Supplemental Data

The Intrinsically Disordered N-terminal Domain of Galectin-3 Dynamically Mediates Its Multisite Self-association of the Protein through Fuzzy Interactions

Yu-Hao Lin^a, De-Chen Qiu^a, Wen-Han Chang^a, Yi-Qi Yeh^c, U-Ser Jeng^{c,d}, Fu-Tong Liu^e, and Jie-rong Huang^{a,b,*}

 From the ^aInstitute of Biochemistry and Molecular Biology, ^bInstitute of Biomedical Informatics, National Yang-Ming University, No. 155 Section 2 Li-nong Street, Taipei, Taiwan ^cNational Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
^dDepartment of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan ^eInstitute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan

Running title: Galectin-3 self-association

To whom correspondence should be addressed: Prof. Jie-rong Huang, Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155 Section 2 Li-nong Street, Taipei, Taiwan; Telephone: (+886)-2-2826-7258; Email: jierongh@ym.edu.tw

Supplemental Figures

Figure S1. (*A*) Typical ¹⁵N Carr-Purcell-Meiboom-Gill relaxation dispersion curves for 400 μ M full-length galactin-3. The residue number is indicated in each panel. (*B*,*C*) The one-dimensional ¹³C spectrum with different *T*₂ delays (blue: 20 ms, red: 40 ms, green: 60 ms; purple: 80 ms; yellow: 100 ms) for (*B*) 400 μ M and (*C*) 40 μ M samples. The numbers of scans were 64 and 1024 respectively. The integrated area below each spectrum (between 168 to 179 ppm, indicated as orange lines) were normalized to the one of the first decay and listed in the same color scheme.

FIGURE S2. (*A*,*B*) HSCQ spectra, (*C*,*D*) transverse relaxation rate constants, (*E*,*F*) chemical shift perturbation, and (*G*,*H*) ratios of peak intensities ratio for (*A*,*C*,*E*,*G*) the N-terminal domain (NTD) of galectin-3 alone, and (*B*,*D*,*F*,*G*) the carbohydrate recognition domain (CRD) alone. In parts (*A*–*D*), the data from 40 or 400 μ M samples are shown in black and red respectively.

Figure S3. (*A*) Assigned HSQC spectrum of the N-terminal domain (NTD) of galectin-3 at 283 K (red) overlaid on the spectra recorded at 288 (yellow), 293 (green), 298 (cyan), and 303 K (purple). (*B*) NMR transverse relaxation rates (R_2) of the NTD collected at 283 K on a 850 MHz spectrometer for 40 (black) and 400 μ M (red) samples.

Figure S4. Overlay of the HSQC spectra of (*A*) 40 and (*B*) 400 μ M samples of full-length (red), Δ^{1-10} (orange), Δ^{1-20} (yellow), Δ^{1-30} (dark green), Δ^{1-40} (light green), Δ^{1-60} (cyan), Δ^{1-80} (blue), and Δ^{1-100} (purple) constructs of galectin-3. Expanded views are shown on the right of the peaks whose positions change the most between constructs.

Figure S5. (*A*,*C*) Chemical shift differences and (*B*,*D*) ratios of HSQC peak intensities between samples of galectin-3 with and without 250 mM lactose at a protein concentration of (*A*,*B*) 40 and (*C*,*D*) 400 μ M. The most prominent chemical shift perturbations as expected occur around the carbohydrate-binding site (green bars and orange triangles).

Figure S6. (*A*) Overlay of HSQC spectra of 40 μ M samples of galectin-3 without urea (red) or in the presence of 0.8 (green), 2 (cyan), and 4 M (purple) urea (the latter spectrum is of lesser quality because the protein becomes denatured). (*B–E*) Expanded views of the peaks whose positions change the most, namely those assigned to (*B*) residue 210 and 202, (*C*) residue 211, (*D*) residue 212, and (*E*) residue 216. (*F*) Overlaid HSQC spectra of 400 μ M samples of galectin-3 in the absence (red) and presence of 0.8 M urea (green). The squares indicate the peaks highlighted in Fig. 6*I*.

Figure S7. (*A*) Photographs and (*B*) microscope images of liquid-liquid phase separation of the N-terminal domain of galectin-3 (400 μ M protein sample in the presence of 300 mM NaCl). The sample, initially transparent at ~0 °C (in iced water), becomes clouded when left for ~90 s at room temperature. This process is reversible. (*C*) An example of two droplets fusion event (less than ten seconds) demonstrates their liquid-like property.

Figure S8. Purification of galectin-3. (*A*) Schematic flowchart of the purification process. (*B*) A typical SDS-PAGE gel used to confirm the purity of the sample. The lanes from left to right are: protein weight marker (M); the cell lysate supernatant (Sup); the flow-through of the nickel-charged IMAC column (Fl); the wash-through (W); the elution (El), before digestion using Ulp1 protease (Bd) and after protease digestion (Ad); the second flow-through of the protease-digested solution (Fl₂) containing the target protein; and the final elution (El₂). (*C*) The FPLC profile of the Fl₂ loaded into a gel-filtration (G75) column.

Figure S9. Comparison of the reduced-MTSL-labeled A31C sample (red) and the wild-type (black). The only differences are the mutation site and its nearest neighbors.

Concentration (µM)	$R_2 (s^{-1})$	R_1 (s ⁻¹)	$\tau_{c}(ns)$	
400	31.1±4.2	0.50±0.11	17.68±2.33	
200	24.9±2.7	0.56±0.08	14.86±1.37	
40	20.3±2.6	0.67±0.10	12.22±1.25	
Extrapolated	19.03	0.68	11.76	
HYCUD	-	-	11.84±2.34	

Table S1. Experimentally measured and extrapolated NMR dynamics parameters.^a

Table S2. Averaged ΔR_2 in different conditions^a (s⁻¹)

	U						
FI ^b	Δ^{1-10}	Δ^{1-20}	Δ^{1-30}	Δ^{1-40}	$\Delta^{ ext{1-60}}$	$\Delta^{ ext{1-80}}$	Δ^{1-100}
11.7±1.9	9.4±1.4	12.8±1.4	4.0±0.9	4.0±0.7	3.6±0.6	2.1±0.4	1.5±0.3
	+lactose ^c	+NaCl	+urea				
	13.6±4.1	17.3±3.4	7.0±1.4				
	303 K ^d	293 K					
	11.4±1.9	9.9±3.3					

^a ΔR_2 s were averaged from the values of the CRD parts. The errors were derived in two steps: (1) for each residue, its error was propagated from the original R_2 's errors, which were derived from a Monte Carlo fitting procedure according to the spectrum noise; (2) the error in the table is the root-mean-squared value calculated from the error of each residue; those with large errors were removed (criteria: the error must be smaller then the subtracted value).

^bThis row shows the averaged ΔR_2 of the full-length and different truncated constructs measured at 303K using a 850 MHz spectrometer.

^cSample in different buffers at 303K using a 850 MHz spectrometer.

^dThis row shows the full-length construct using a 600MHz spectrometer at 303K and 293K.

Construct name	Template	Primer Sequence
6xHis-SUMO-Gal3	pET-21-hGal3	Fw:5' GGCATGGCAGACAATTTTTCGCTC 3'Rv:5' ATTACTCGAGTTATATCATGGTATATGAAGC 3'
6xHis-SUMO-Gal3NTD	pET-21-hGal3	Fw:5' GGCATGGCAGACAATTTTTCGCTC 3'Rv:5' ATATCTCGAGTTACCCAGCAGGGG 3'
Δ^{1-10}	6xHis-SUMO-Gal3	Fw:5' TTGGCGGCTTATCTGGGTCTGGAAACCCAAA 3'Rv:5' CCAGATAAGCCGCCAATCTGTTCTCTGTG 3'
Δ^{1-20}	6xHis-SUMO-Gal3	Fw:5'ATTGGCGGCGGATGGCCTGGCGCATGGG 3'Rv:5'AGGCCATCCGCCGCCAATCTGTTCTCTGTGA 3'
Δ^{1-30}	6xHis-SUMO-Gal3	Fw: 5' TTGGCGGCGCTGGGGGCAGGGGGCTAC 3' Rv: 5' GCCCCAGCGCCGCCAATCTGTTCTCTGTGAG 3'
Δ^{1-40}	6xHis-SUMO-Gal3	Fw: 5' TTGGCGGCTATCCTGGGGCCTACCCCGG 3' Rv: 5'CCAGGATAGCCGCCAATCTGTTCTCTGTGAGCCTCA 3'
Δ^{1-60}	6xHis-SUMO-Gal3	Fw:5' TTGGCGGCGCGCCCTACCCTGGAGCAC 3'Rv:5' TAGGCGCCGCCGCCAATCTGTTCTCTGT 3'
Δ^{1-80}	6xHis-SUMO-Gal3	Fw:5' TTGGCGGCGGGCACCCAGCGGC 3'Rv:5' GGTGGCCCGCCGCCAATCTGTTCTCTGT 3'
Δ^{1-100}	6xHis-SUMO-Gal3	Fw: 5' TTGGCGGCTACCCTGCCACTGGCCC 3' Rv: 5' GCAGGGTAGCCGCCAATCTGTTCTCTGT 3'
A10C	6xHis-SUMO-Gal3	Fw5' CGCTCCATGATTGTTTATCTGGGTCTG 3'Rv5' CAGACCCAGATAAACAATCATGGAGCG 3'
A31C	6xHis-SUMO-Gal3	Fw:5' ACCAGCCTTGTGGGGGCAGG 3'Rv:5' CCTGCCCCACAAGGCTGGT 3'
A49C	6xHis-SUMO-Gal3	Fw:5' CCTACCCCGGGCAGTGTCCCCCAGGGGGCTTA 3'Rv:5' TAAGCCCCTGGGGGGACACTGCCCGGGGTAGG 3'
A100C	6xHis-SUMO-Gal3	Fw5' GTGCCACCGGATGTTACCCTGCCAC 3'Rv5' GTGGCAGGGTAACATCCGGTGGCAC 3'
I250C	6xHis-SUMO-Gal3	Fw5' TCATATACCATGTGCTAACTCGAGCAC 3'Rv5' GGTATATGAAGCACTGGTGAGGTCTAT 3'

Table S3. Primers used in this study.