### Supplementary Fig. 1: Overview of ASCAT analysis results

Aberrant and nonaberrant samples after ASCAT analysis across 12 cancer types, and cases that failed ASCAT analysis. 81 samples (3.6%) failed ASCAT analysis and are not included in this figure and in any subsequent analyses. Of the 2,137 cases that passed ASCAT analysis, 273 (12.8%) showed little to no copy number aberrations, and therefore purity estimates can be considered less accurate. These samples are therefore not included in these plots. However, as we observed clear driver homozygous deletions in known tumour suppressor CDKN2A in 6 of these cases, they are included in all further analyses.



### Supplementary Fig. 2: Tumour ploidy and homozygous deletion rate

Scatter plots of tumour ploidy versus (**a**) the number of homozygous deletions or (**b**) the length of homozygous deletions in the tumour, as inferred by ASCAT. Samples were considered tetraploid when they had a ploidy > 2.7 and diploid otherwise (dashed line in (**a**, **c**)). (**c**) Diploid tumours carry a higher number of homozygous deletions than tetraploid ones (Fisher-Pitman permutation test,  $p = 4.49 \times 10^{-3}$ ), while the size distribution (**d**) of the deletions is the same for both (Mann–Whitney *U* test, p = 0.675). (**e**) The frequencies of homozygous deletion at known tumour suppressor loci were not significantly different between diploid and tetraploid tumours, except for *RB1* (Fisher-Boschloo exact unconditional test,  $p = 1.01 \times 10^{-3}$ ).



# Supplementary Fig. 3: Homozygous deletions targeting known tumour suppressors

Positions of genes are indicated (black lines), as well as truncating mutations annotated in COSMIC, coloured according to tumour type and with symbols according to mutation type (nonsense, essential splice site, frame-shift insertion or deletion, in-frame insertion or deletion). When multiple somatic mutations in the same tumour type are annotated close together in COSMIC, their numbers are shown. Array probe positions are depicted below the genes. Homozygous deletions are shown as bold lines and small hemizygous deletions as dotted lines, both coloured according to tumour type. (**a**) *CDKN2C*, (**b**) *FANCD2* and *VHL*, two known tumour suppressors located close together, (**c**) *FAT1*, (**d**) *CDKN2A* (and *CDKN2B*), evidently the dominant homozygously deleted tumour suppressors, with homozygous deletions across 9 cancer types, (**e**) *TET1*, (**f**) *PTEN*, (**g**) *BIRC3* (and *BIRC2*), (**h**) *BRCA2*, (**i**) *RB1*, predominantly found homozygously deleted in sarcoma, (**j**) *CYLD*, homozygously deleted specifically in multiple myelomas, (**k**) *CDH1*, (**l**) *TP53*, (**m**) *MAP2K4*, (**n**) *NF1* and (**o**) *SMARCB1*, homozygously deleted specifically in brain tumours.

























# Supplementary Fig. 4: Homozygous deletions targeting T-cell receptor and immunoglobulin loci

Positions of genes are indicated (black lines), as well as truncating mutations annotated in COSMIC, coloured according to tumour type and with symbols according to mutation type (nonsense, essential splice site, frame-shift insertion or deletion, in-frame insertion or deletion). When multiple somatic mutations in the same tumour type are annotated close together in COSMIC, their numbers are shown. Array probe positions are depicted below the genes. Homozygous deletions are shown as bold lines and small hemizygous deletions as dotted lines, both coloured according to tumour type. (**a**) T cell receptor alpha locus, (**b**) immunoglobulin heavy chain locus and (**c**) immunoglobulin light chain locus. Homozygous deletions identified in these loci represent somatic homozygous losses in precursors of normal T and B lymphocytes that later developed into tumour cells. These homozygous deletions *per se* most likely do not play a role in oncogenesis.

| o No | nsense  | D ESS | SPLICE  | ♦ Fra | meshift indel | ⊽ Inf | rame indel |
|------|---------|-------|---------|-------|---------------|-------|------------|
|      | Breast  |       | Ovary   |       | Colon         |       | Liver      |
|      | Kidney  |       | Lung    |       | Brain         |       | Oesophage  |
|      | Sarcoma |       | Myeloma |       | Leukaemia     |       | Lymphoma   |
|      | Others  |       |         |       |               |       |            |







## Supplementary Fig. 5: Homozygous deletions targeting 15 known fragile sites

Positions of genes are indicated (black lines), as well as truncating mutations annotated in COSMIC, coloured according to tumour type and with symbols according to mutation type (nonsense, essential splice site, frame-shift insertion or deletion, in-frame insertion or deletion). When multiple somatic mutations in the same tumour type are annotated close together in COSMIC, their numbers are shown. Array probe positions are depicted below the genes. Homozygous deletions are shown as bold lines and small hemizygous deletions as dotted lines, both coloured according to tumour type. (a) FRA1H, (b) FRA2F, (c) FRA3B, (d) FRA6A, (e) FRA6H, (f) FRA6D, (g) FRA6F, (h) FRA10F, (i) FRA12C, (j) FRA16B, (k) FRA16D, (l) FRA17A, (m) FRA19A, (n) FRAXB, (o) FRAXC. FRA16B contains known tumour suppressor *CDH1* (**Supplementary Fig. 2h**), specifically homozygously deleted in lung cancer, and FRA17A contains known tumour suppressor *MAP2K4* (**Supplementary Fig. 2j**), most often homozygously deleted in breast cancer.

| o No | nsense  | D ESS | SPLICE  | ♦ Fra | meshift indel | ⊽ Inf | rame indel |
|------|---------|-------|---------|-------|---------------|-------|------------|
|      | Breast  |       | Ovary   |       | Colon         |       | Liver      |
|      | Kidney  |       | Lung    |       | Brain         |       | Oesophage  |
|      | Sarcoma |       | Myeloma |       | Leukaemia     |       | Lymphoma   |
|      | Others  |       |         |       |               |       |            |























### Supplementary Fig. 6: Homozygous deletions targeting 24 predicted fragile sites

Positions of genes are indicated (black lines), as well as truncating mutations annotated in COSMIC, coloured according to tumour type and with symbols according to mutation type (nonsense, essential splice site, frame-shift insertion or deletion, in-frame insertion or deletion). When multiple somatic mutations in the same tumour type are annotated close together in COSMIC, their numbers are shown. Array probe positions are depicted below the genes. Homozygous deletions are shown as bold lines and small hemizygous deletions as dotted lines, both coloured according to tumour type. (**a**) chr2:61.83-61.96, (**b**) chr3:73.00-73.04, (**c**) chr3:116.69-116.83, (**d**) chr4:78.17-78.21, (**e**) chr6:18.17-18.21, (**f**) chr6:40.56-40.61, (**g**) chr8:3.32-3.39, (**h**) chr8:6.38-6.43, (**i**) chr8:98.84-98.85, (**j**) chr9:121.64-121.65, (**k**) chr9:133.39-133.62, (**l**) chr10:12.21-12.46, (**m**) chr13:28.25-28.26, (**n**) chr14:26.40-28.04, (**o**) chr14:96.22-96.22, (**p**) chr15:50.66-51.11, (**q**) chr16:6.74-6.76, (**r**) chr16:9.40-9.40, (**s**) chr16:10.07-10.08, (**t**) chr16:70.81-71.58, (**u**) chr19:9.06-9.07, (**v**) chr20:15.08-15.11, (**w**) chrX:3.22-4.12, (**x**) chrX:9.10-10.97.

| o No | nsense  | D ESS | SPLICE  | ♦ Fra | meshift indel | ⊽ Inf | rame indel |
|------|---------|-------|---------|-------|---------------|-------|------------|
|      | Breast  |       | Ovary   |       | Colon         |       | Liver      |
|      | Kidney  |       | Lung    |       | Brain         |       | Oesophage  |
|      | Sarcoma |       | Myeloma |       | Leukaemia     |       | Lymphoma   |
|      | Others  |       |         |       |               |       |            |













q













### Supplementary Fig. 7: Homozygous deletions targeting 9 unstable (sub)telomeres

Positions of genes are indicated (black lines), as well as truncating mutations annotated in COSMIC, coloured according to tumour type and with symbols according to mutation type (nonsense, essential splice site, frame-shift insertion or deletion, in-frame insertion or deletion). When multiple somatic mutations in the same tumour type are annotated close together in COSMIC, their numbers are shown. Array probe positions are depicted below the genes. Homozygous deletions are shown as bold lines and small hemizygous deletions as dotted lines, both coloured according to tumour type. (**a**) chr2:0.92-0.94, (**b**) chr6:170.76-170.91, (**c**) chr7:158.91-159.13, (**d**) chr8:0.42-0.78, (**e**) chr9:0.76-0.88, (**f**) chr13:113.09-115.05, (**g**) chr17:80.94-81.01, (**h**) chr18:76.71-77.80, (**i**) chrX:0.10-1.





a







# Supplementary Fig. 8: Homozygous deletions targeting 6 regions showing signatures of positive selection but without a clear target gene

Positions of genes are indicated (black lines), as well as truncating mutations annotated in COSMIC, coloured according to tumour type and with symbols according to mutation type (nonsense, essential splice site, frame-shift insertion or deletion, in-frame insertion or deletion). When multiple somatic mutations in the same tumour type are annotated close together in COSMIC, their numbers are shown. Array probe positions are depicted below the genes. Homozygous deletions are shown as bold lines and small hemizygous deletions as dotted lines, both coloured according to tumour type. (a) chr4:99.06-99.14, (b) chr4:182.34-182.70, (c) chr8:34.29-34.30, (d) chr13:20.34-20.45, (e) chr13:39.54-39.54, (f) chr17:0.01-0.05.







d

# Supplementary Fig. 9: Homozygous deletions targeting 27 candidate tumour suppressors

Positions of genes are indicated (black lines), as well as truncating mutations annotated in COSMIC, coloured according to tumour type and with symbols according to mutation type (nonsense, essential splice site, frame-shift insertion or deletion, in-frame insertion or deletion). When multiple somatic mutations in the same tumour type are annotated close together in COSMIC, their numbers are shown. Array probe positions are depicted below the genes. Homozygous deletions are shown as bold lines and small hemizygous deletions as dotted lines, both coloured according to tumour type. (**a**) *CASP9*, (**b**) *ARHGEF10L*, (**c**) *IGF2BP2*, (**d**) *N4BP*, (**e**) *HELQ* and *FAM175A*, (**f**) *CASP3*, (**g**) *LINC01060*, (**h**) *PDE4D*, (**i**) *RAD17*, (**j**) *ARHGEF10*, (**k**) *LEPROTL1*, (**l**) *PTPRD*, (**m**) *KAT6B*, (**n**) *CPEB3*, (**o**) *MGMT*, (**p**) *KIAA1551*, (**q**) *USP44*, (**r**) *SETD1B*, (**s**) *LINC00375*, (**t**) *GPC5*, (**u**) *SOX21*, (**v**) *BAZ1A*, (**w**) *MIDEAS* (**x**) *RFWD3*, (**y**) *MAFTRR* and (**z**) *LINC00662*.

| o No | nsense  | D ESS | SPLICE  | ♦ Fra | meshift indel | ⊽ Infi | rame indel |
|------|---------|-------|---------|-------|---------------|--------|------------|
|      | Breast  |       | Ovary   |       | Colon         |        | Liver      |
|      | Kidney  |       | Lung    |       | Brain         |        | Oesophage  |
|      | Sarcoma |       | Myeloma |       | Leukaemia     |        | Lymphoma   |
|      | Others  |       |         |       |               |        |            |



**b** ARHGEF10L



c IGF2BP2





e HELQ/FAM175A







## l PTPRD









 $\mathbf{v}$  BAZ1A







# Supplementary Table 1: Overview of studies included in our compendium

| Cancer type                | Study                                        | Number of samples |
|----------------------------|----------------------------------------------|-------------------|
|                            | Haverty et al., 2008 <sup>1</sup>            | 46                |
|                            | Kadota <i>et al.</i> , 2009 <sup>2</sup>     | 39                |
| Breast cancer              | Hawthorn <i>et al.</i> , $2010^3$            | 19                |
|                            | Beroukhim <i>et al.</i> , $2010^4$           | 92                |
|                            | Haverty <i>et al.</i> , 2009 <sup>5</sup>    | 29                |
| Ovarian cancer             | Beroukhim <i>et al.</i> , $2010^4$           | 96                |
|                            | Wertz <i>et al.</i> , 2011 <sup>6</sup>      | 16                |
|                            | Firestein <i>et al.</i> , 2008 <sup>7</sup>  | 121               |
| Colorectal cancer          | Beroukhim <i>et al.</i> , $2010^4$           | 8                 |
| Hepatocellular             | Chiang et al., 2008 <sup>8</sup>             | 100               |
| carcinoma                  | Beroukhim <i>et al.</i> , $2010^4$           | 7                 |
| Denelsensen                | Beroukhim et al., 2009 <sup>9</sup>          | 66                |
| Renal cancer               | Beroukhim <i>et al.</i> , $2010^4$           | 10                |
|                            | Weir <i>et al.</i> , 2007 <sup>10</sup>      | 167               |
| Lung cancer                | Bass <i>et al.</i> , 2009 <sup>11</sup>      | 46                |
|                            | Beroukhim <i>et al.</i> , $2010^4$           | 207               |
|                            | Northcott <i>et al.</i> , 2009 <sup>12</sup> | 120               |
| Tumours of the             | Li <i>et al.</i> , 2009 <sup>13</sup>        | 37                |
| brain or nervous<br>system | Chen <i>et al.</i> , 2010 <sup>14</sup>      | 26                |
|                            | Beroukhim <i>et al.</i> , $2010^4$           | 141               |

| Oesophageal                             | Bass <i>et al.</i> , 2009 <sup>11</sup>        | 28  |  |  |  |  |
|-----------------------------------------|------------------------------------------------|-----|--|--|--|--|
| cancer                                  | Yang <i>et al.</i> , 2010 <sup>15</sup>        | 30  |  |  |  |  |
|                                         | Barretina <i>et al.</i> , $2010^{16}$          | 206 |  |  |  |  |
| Sarcoma                                 | Christensen et al., 2010 <sup>17</sup>         | 23  |  |  |  |  |
|                                         | Beroukhim <i>et al.</i> , $2010^4$             | 19  |  |  |  |  |
| Multiple myslome                        | Avet-Loiseau et al., 2009 <sup>18</sup>        | 192 |  |  |  |  |
| Muniple myeloma                         | Walker <i>et al.</i> , 2010 <sup>19</sup>      | 30  |  |  |  |  |
|                                         | Paulsson <i>et al.</i> , 2008 <sup>20</sup>    | 45  |  |  |  |  |
|                                         | Tosello <i>et al.</i> , $2009^{21}$            | 9   |  |  |  |  |
| Leukaemia                               | Bullinger <i>et al.</i> , 2010 <sup>22</sup>   | 67  |  |  |  |  |
|                                         | Lilljebjörn <i>et al.</i> , 2010 <sup>23</sup> | 23  |  |  |  |  |
|                                         | Green <i>et al.</i> , 2011 <sup>24</sup>       | 10  |  |  |  |  |
|                                         | Kato <i>et al.</i> , 2009 <sup>25</sup>        | 17  |  |  |  |  |
| Lymphoma                                | Hartmann <i>et al.</i> , $2010^{26}$           | 47  |  |  |  |  |
| Lymphoma                                | Scholtysik <i>et al.</i> , $2010^{27}$         | 39  |  |  |  |  |
|                                         | Green <i>et al.</i> , 2011 <sup>24</sup>       | 40  |  |  |  |  |
|                                         |                                                |     |  |  |  |  |
| Total unique primary cancer samples2218 |                                                |     |  |  |  |  |

## **Supplementary Table 2**

Peaks of homozygous deletions over established tumour suppressors, T-cell receptor and immunoglobulin regions, known (named) fragile sites, predicted intrachrosomsomal fragile sites, telomeric regions showing increased genomic instability, candidate tumour suppressors and regions showing a signature of positive selection for homozygous deletions but without a clear target gene. Each region's genomic position is shown, the number of homozygous deletions (HDs), a *p*-value (and multiple testingcorrected *q*-value) indicating the probability that the enrichment in homozygous deletions is due to increased genomic instability (rather than due to positive selection), the established or candidate target tumour suppressor gene or fragile site name and a reference to the supplementary figure showing that region.

#### Known tumour suppressors

| Peak region         | # of<br>HDs | <i>p</i> -value ( <i>q</i> -value)                 | Tumour<br>suppressor   | Supp<br>Fig. |
|---------------------|-------------|----------------------------------------------------|------------------------|--------------|
| chr1:51.58-53.53    | 4           | 4.16 x 10 <sup>-2</sup> (7.42 x 10 <sup>-2</sup> ) | CDKN2C                 | 3a           |
| chr3:10.18-10.20    | 6           | 0.229 (0.293)                                      | FANCD2/VHL             | 3b           |
| chr4:187.75-187.90  | 4           | 2.57 x 10 <sup>-5</sup> (2.82 x 10 <sup>-4</sup> ) | FAT1                   | 3c           |
| chr9:22.02-22.02    | 108         | $1.30 \ge 10^{-3} (4.38 \ge 10^{-3})$              | CDKN2A                 | 3d           |
|                     |             |                                                    | (/CDKN2B) <sup>a</sup> |              |
| chr10:70.05-70.95   | 8           | 7.37 x 10 <sup>-5</sup> (6.09 x 10 <sup>-4</sup> ) | TET1                   | 3e           |
| chr10:89.74-89.83   | 16          | 6.05 x 10 <sup>-9</sup> (5.51 x 10 <sup>-7</sup> ) | PTEN                   | 3f           |
| chr11:101.95-102.05 | 6           | 4.87 x 10 <sup>-4</sup> (1.85 x 10 <sup>-3</sup> ) | BIRC3                  | 3g           |
|                     |             |                                                    | (/BIRC2) <sup>a</sup>  |              |
| chr13:32.92-33.05   | 4           | 3.18 x 10 <sup>-8</sup> (1.45 x 10 <sup>-6</sup> ) | BRCA2                  | 3h           |
| chr13:49.04-49.09   | 23          | 1.52 x 10 <sup>-7</sup> (4.61 x 10 <sup>-6</sup> ) | RB1                    | 3i           |
| chr16:50.72-50.94   | 5           | 2.00 x 10 <sup>-3</sup> (6.11 x 10 <sup>-3</sup> ) | CYLD                   | 3j           |
| chr16:68.64-69.95   | 6           | 9.46 x 10 <sup>-3</sup> (2.39 x 10 <sup>-2</sup> ) | CDH1 <sup>b</sup>      | 3k           |
| chr17:7.58-7.58     | 4           | 2.08 x 10 <sup>-2</sup> (4.21 x 10 <sup>-2</sup> ) | <i>TP53</i>            | 31           |
| chr17:11.96-12.09   | 6           | 3.78 x 10 <sup>-3</sup> (1.07 x 10 <sup>-2</sup> ) | MAP2K4 <sup>b</sup>    | 3m           |
| chr17:29.55-29.83   | 4           | 2.02 x 10 <sup>-3</sup> (6.11 x 10 <sup>-3</sup> ) | NF1                    | 3n           |
| chr22:24.19-24.48   | 6           | 3.29 x 10 <sup>-4</sup> (1.50 x 10 <sup>-3</sup> ) | SMARCB1                | 30           |

# T-cell receptor and immunoglobulin loci

| Peak region         | # of<br>HDs | <i>p</i> -value ( <i>q</i> -value)                 | Locus | Supp.<br>Fig. |
|---------------------|-------------|----------------------------------------------------|-------|---------------|
| chr14:22.35-22.45   | 5           | 0.218 (0.288)                                      | TCRA  | 4a            |
| chr14:106.97-107.25 | 8           | 2.79 x 10 <sup>-5</sup> (2.82 x 10 <sup>-4</sup> ) | IGH   | 4b            |
| chr22:22.91-23.14   | 18          | 2.53 x 10 <sup>-2</sup> (4.95 x 10 <sup>-2</sup> ) | IGL   | 4c            |

## Known (named) fragile sites

| Peak region         | # of<br>HDs | <i>p</i> -value ( <i>q</i> -value)                 | Fragile site        | Supp.<br>Fig. |
|---------------------|-------------|----------------------------------------------------|---------------------|---------------|
| chr1:214.97-214.97  | 17          | 0.445 (0.512)                                      | FRA1H               | 5a            |
| chr2:141.94-142.08  | 6           | 0.529 (0.587)                                      | FRA2F               | 5b            |
| chr3:60.41-60.45    | 7           | 0.823 (0.871)                                      | FRA3B               | 5c            |
| chr6:14.59-14.61    | 5           | 0.629 (0.69)                                       | FRA6A               | 5d            |
| chr6:33.06-33.07    | 6           | 0.233 (0.295)                                      | FRA6H               | 5e            |
| chr6:74.11-74.32    | 6           | 0.197 (0.268)                                      | FRA6D               | 5f            |
| chr6:109.59-109.59  | 6           | 0.153 (0.224)                                      | FRA6F               | 5g            |
| chr10:123.60-123.68 | 4           | 0.227 (0.293)                                      | FRA10F              | 5h            |
| chr12:114.60-114.63 | 7           | 0.852 (0.891)                                      | FRA12C              | 5i            |
| chr16:68.64-69.95   | 6           | 9.46 x 10 <sup>-3</sup> (2.39 x 10 <sup>-2</sup> ) | FRA16B <sup>b</sup> | 5j            |
| chr16:78.72-78.94   | 5           | 0.272 (0.335)                                      | FRA16D              | 5k            |
| chr17:11.96-12.09   | 6           | 3.78 x 10 <sup>-3</sup> (1.07 x 10 <sup>-2</sup> ) | FRA17A <sup>b</sup> | 51            |
| chr19:31.87-31.89   | 4           | 0.407 (0.475)                                      | FRA19A              | 5m            |
| chrX:6.89-7.07      | 1           | 1 <sup>c</sup>                                     | FRAXB               | 5n            |
| chrX:32.81-33.16    | 1           | 1 <sup>c</sup>                                     | FRAXC               | 50            |

# Predicted intrachromosomal fragile sites

| Peak region        | # of<br>HDs | <i>p</i> -value ( <i>q</i> -value)                 |   | Supp.<br>Fig. |
|--------------------|-------------|----------------------------------------------------|---|---------------|
| chr2:61.83-61.96   | 6           | 4.85 x 10 <sup>-2</sup> (8.48 x 10 <sup>-2</sup> ) |   | 6a            |
| chr3:73.00-73.04   | 4           | 5.6 x 10 <sup>-2</sup> (9.52 x 10 <sup>-2</sup> )  |   | 6b            |
| chr3:116.69-116.83 | 4           | 0.197 (0.268)                                      |   | бс            |
| chr4:78.17-78.21   | 5           | 0.143 (0.22)                                       |   | 6d            |
| chr6:18.17-18.21   | 4           | 0.213 (0.285)                                      |   | 6e            |
| chr6:40.56-40.61   | 5           | 0.907 (0.928)                                      |   | 6f            |
| chr8:3.32-3.39     | 6           | 6.45 x 10 <sup>-2</sup> (0.107)                    | d | 6g            |
| chr8:6.38-6.43     | 2           | 3.9 x 10 <sup>-2</sup> (7.10 x 10 <sup>-2</sup> )  | d | 6h            |
| chr8:98.84-98.85   | 8           | 0.458 (0.521)                                      |   | 6i            |
| chr9:121.64-121.65 | 8           | 0.355 (0.425)                                      |   | 6ј            |
| chr9:133.39-133.62 | 4           | 0.166 (0.239)                                      |   | бk            |
| chr10:12.21-12.46  | 6           | 3.33 x 10 <sup>-2</sup> (6.32 x 10 <sup>-2</sup> ) |   | 61            |
| chr13:28.25-28.26  | 5           | 9.53 x 10 <sup>-2</sup> (0.155)                    |   | 6m            |
| chr14:26.40-28.04  | 4           | 0.150 (0.224)                                      |   | 6n            |
| chr14:96.22-96.22  | 4           | 0.758 (0.812)                                      |   | 60            |
| chr15:50.66-51.11  | 6           | 0.151 (0.224)                                      |   | 6р            |
| chr16:6.74-6.76    | 7           | 0.918 (0.929)                                      |   | 6q            |
| chr16:9.40-9.40    | 4           | 0.406 (0.475)                                      |   | бr            |
| chr16:10.07-10.08  | 5           | 0.964 (0.964)                                      |   | <u>6</u> s    |
| chr16:70.81-71.58  | 4           | 0.140 (0.219)                                      |   | 6t            |
| chr19:9.06-9.07    | 4           | 0.520 (0.585)                                      |   | би            |
| chr20:15.08-15.11  | 8           | 0.168 (0.239)                                      |   | 6v            |
| chrX:3.22-4.12     | 3           | 1 <sup>c</sup>                                     |   | 6w            |
| chrX:9.10-10.97    | 1           | 0.742 <sup>c</sup>                                 |   | 6x            |

## Telomeric regions showing increased instability

| Peak region         | # of<br>HDs | <i>p</i> -value ( <i>q</i> -value)                 |   | Supp.<br>Fig. |
|---------------------|-------------|----------------------------------------------------|---|---------------|
| chr2:0.92-0.94      | 5           | 0.900 (0.928)                                      |   | 7a            |
| chr6:170.76-170.91  | 4           | 0.140 (0.219)                                      |   | 7b            |
| chr7:158.91-159.13  | 5           | 0.248 (0.309)                                      |   | 7c            |
| chr8:0.42-0.78      | 8           | 5.65 x 10 <sup>-2</sup> (9.52 x 10 <sup>-2</sup> ) | d | 7d            |
| chr9:0.76-0.88      | 5           | 0.680 (0.736)                                      |   | 7e            |
| chr13:113.09-115.05 | 5           | 3.62 x 10 <sup>-2</sup> (6.72 x 10 <sup>-2</sup> ) |   | 7f            |
| chr17:80.94-81.01   | 6           | 0.331 (0.401)                                      |   | 7g            |
| chr18:76.71-77.80   | 4           | 0.176 (0.247)                                      |   | 7h            |
| chrX:0.10-1         | 4           | 0.167 <sup>c</sup>                                 |   | 7i            |

# Regions showing a signature of positive selection for homozygous deletions but without a clear target gene

| Peak region        | # of<br>HDs | <i>p</i> -value ( <i>q</i> -value)                 |            | Supp.<br>Fig. |
|--------------------|-------------|----------------------------------------------------|------------|---------------|
| chr4:99.06-99.14   | 5           | 9.11 x 10 <sup>-5</sup> (6.91 x 10 <sup>-4</sup> ) | unknown    | 8a            |
| chr4:182.34-182.70 | 4           | 1.68 x 10 <sup>-3</sup> (5.47 x 10 <sup>-3</sup> ) | intergenic | 8b            |
| chr8:34.29-34.30   | 9           | 2.28 x 10 <sup>-4</sup> (1.16 x 10 <sup>-3</sup> ) | intergenic | 8c            |
| chr13:20.34-20.45  | 4           | 3.9 x 10 <sup>-4</sup> (1.66 x 10 <sup>-3</sup> )  | unknown    | 8d            |
| chr13:39.54-39.54  | 6           | 1.83 x 10 <sup>-2</sup> (3.97 x 10 <sup>-2</sup> ) | unknown    | 8e            |
| chr17:0.01-0.05    | 4           | 2.08 x 10 <sup>-3</sup> (6.11 x 10 <sup>-3</sup> ) | unknown    | 8f            |

## Candidate tumour suppressors

| Peak region         | # of<br>HDs | <i>p</i> -value ( <i>q</i> -value)                 |                       | Sup.<br>Fig. |
|---------------------|-------------|----------------------------------------------------|-----------------------|--------------|
| chr1:15.90-15.92    | 7           | 4.39 x 10 <sup>-4</sup> (1.74 x 10 <sup>-3</sup> ) | CASP9                 | 9a           |
| chr1:17.58-17.63    | 4           | 1.99 x 10 <sup>-4</sup> (1.16 x 10 <sup>-3</sup> ) | ARHGEF10L             | 9b           |
| chr3:185.44-185.53  | 4           | 1.85 x 10 <sup>-6</sup> (3.37 x 10 <sup>-5</sup> ) | IGF2BP2               | 9c           |
| chr4:39.08-39.15    | 12          | 8.87 x 10 <sup>-4</sup> (3.23 x 10 <sup>-3</sup> ) | N4BP2                 | 9d           |
| chr4:83.68-83.68    | 4           | 1.04 x 10 <sup>-6</sup> (2.36 x 10 <sup>-5</sup> ) | HELQ/FAM175A          | 9e           |
| chr4:185.60-185.65  | 4           | 2.43 x 10 <sup>-4</sup> (1.16 x 10 <sup>-3</sup> ) | CASP3                 | 9f           |
| chr4:189.47-190.50  | 5           | 1.04 x 10 <sup>-2</sup> (2.56 x 10 <sup>-2</sup> ) | LINC01060             | 9g           |
| chr5:58.41-58.41    | 4           | 4.00 x 10 <sup>-4</sup> (1.66 x 10 <sup>-3</sup> ) | PDE4D <sup>e</sup>    | 9h           |
| chr5:68.40-68.69    | 6           | 9.32 x 10 <sup>-4</sup> (3.26 x 10 <sup>-3</sup> ) | RAD17                 | 9i           |
| chr8:1.77-1.94      | 8           | 4.68 x 10 <sup>-6</sup> (7.09 x 10 <sup>-5</sup> ) | ARHGEF10 <sup>d</sup> | 9j           |
| chr8:29.97-29.98    | 4           | 1.63 x 10 <sup>-2</sup> (3.72 x 10 <sup>-2</sup> ) | LEPROTL1              | 9k           |
| chr9:9.42-9.64      | 5           | 7.36 x 10 <sup>-3</sup> (1.97 x 10 <sup>-2</sup> ) | PTPRD                 | 91           |
| chr10:76.72-76.81   | 5           | 3.59 x 10 <sup>-5</sup> (3.27 x 10 <sup>-4</sup> ) | KAT6B                 | 9m           |
| chr10:93.99-94.03   | 5           | 1.91 x 10 <sup>-4</sup> (1.16 x 10 <sup>-3</sup> ) | CPEB3                 | 9n           |
| chr10:131.42-131.49 | 5           | 1.74 x 10 <sup>-4</sup> (1.16 x 10 <sup>-3</sup> ) | MGMT                  | 90           |
| chr12:32.15-32.24   | 5           | 1.29 x 10 <sup>-2</sup> (3.01 x 10 <sup>-2</sup> ) | KIAA1551              | 9p           |
| chr12:95.88-96.27   | 4           | 2.01 x 10 <sup>-2</sup> (4.16 x 10 <sup>-2</sup> ) | USP44                 | 9q           |
| chr12:122.30-122.37 | 6           | 2.21 x 10 <sup>-5</sup> (2.82 x 10 <sup>-4</sup> ) | SETD1B                | 9r           |
| chr13:85.51-85.66   | 4           | 1.81 x 10 <sup>-2</sup> (3.97 x 10 <sup>-2</sup> ) | LINC00375             | 9s           |
| chr13:92.45-92.45   | 10          | 2.16 x 10 <sup>-4</sup> (1.16 x 10 <sup>-3</sup> ) | GPC5                  | 9t           |
| chr13:95.39-95.46   | 4           | 2.35 x 10 <sup>-4</sup> (1.16 x 10 <sup>-3</sup> ) | SOX21                 | 9u           |
| chr14:35.09-35.32   | 6           | 1.94 x 10 <sup>-2</sup> (4.11 x 10 <sup>-2</sup> ) | BAZIA                 | 9v           |
| chr14:74.07-74.55   | 4           | 2.55 x 10 <sup>-2</sup> (4.95 x 10 <sup>-2</sup> ) | MIDEAS                | 9w           |
| chr16:74.65-74.69   | 5           | 4.65 x 10 <sup>-3</sup> (1.28 x 10 <sup>-2</sup> ) | RFWD3                 | 9x           |
| chr16:79.80-79.80   | 4           | 7.58 x 10 <sup>-3</sup> (1.97 x 10 <sup>-2</sup> ) | MAFTRR                | 9y           |
| chr19:28.14-28.15   | 6           | 1.18 x 10 <sup>-2</sup> (2.83 x 10 <sup>-2</sup> ) | LINC00662             | 9z           |

<sup>a</sup>*CDKN2B* and *BIRC2* are candidate tumour suppressor genes with a high level of evidence. They are always lost together with *CDKN2A* and *BIRC3*, respectively, and likely contribute to positive selection of the homozygous deletions.

<sup>b</sup>Known fragile sites that contain a known tumour suppressor are shown twice in the table.

 $^{c}p$ -values for regions on the X chromosome derive from testing tumour-type specificity in females only.

<sup>d</sup>The region 1-8Mb on chromosome 8 contains 4 peaks. In order to separate the effects of the different regions, 5 large homozygous deletions (> 5 Mb) overlapping all four peaks are not included in the counts input into the statistical model to separate tumour suppressors from fragile sites.

*ePDE4D* shows intragenic homozygous deletions, suggesting these deletions may be gain-of-function rather than loss-of-function mutations.

## **Supplementary References**

- Haverty, P. M. *et al.* High-resolution genomic and expression analyses of copy number alterations in breast tumors. *Genes Chromosomes Cancer* 47, 530-542 (2008).
- Kadota, M. *et al.* Identification of novel gene amplifications in breast cancer and coexistence of gene amplification with an activating mutation of PIK3CA.
  *Cancer Res* 69, 7357-7365 (2009).
- 3 Hawthorn, L., Luce, J., Stein, L. & Rothschild, J. Integration of transcript expression, copy number and LOH analysis of infiltrating ductal carcinoma of the breast. *BMC Cancer* 10, 460 (2010).
- 4 Beroukhim, R. *et al.* The landscape of somatic copy-number alteration across human cancers. *Nature* **463**, 899-905 (2010).
- 5 Haverty, P. M., Hon, L. S., Kaminker, J. S., Chant, J. & Zhang, Z. Highresolution analysis of copy number alterations and associated expression changes in ovarian tumors. *BMC Med Genomics* **2**, 21 (2009).
- 6 Wertz, I. E. *et al.* Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. *Nature* **471**, 110-114 (2011).
- 7 Firestein, R. *et al.* CDK8 is a colorectal cancer oncogene that regulates betacatenin activity. *Nature* **455**, 547-551 (2008).
- 8 Chiang, D. Y. *et al.* Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. *Cancer Res* **68**, 6779-6788 (2008).
- 9 Beroukhim, R. *et al.* Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney. *Cancer Res* **69**, 4674-4681 (2009).
- Weir, B. A. *et al.* Characterizing the cancer genome in lung adenocarcinoma.
  *Nature* 450, 893-898 (2007).
- 11 Bass, A. J. *et al.* SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. *Nat Genet* **41**, 1238-1242 (2009).
- 12 Northcott, P. A. *et al.* Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. *Nat Genet* **41**, 465-472 (2009).
- Li, M. *et al.* Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. *Cancer Cell* 16, 533-546 (2009).

- 14 Chen, R. *et al.* A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. *Cancer Cell* **17**, 362-375 (2010).
- 15 Yang, H. H. *et al.* Influence of genetic background and tissue types on global DNA methylation patterns. *PLoS One* **5**, e9355 (2010).
- 16 Barretina, J. *et al.* Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. *Nat Genet* **42**, 715-721 (2010).
- Christensen, B. C. *et al.* Integrated profiling reveals a global correlation
  between epigenetic and genetic alterations in mesothelioma. *Cancer Res* 70, 5686-5694 (2010).
- 18 Avet-Loiseau, H. *et al.* Prognostic significance of copy-number alterations in multiple myeloma. *J Clin Oncol* 27, 4585-4590 (2009).
- Walker, B. A. *et al.* A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. *Blood* 116, e56-65 (2010).
- 20 Paulsson, K. *et al.* Microdeletions are a general feature of adult and adolescent acute lymphoblastic leukemia: Unexpected similarities with pediatric disease. *Proc Natl Acad Sci U S A* **105**, 6708-6713 (2008).
- 21 Tosello, V. *et al.* WT1 mutations in T-ALL. *Blood* **114**, 1038-1045 (2009).
- 22 Bullinger, L. *et al.* Identification of acquired copy number alterations and uniparental disomies in cytogenetically normal acute myeloid leukemia using high-resolution single-nucleotide polymorphism analysis. *Leukemia* 24, 438-449 (2010).
- Lilljebjorn, H. *et al.* The correlation pattern of acquired copy number changes in 164 ETV6/RUNX1-positive childhood acute lymphoblastic leukemias.
  *Hum Mol Genet* 19, 3150-3158 (2010).
- 24 Green, M. R. *et al.* Integrative genomic profiling reveals conserved genetic mechanisms for tumorigenesis in common entities of non-Hodgkin's lymphoma. *Genes Chromosomes Cancer* **50**, 313-326 (2011).
- Kato, M. *et al.* Frequent inactivation of A20 in B-cell lymphomas. *Nature* 459, 712-716 (2009).
- Hartmann, S. *et al.* High resolution SNP array genomic profiling of peripheral T cell lymphomas, not otherwise specified, identifies a subgroup with chromosomal aberrations affecting the REL locus. *Br J Haematol* 148, 402-412 (2010).

 Scholtysik, R. *et al.* Detection of genomic aberrations in molecularly defined Burkitt's lymphoma by array-based, high resolution, single nucleotide polymorphism analysis. *Haematologica* **95**, 2047-2055 (2010).