comparative analysis of transcriptomic data elucidated the connections between these entities in the context of ageing. Tissue-engineered tendons differentiated from bone marrow derived mesenchymal stem cells from young (20 - 24 years) and old (54 - 70 years) donors were assayed using ribonucleic acid sequencing (RNA-seq). Extension of the experiment to microarray and RNA-seq data from tendon identified gender specific gene expression highlighting disparity with

existing literature and published pathways. The results identify that in old males decreased expression of CRABP2 leads to cell proliferation, whereas in old females it leads to cellular senescence and an increase in autophagy. In conjunction with existing literature the results explain gender disparity in the development and types of degenerative diseases as well as highlighting a wide range of considerations for the analysis of transcriptomic data. Wider implications are that degenerative diseases may need to be treated differently in males and females because alternative mechanisms may be involved.

16 Statistical Discussion

17 The aim of a transcriptomic experiment is to minimise variation introduced by experimental methods and control for compound-

ing effects to increase the utility of results¹. Available samples and their age attributes (Table 12) highlight comparability issues
 with RNA-seq donors being younger than those used in the microarray experiment in the young age group. In addition there
 were proportionally more young than old males assayed in the microarray experiment.

Incomplete recording of phenotypic data on Array Express limited the number of samples available for analysis. The number 21 of replicates needed to gain accurate results from an RNA-seq experiment is one for debate. The general consensus is more is 22 always better. Schurch et al.² investigated the number of replicates required in an RNA-seq experiment using Saccharomyces 23 cerevisiae BY4741 sequenced using illumina HiSeq 2000 with seven technical replicates per biological replicate processed 24 in four batches. The results were analysed using a variety of algorithms and tools. CuffDiff with three biological replicates 25 produced false positive results consistent with zero and successfully captured differential expression consistent with other 26 analysis methods. However the authors did not recommend CuffDiff for analysis of RNA-seq data whereas we do for the 27 reasons outlined in the following section. 28

In the former study² *S. cerevisiae* was cultured in yeast extract peptone-dextrose + adenine (YPAD). Yeast extract is neither chemically defined nor consistent between batches and so avoidable experimental and environmental variation was introduced. Previous work has identified that significant pH changes occur during culture of *S. cerevisiae* in yeast extract based media which can contribute to variation³. The main aim of Schurch *et al.*'s study was to ascertain the most reliable RNAseq data processing protocols. Table S13 contrasts experimental and data analysis methods used by² with those used in this study.

34 35

Table S13. Comparison of methods used by^2 and in this study

36

Technology	Read type	Alignment Parameterisation	Batches	Samples	Lanes
Illumina HiSeq 2000 ²	single	standard	4	96	7
Illumina HiSeq 2000 (current)	paired	sample specific	2	15	1

37

38 The overview in Table S13 identifies² used error prone single end reads, read alignment used standard parameterisation values 39 for all samples, and samples were processed in four batches of seven lanes. Increased statistical power was achieved in this 40 study by using alignment parameterisation values calculated for each sample. Samples were processed in one lane in one batch 41 per experiment (n=2)² also assessed tools by running 100 bootstrap iterations on repeated sub-selections of samples. An 42 exception to this was CuffDiff where due to slow processing of data the number of iterations was reduced to 30. The validity 43 of the conclusions on CuffDiffs performance was therefore dependent on: variation introduced by experimental methods, 44 values used for alignment parameters, sample selection, bias resulting from batch effects. Additionally CuffDiff was subject 45 to a higher probability of encountering batch effects and variability as a consequence of fewer iterations. It is the opinion 46 of the authors that the methods used in the former study² undermined the power of CuffDiff in the detection of differential 47 expression.² concluded CuffDiff produced zero false positives at a low fold change with as few as three replicates, but it did not 48 faithfully measure differential gene expression. This conclusion may be in part due to the use of fold changes estimated from 49 log₂ transformed data, log₂ transformation of data following a negative binomial distribution (Figure 2) leads to a reduction in 50 accuracy⁴. CuffDiff is a powerful algorithm that can estimate expression at the transcript level (which is more accurate, but takes 51 longer) and controls for variability across replicate libraries⁵. This control over variability is subject to conditions 1 and 2 laid 52 out by⁶. Subsequently a significant reduction in sensitivity and significance occurs when: samples are not grouped biologically, 53 experimental methods increase variation, extensive batch effects are introduced, sample specific alignment parameters are 54 not calculated to inform alignments. What is more in accordance with the data distribution observed in this study it could be 55 hypothesised the assumptions of some of the algorithms used in the study by Schurch et al. may not be suited to analysing 56 RNA-seq data. In this study biologically defined grouping of samples by age and gender altered data distribution estimates and 57 increased statistical power. This shows the similarity of replicates within a group is as important as the number of replicates 58 available. 59

Sample grouping prior to CuffDiff analysis has allowed for significance calculations based on the correct data distributions for each group and this has increased statistical power. The power to detect significant differences in sample groups also depends on closeness of means within test groups, this ultimately determines the variance. Significant results are obtained when the means are close and variance is low. Accuracy can be increased and variance reduced by increasing the number of samples in each group. In cases where the number of samples are low; such as in this study, better defining sample groups so that each sample within the group contributes less to the variance can greatly increase significance⁶. The conditions outlined by Glass *et al*⁶ are defined as:

When n's are unequal and variances are heterogeneous, the actual significance level may greatly exceed the nominal significance level when samples with smaller n's come from populations with larger variances.

When n's are unequal and variances are heterogeneous, the actual significance level may be greatly exceeded by the
 nominal significance level when samples with smaller n's come from populations with smaller variances.

This study shows that analysing data without gender or age separation identifies no differentially expressed genes. Gender and age separation identified both age and gender affected genes (Tables M1S2 and M1S3). Defining sample groups by their biological attributes improved the accuracy of data distribution, mean and variance calculations; leading to the identification of more differentially expressed genes in each group. The power to detect differential expression was significantly increased in this study by manipulation of principles 1 and 2 outlined above⁶. Biologically informed grouping and sample group balancing ensured n's were equal, and variances were small and homogeneous within sample groups, generating the principle:

• When n's are equal and variances are homogeneous, the actual significance level may greatly exceed the nominal significance level when samples with smaller n's come from populations with smaller variances.

Previous assessment of age and gender impacts using the current data (E-GEOD-26051)⁷ has been completed using covariance;
 identifying that both age and gender only contributed to approximately one percent of variance.

Covariance is widely used to assess the impact of experimental factors. The method relies on the calculation of a mean value for parameters (age or gender). Separating samples by compounding factors in this study identified that the combination of age and gender have opposing effects on gene expression. Consequently it could be concluded that the failure to identify these impacts in the previous study⁷ was due to samples not being separated by compounding factors contributing to increased variance heterogeneity in age and gender groups as well as zeroing the calculated means. It appears that highly significant changes in gene expression in females were masked by the inclusion of a greater number of males, increased variance due to

⁸⁷ mixed gender analysis, and application of the wrong statistical tests and assumptions. Jelinsky *et al.*⁷ violated conditions 1 and

⁸⁸ 2 defined by Glass *et al.*⁶. Although ANCOVA works when these assumptions are violated it assumes homogeneity of variance,
 ⁸⁹ an assumption that was not met. ANCOVA is also subject to an exception when there are an unequal number of subjects in
 ⁹⁰ groups (Table 12). In accordance with recorded variance in this study it could be concluded that the imbalanced experimental

design (young males (n=11 low variance), old males (n=4 high variance)) in the microarray study contributed to the reduction

⁹² in differentially expressed genes identified in males in accordance with the rule:

• When n's are unequal and variances are homogeneous, the actual significance level may fall well below the nominal significance level when samples with smaller n's come from populations with higher variances.

This rule highlights an additional factor that may have determined the number of male genes identified as differentially expressed in this study. Table 12 shows that there were 11 young males in the microarray study and only four old males, therefore giving rise to unequal n's and higher variance. The impact of unbalanced sample groups was tested by balancing male microarray samples into groups of young 35-50 (n=3) and old < 59 (n=3). Sample balancing identified only one gene (Table M1S1) a potassium gated voltage channel (KCNJ16) that was three fold decreased in expression. Balancing male age groups results in a reduction in sample group size further reducing the number of genes identified as differentially expressed in males. This may be a consequence of higher variance in old males.

¹⁰² Hormones, lipids and the cell cycle

Hormones have been implicated in regulating oxidative stress and cell cycle processes; testosterone increases, but oestrogen 103 decreases the production of red blood cells, DNA, RNA, and proteins⁸. Genes and pathways increased in old male TET are 104 known to respond to steroid concentrations as well as the availability of lipids. Pathway changes represent alterations in lipid 105 metabolism and profiles. Lipid profiles have been reported to be affected by a range of factors. Testosterone replacement 106 reduces LDL and cholesterol, increases glucose oxidation, reduces insulin resistance and increases lipolysis⁹. Testosterone 107 and oestrogen have both been implicated in regulating lipid profiles, and increasing the activity of the plasma membrane 108 calcium pump $^{9-13}$. Post-menopausal women have significantly lower testosterone concentrations than menstruating women, 109 however in males testosterone concentrations remain stable until approximately 63 years of age¹⁴. Therefore gender and age 110 related differences in lipid profiles and metabolism identified in this study may be a consequence of hormone differences. 111 Interestingly genes involved in androgen receptor activity were decreased in expression in males (Figure M2S12), and two 112 genes involved in responding to hormones (SGK1 Serum/Glucocorticoid Regulated Kinase 1, RAN, Member RAS Oncogene 113 Family, Androgen Receptor-Associated Protein 24) were identified by network analysis on genes increased in expression in 114 tissue engineered tendon (Figure M2S17). Immune signalling was affected by ageing in males and females, notably increases 115 in cytokine-cytokine receptor signalling, natrual killer cells and inteleukin mediated signalling in males were mirrored by 116 decreases in females. Immune responses are known to differ in males and female with females having stronger responses and 117 higher concentrations of immunoglobulin, which has been linked to hormones¹⁵. 118

Biosynthesis of testosterone, and oestrogen rely on the enzyme DHEA and availability of hydroxycholesterol; also a 119 precursor for *de novo* vitamin D synthesis. A decline in vitamin D concentration occurs in old age and is a risk factor for the 120 development of autoimmune disorders, infections, type 2 diabetes, multiple sclerosis and rheumatoid arthritis¹⁶. Calcium and 121 vitamin D supplements alter the lipid profiles of diabetics. Vitamin D is thought to regulate de novo lipid synthesis, inflammation 122 and calcium uptake⁹. A reduction in cholesterol synthesis or alterations in the oxidative state of cholesterol in old age could 123 underpin reductions in hormone and vitamin D synthesis. This scenario is supported by observed differences in the efficacy of 124 testosterone replacement that are thought to be due to the potential for cells to convert testosterone to dihydroxytestosterone⁹. 125 Table M1S5 shows the enzyme 7-dehydrocholesterol reductase is decreased in expression in old females, thereby reducing 126 availability of hydroxycholesterol. Additionally a significant over-representation of genes involved in cholesterol biosynthesis 127 was identified by genes decreased in expression in old females (Table 6). In females Vascular Endothelial Growth Factor 128 (VEGF) expression is significantly reduced (Table M1S5). Vitamin D3 is thought to increase VEGF expression¹⁷, therefore 129 reduced VEGF expression in females may be reflective of a vitamin D deficient state. Contrary to this TGF-Beta mediated 130 growth inhibition is thought to be induced by treatment with vitamin D3^{18,19}. In females TGF-Beta was increased in expression 131 coinciding with reductions in cell cycle, however in males it was decreased in expression coinciding with high cell cycle. This 132 may be suggestive of opposing effects of vitamin D in males and females, and confusion may have arisen through invalid 133 comparisons of males and females. Determined relationships between the entities discussed are summarised in Figure 1. 134

Figure 1. Entity relation diagram summarising the interactions between Vitamin D, calcium, insulin and cholesterol described above. Red arrows show positive regulatory processes thereby increasing entity concentrations, green arrows show negative regulatory processes thereby decreasing entity concentrations. Where the relationship is not fully determined entities are linked by black arrows.

High Density Lipoproteins (HDLs) regulate cholesterol bioavailability, and altered HDL profiles have been found to be 135 associated with immune mediated disorders including rheumatoid arthritis, SLE, Crohn's disease and multiple sclerosis²⁰. 136 HDLs are decreased in type 2 diabetes which has been associated with small dense oxidized and glycated LDLs. HDLs are 137 important components of MHCs, in this study MHCII expression was decreased in old males but was increased in old females 138 alongside ubiquitin mediated proteolysis (Table M1S5), reported to promote the production of inflammatory cytokines resulting 139 in endocytosis of MHCIIs²¹. Oxidised LDLs are associated with dysregulation of calcium homeostasis, ER stress and increased 140 autophagy^{22,23}. Increased lipolysis, insulin resistance and proteolysis were seen in old females providing evidence of autophagy 141 that may also be reflective of an increase in oxidized LDLs and alterations in calcium homeostasis. 142

Retinoic acid binding protein CRABP2 was identified as decreased in expression with age in males and females using 143 RNA-seq. CRABP2 is thought to influence tumor growth by; activation of RARs leading to cell cycle arrest, and activation of 144 PPARs leading to proliferation. The outcome is determined by testosterone which inhibits RARs and FABP5 that has highest 145 expression levels in females. FABP5 influences lipid metabolism and oestrogen receptor activity. Expression of FABP5 is 146 also lowered by dietary intake of poly-unsaturated fatty acids (PUFAs)²⁴⁻²⁷, suggesting the availability of PUFAs regulate 147 FABP5 expression. Retinoic acid deficiency in rats has been shown to result in feminisation of gene expression and reduction 148 in DHEA expression²⁸. Since cholesterol is unaffected²⁸ retinoic acid could be said to regulate testosterone synthesis through 149 DHEA. Retinoic acid responsive pathways regulate lipid and hormone synthesis as well as auto-immune disorders and the 150 development of tumors. PPAR isoforms are differentially expressed in males (PPAR-Alpha) and females (PPAR-Beta) and 151 this has been linked to seasonal alterations in testosterone and oestrogen concentrations, lipid metabolism and alterations in 152 oxidative stress²⁹⁻³⁴; all of which differ in males and females. In this study PPAR signalling was increased, and RARalpha 153 decreased in old male tissue engineered tendon (Table M2S5). 154

Hormones influence oxidative stress levels; progesterone increases oxidative stress while oestrogen suppresses the activity 155 of NADPH oxidase. Oestrogen is reported to reduce the expression of oxidative stress protein encoding genes SOD2 and SOD3. 156 There is a tendency for the source of oxidative stress in males to be mitochondrial, based on measurement of mitochondrial 157 SOD proteins, whereas in females there is a greater contribution from the endoplasmic reticulum $(ER)^{35-38}$. High oxidative 158 stress has been linked to reduced lifespan; interestingly higher oxidative stress has been identified in female C57BL6 mice; one 159 of few species where females have a shorter lifespan³⁵. Lower NADPH oxidase concentration have been identified in female 160 rats³⁹. Oestrogen and progesterone have been implicated because ovariectomy of female rats abolished gender differences in 161 oxidative stress. In humans there have been very few studies exploring the role of gender and oxidative stress. Frisard et al.⁴⁰ 162 investigated resting metabolic rate (RMR) in humans to determine its impact on oxidative stress levels in the young, old, and 163 those > 90yrs. They collected data on; age, weight, height, BMI, percentage fat, Free Fat Mass (FFM), and Fat Mass (FM), 164 measuring RMR following overnight fasting using VO_2 max. Significant (p<0.001) differences in weight, percentage fat, FFM 165 and RMR for males and females were observed so RMR was adjusted for FFM, FM and gender. The study reported oxidative 166 stress levels as one value per age group and the authors concluded there was no correlation between RMR and oxidative stress, 167 or lower oxidative stress in those aged > 90. In a further study⁴¹ the same authors identified and then corrected for gender 168

differences instead of actively studying them. As a consequence the fact that males have higher metabolic rates and higher
 oxidative stress were not identified or reported. The aim of their work was to identify if people aged over 90 years had lower
 oxidative stress levels but analysis errors meant this remains undetermined.

In males a higher cell cycle is observed alongside decreased expression of MHCII which could lead to destruction of cells 172 by phagocytes in males (increases in $fc\gamma$ R-mediated phagocytosis). This could be driving increases in cell cycle due to the 173 requirement for replacement cells. In females lower metabolic rates could reduce the availability of lipids leading to reductions 174 in hormone and vitamin D concentrations in old age, thereby driving a reduction in the cell cycle. Lower cell cycle in females 175 would explain lower variation and the propensity to develop tendinopathy and other degenerative diseases could be due to 176 damaged cells not being replaced. There are key gender differences in responses to retinoic acid and vitamin D. Retinoic 177 acid appears to regulate testosterone synthesis and promotes the cell cycle, high doses of vitamin D in females counteract this 178 effect⁴². 179

180 References

- Novak, J. P., Sladek, R. & Hudson, T. J. Characterization of variability in large-scale gene expression data: Implications for study design. *Genomics* 79, 104–113 (2002). URL <GotoISI>://WOS:000173296600014.
- 2. Schurch, N. J. *et al.* How many biological replicates are needed in an rna-seq experiment and which differential expression tool should you use? *Rna* 22, 839–851 (2016). URL <GotoISI>://WOS:000376205600004.
- **3.** Pease, L. I. Toxicogenomics : a transcriptomics approach to assess the toxicity of 4-nitrophenol to *sachharomyces cerevisiae. thesis* 32–54 (2011). URL http://hdl.handle.net/10443/1142.
- 4. O'Hara, R. B. & Kotze, D. J. Do not log-transform count data. *Methods Ecol. Evol.* 1, 118–122 (2010). URL
 <GotoISI>://WOS:000288914100003.
- Anjum, A. *et al.* Identification of differentially expressed genes in rna-seq data of arabidopsis thaliana: A compound distribution approach. *J. Comput. Biol.* 23, 239–247 (2016). URL <GotoISI>://WOS:000373278500002.
- 6. Glass, G. V., Peckham, P. D. & Sanders, J. R. Consequences of failure to meet assumptions underlying fixed effects analyses of variance and covariance. *Rev. Educ. Res.* 42, 237–288 (1972). URL <GotoISI>://WOS:A1972N995700001.
- 7. Jelinsky, S. A. *et al.* Regulation of gene expression in human tendinopathy. *Bmc Musculoskelet. Disord.* 12 (2011). URL
 <GotoISI>://WOS:000290616400001.
- **8.** Yamamoto, M., Hayashi, Y. & Yamada, K. Sex hormones and bone marrow functions. *Nihon rinsho. Jpn. journal clinical medicine* **32**, 3346–9 (1974). URL <GotoISI>://MEDLINE:4615186.
- 9. Kelly, D. M. & Jones, T. H. Testosterone: a metabolic hormone in health and disease. *J. Endocrinol.* 217, R25–R45 (2013).
 URL <GotoISI>://WOS:000319457600002.
- 199 10. Slusher, A. L., McAllister, M. J. & Huang, C.-J. A therapeutic role for vitamin d on obesity-associated inflammation
 and weight-loss intervention. *Inflamm. research : official journal Eur. Histamine Res. Soc.* 64, 565–75 (2015). URL
 201 <GotoISI>://MEDLINE:26142253.
- Asemi, Z. *et al.* Calcium plus vitamin d supplementation affects glucose metabolism and lipid concentrations in overweight
 and obese vitamin d deficient women with polycystic ovary syndrome. *Clin. Nutr.* 34, 586–592 (2015). URL <GotoISI>:
 //WOS:000357241900005.
- Tabesh, M., Azadbakht, L., Faghihimani, E., Tabesh, M. & Esmaillzadeh, A. Effects of calcium-vitamin d co-supplementation on metabolic profiles in vitamin d insufficient people with type 2 diabetes: a randomised controlled clinical trial. *Diabetol.* 57, 2038–2047 (2014). URL <GotoISI>: //WOS:000341708900005.
- 13. Dick, I. M., Prince, R. L., Kelly, J. J. & Ho, K. K. Y. Estrogen effects on calcitriol levels in postmenopausal women
 a comparison of oral versus transdermal administration. *Clin. Endocrinol.* 43, 219–224 (1995). URL <GotoISI>:
 //WOS:A1995RM99400012.
- Yamaguchi, A., Ichimura, T. & Yamabe, T. The measurement of plasma-free testosterone in normal menstrual females, pregnant females, post menopausal females and vulvar dystrophy. *Nihon Naibunpi Gakkai zasshi* 64, 482–8 (1988). URL
 <GotoISI>://MEDLINE:3208920.
- 15. Marshall-Gradisnik, S., Green, R., Brenu, E. & Weatherby, R. Anabolic androgenic steroids effects on the immune system:
 a review. *Cent. Eur. J. Biol.* 4, 19–33 (2009). URL <GotoISI>://WOS:000263003200003. DOI 10.2478/s11535 008-0058-x.

- 16. Cutolo, M. *et al.* Vitamin d, steroid hormones, and autoimmunity. *Steroids Neuroendocr. Immunol. Ther. Rheum. Dis. I* 1317, 39–46 (2014). URL <GotoISI>: //WOS:000337808900007.
- **17.** Cardus, A. *et al.* 1,25-dihydroxyvitamin d(3) regulates vegf production through a vitamin d response element in the vegf promoter. *Atheroscler.* **204**, 85–89 (2009). URL <GotoISI>://WOS:000266670100015.
- 18. Kimura, A., Ohashi, K. & Naganuma, A. Cisplatin upregulates saccharomyces cerevisiae genes involved in iron homeostasis
 through activation of the iron insufficiency-responsive transcription factor aft1. J. Cell. Physiol. 210, 378–384 (2007).
 URL <GotoISI>://WOS:000242876400012.
- 19. Heger, J. *et al.* Tgf beta receptor activation enhances cardiac apoptosis via smad activation and concomitant no release. J.
 Cell. Physiol. 226, 2683–2690 (2011). URL <GotoISI>://WOS:000294214400026.
- 226 **20.** Norata, G. D., Pirillo, A., Ammirati, E. & Catapano, A. L. Emerging role of high density lipoproteins as a player in the 227 immune system. *Atheroscler.* **220**, 11–21 (2012). URL <GotoISI>://WOS:000298374800003.
- 228 21. Oh, J. & Shin, J.-S. Molecular mechanism and cellular function of mhcii ubiquitination. *Immunol. Rev.* 266, 134–144
 (2015). URL <GotoISI>: //WOS:000356457000010.
- Muller, C., Salvayre, R., Negre-Salvayre, A. & Vindis, C. Hdls inhibit endoplasmic reticulum stress and autophagic response induced by oxidized ldls. *Cell Death Differ*. 18, 817–828 (2011). URL <GotoISI>://WOS:000289344200008.
- 232 23. Verges, B. Lipid modification in type 2 diabetes: the role of ldl and hdl. *Fundamental Clin. Pharmacol.* 23, 681–685
 233 (2009). URL <GotoISI>://WOS:000271631800005.
- **234 24.** Li, Q. *et al.* Serum retinol binding protein 4 is negatively related to estrogen in chinese women with obesity: a crosssectional study. *Lipids Heal. Dis.* **15** (2016). URL <GotoISI>://WOS:000371779300004.
- 236 25. Vreeland, A. C., Levi, L., Zhang, W., Berry, D. C. & Noy, N. Cellular retinoic acid-binding protein 2 inhibits tumor growth by two distinct mechanisms. J. Biol. Chem. 289, 34065–34073 (2014). URL <GotoISI>://WOS: 000346077600032.
- 239 26. Zhang, F. *et al.* Dietary fatty acids affect lipid metabolism and estrogen receptor expression in n-methyl-n-nitrosourea induced rat mammary cancer model. *Clin. Lab.* 61, 389–395 (2015). URL <GotoISI>://WOS:000353008800023.
- 241 27. Huang, H. F. S., Li, M. T., VonHagen, S., Zhang, Y. F. & Irwin, R. J. Androgen modulation of the messenger ribonucleic acid of retinoic acid receptors in the prostate, seminal vesicles, and kidney in the rat. *Endocrinol.* 138, 553–559 (1997).
 243 URL <GotoISI>://WOS:A1997WC64600006.
- 244 28. McClintick, J. N. *et al.* Global effects of vitamin a deficiency on gene expression in rat liver: evidence for hypoandrogenism.
 245 J. Nutr. Biochem. 17, 345–355 (2006). URL <GotoISI>://WOS:000237646300006.
- 246 29. Attakpa, E. S., Sezan, A. & Seri, B. Ppar-ALPHA role in obesity-diabetes in mice. *Acta Endocrinol.* 9, 533–542 (2013).
 247 URL <GotoISI>://WOS:000327227600004.
- 30. Rosenberger, T. A., Hovda, J. T. & Peters, J. M. Targeted disruption of peroxisomal proliferator-activated receptor beta (delta) results in distinct gender differences in mouse brain phospholipid and esterified fa levels. *Lipids* 37, 495–500 (2002).
 URL <GotoISI>://WOS:000175743300009.
- 31. Ibabe, A., Bilbao, E. & Cajaraville, M. P. Expression of peroxisome proliferator-activated receptors in zebrafish (danio rerio) depending on gender and developmental stage. *Histochem. Cell Biol.* 123, 75–87 (2005). URL <GotoISI>: //WOS:000227426200008.
- Yaacob, N. S., Goh, K. S. K. & Norazmi, M. N. Male and female nod mice differentially express peroxisome proliferatoractivated receptors and pathogenic cytokines. *Exp. Toxicol. Pathol.* 64, 127–131 (2012). URL <GotoISI>://WOS:
 000299030400019.
- 33. Shirinsky, I. V. & Shirinsky, V. S. Targeting nuclear hormone receptors: Pparalpha agonists as potential disease-modifying
 drugs for rheumatoid arthritis. *Int. journal rheumatology* 2011, 937843–937843 (2011). URL <GotoISI>://MEDLINE:
 21760804.
- 34. Batista-Pinto, C., Rocha, E., Castro, L. F. C., Rodrigues, P. & Lobo-da Cunha, A. Seasonal and gender variation of peroxisome proliferator activated receptors expression in brown trout liver. *Gen. Comp. Endocrinol.* 161, 146–152 (2009).
 URL <GotoISI>://WOS:000264012300022.
- 35. Ali, S. S. *et al.* Gender differences in free radical homeostasis during aging: shorter-lived female c57bl6 mice have
 increased oxidative stress. *Aging Cell* 5, 565–574 (2006). URL <GotoISI>://WOS:000242198700013.

- 36. Wang, L., Zhu, L. & Wang, C.-c. The endoplasmic reticulum sulfhydryl oxidase ero1 beta drives efficient oxidative protein folding with loose regulation. *Biochem. J.* 434, 113–121 (2011). URL <GotoISI>://WOS:000287461000011.
- Wang, J. *et al.* Derlin-1 is overexpressed in human breast carcinoma and protects cancer cells from endoplasmic reticulum stress-induced apoptosis. *Breast Cancer Res.* 10 (2008). URL <GotoISI>://WOS:000254811400014.
- 38. Mota, S. I. *et al.* Oxidative stress involving changes in nrf2 and er stress in early stages of alzheimer's disease. *Biochimica Et Biophys. Acta-Molecular Basis Dis.* 1852, 1428–1441 (2015). URL <GotoISI>://WOS:000355715200021.
- **39.** Miller, A. A., De Silva, T. M., Jackman, K. A. & Sobey, C. G. Effect of gender and sex hormones on vascular oxidative stress. *Clin. Exp. Pharmacol. Physiol.* **34**, 1037–1043 (2007). URL <GotoISI>://WOS:000248977900013.
- 40. Frisard, M. & Ravussin, E. Energy metabolism and oxidative stress impact on the metabolic syndrome and the aging process. *Endocr.* 29, 27–32 (2006). URL <GotoISI>://WOS:000236772000005.
- 41. Frisard, M. I. *et al.* Aging, resting metabolic rate, and oxidative damage; results from the louisiana healthy aging study. *Journals Gerontol. Ser. a-Biological Sci. Med. Sci.* 62, 752–759 (2007). URL <<u>GotoISI>://WOS:000253828700010</u>.
- 42. Hetland, R. B., Alexander, J., Berg, J. P., Svendsen, C. & Paulsen, J. E. Retinol-induced intestinal tumorigenesis in min/+ mice and importance of vitamin d status. *Anticancer. Res.* 29, 4353–4360 (2009). URL <GotoISI>://WOS: 000273203300006.

280 Author contributions statement

P.D.C. and M.J.P. conceived the experiment(s), M.J.P. conducted the experiment(s), L.I.P analysed the results. S.J.C monitored programs and statistics. All authors reviewed the manuscript.

283 Funding

Mandy Peffers is funded through a Wellcome Trust Clinical Intermediate fellowship. This work was supported by the MRC

- and Arthritis Research UK as part of the MRC Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA).
- **Competing financial interests**. The authors declare no competing financial interests.