Transition state-based ST6Gal I inhibitors: Mimicking the phosphodiester linkage with a triazole or carbamate through an enthalpy-entropy compensation

Andrew P. Montgomery^a, Danielle Skropeta^{a, b} & Haibo Yu^{a, b, c *}

^a School of Chemistry, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong NSW 2522, Australia

^b Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong NSW 2522, Australia

^c Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia

*Corresponding Author: <u>hyu@uow.edu.au</u>

Table of Contents

Force Field Optimisation	S4
Figure S1. The atom designation used during GAAMP optimisation of the phosphodiester- (2), triazole- (3) and carbamate-linked (4) derivatives force fields. The black region on each compound represents atoms where the atom charge was fixed to be consistent with the value observed after GAAMP optimisation of the phosphodiester-linked compound. Red regions represent components where partial charge were independently optimised by GAAMP.	<i>S4</i>
Table S1: GAAMP optimisation of MM charges	<i>S4</i>
Figure S2. (a) Comparison of QM, GAAMP and CGenFF dihedral energy profiles for phosphodiester- linked derivative 2. ϕ_1 represents the dihedral O9-P1-C9-O7 and ϕ_2 represents the dihedral C10-C9-O7-P. (b) Comparison of QM, GAAMP and CGenFF dihedral energy profiles for triazole- linked derivative 3. ϕ_1 represents the dihedral O1-C7-C8-N3 and ϕ_2 represents the dihedral N5-C10-C11-C12. (c) Comparison of QM, GAAMP and CGenFF dihedral energy profiles for carbamate-linked derivative 4. ϕ_1 represents the dihedral O1-C7-C8-N3 and ϕ_2 represents the dihedral O5-C10-P-O8.	<i>S5</i>
Overview of Simulations	S6
Table S2: Overview of Simulations	<i>S6</i>
Monitoring of Quasi-Harmonic Approximation Convergence	S7
<i>Table S3.</i> Monitoring convergence of configurational entropy change upon binding of the phosphodiester-linked 2, 1,2,3 triazole-linked 3 and carbamate-linked 4 derivatives to human ST6Gal I.	<i>S</i> 7
RMSD and RMSF of PC1 Simulations	S8
Figure S3. (A) RMSD of the Ca atoms across the 90 ns of free simulation. (B) RMSD of the heavy atoms of the phosphodiester-linked compound (\mathbf{R})-2 across the 90 ns of free simulation. (C) RMSF of the Ca atoms across the 90 ns of free simulation. RMSD and RMSF were calculated after superposition to the starting structure with respect to the position of Ca.	<i>S8</i>
RMSD and RMSF of PC2 Simulations	S 9
Figure S4. (a) RMSD of the Ca atoms across the 90 ns of free simulation. (b) RMSD of the heavy atoms of the phosphodiester-linked compound (S)-2 across the 90 ns of free simulation (large fluctuations in ligand RMSD during the PC1-2000 simulation can be attributed to the phenoxy group not being locked into a single conformation). (c) RMSF of the Ca atoms across the 90 ns of free simulation. RMSD and RMSF were calculated after superposition to the starting structure with respect to the position of Ca.	59
RMSD and RMSF of TC1 Simulations	S10
Figure S5. (a) RMSD of the Ca atoms across the 90 ns of free simulation. (b) RMSD of the heavy atoms of the triazole-linked (\mathbf{R})-3 across the 90 ns of free simulation (the large increase in ligand RMSD during the TC1-2000 and -3000 simulations can be attributed to a rotation of the phosphonate and phenoxy group and a phenoxy positional shift respectively. In both cases the phenoxy substituent remained within the expected pocket). (c) RMSF of the Ca atoms across the 90 ns of free simulation. RMSD and RMSF were calculated after superposition to the starting structure with respect to the position of Ca	<i>S10</i>
RMSD and RMSF of TC2 Simulations	S11
Figure S6. (a) RMSD of the Ca atoms across the 90 ns of free simulation. (b) RMSD of the heavy atoms of the triazole-linked (S)-3 across the 90 ns of free simulation. (c) RMSF of the Ca atoms across the 90 ns of free simulation. RMSD and RMSF were calculated after superposition to the starting structure with respect to the position of Ca.	<i>S11</i>
RMSD and RMSF of CC1 Simulations	S12
Figure S7. (a) RMSD of the C α atoms across the 90 ns of free simulation. (b) RMSD of the heavy atoms of the carbamate-linked (R)-4 across the 90 ns of free simulation. (c) RMSF of the C α atoms across the 90 ns of free simulation. RMSD and RMSF were calculated after superposition to the starting structure with respect to the position of C α .	<i>S12</i>
RMSD and RMSF of CC2 Simulations	S13
Figure S8. (a) RMSD of the C α atoms across the 90 ns of free simulation. (b) RMSD of the heavy atoms of the carbamate-linked (S)-4 across the 90 ns of free simulation (large RMSD values, in particular for the CC2-2000 simulation, can be attributed to a slight phenoxy rotation from the starting structure to maintain interactions with Tyr369). (c) RMSF of the C α atoms across the 90 ns of free simulation.	S13

<i>RMSD and RMSF were calculated after superposition to the starting structure with respect to the position of Ca</i>	
Non-Bonded Interactions of Phosphodiester-Linked Inhibitor (R)-2	S14
Table S4 Hydrogen honding and water bridge interactions observed for the PC1 simulations	S14
Table S1. Hydrogen bonding und water of age interactions observed for the PCI simulations Table S5. Hydrophobic contacts observed for the PCI simulations	515
Non-Bonded Interactions of Phosphodiester-Linked Inhibitor (S)-2	S16
Table S6. Hydrogen bonding and water bridge interactions observed for the PC2 simulations	S16
Table S7. Hydrophobic contacts observed for the PC2 simulations	S17
Non-Bonded Interactions of Triazole-Linked Inhibitor (R)-3	S18
Table S8. Hydrogen bonding and water bridge interactions observed for the TC1 simulations	<i>S18</i>
Table S9. Hydrophobic contacts observed for the TC1 simulations	S19
Non-Bonded Interactions of Triazole-Linked Inhibitor (S)-3	S20
Table S10. Hydrogen bonding and water bridge interactions observed for the TC2 simulations	S20
Table S11. Hydrophobic contacts observed for the TC2 simulations	S21
Non-Bonded Interactions of Carbamate-Linked Inhibitor (R)-4	S22
Table S12. Hydrogen bonding and water bridge interactions observed for the CC1 simulations	S22
Table S13. Hydrophobic contacts observed for the CC1 simulations	S23
Non-Bonded Interactions of Carbamate-Linked Inhibitor (S)-4	S24
Table S14. Hydrogen bonding and water bridge interactions observed for the CC2 simulations	S24
Table S15. Hydrophobic contacts observed for the CC2 simulations	S25
Cluster Analysis of Complexed MD Simulations	S26
Figure S9. The most populated clusters of each respective ligand from the human ST6Gal I-ligand complex simulations. Clusters were generated using combined trajectories that represented every 10 ps of the triplicate simulations during their 90 ns production runs (i.e. 27,000 structures in total per simulation type). The clusters shown represent the following percentage of simulation time: PC1 68%; TC1 49%; CC1 31%; PC2 67%; TC2 42%; CC2 67%.	<i>S26</i>
Cluster Analysis of Ligand MD Simulations	S27
<i>Figure S10.</i> The distribution of cluster population for the (R)- (A) and (S)-inhibitors (B) in water box MD simulations. Clusters were generated using combined trajectories that represented every 10 ps of	S27

MD simulations. Clusters were generated using combined trajectories that represented the triplicate simulations (i.e. 6,000 structures in total per simulation type).

Force Field Optimisation

Figure S1. The atom designation used during GAAMP optimisation of the phosphodiester-(2), triazole- (3) and carbamate-linked (4) derivatives force fields. The black region on each compound represents atoms where the atom charge was fixed to be consistent with the value observed after GAAMP optimisation of the phosphodiester-linked compound. Red regions represent components where partial charge were independently optimised by GAAMP. The final parameters for these three inhibitors can be accessed at https://doi.org/10.6084/m9.figshare.5372788.v1 The rational for us to develop the new force field using cGen/FF/GAAMP was to generate a consistent set of force field parameters for protein and ligands, as previous simulations were carried out with the ligand force field generated by Antechamber/GAFF which is not consistent with the adopted protein force field (CHARMM).

Compound	$\chi^{2 b}$	$\chi_{\rm ESP}^2 \pm {\rm SE}^{\rm c}$	$\chi_{\rm Emin}^2 \pm {\rm SE}^{\rm c}$	$\chi_{\rm Rmin}^2 \pm {\rm SE}^{\rm c}$	$\chi_{CG}^2 \pm SE^{c}$
2	1.60	0.398 ± 0.006	1 ± 2	0.02 ± 0.05	0.0 ± 0.1
3	2.23	1.80 ± 0.01	0.3 ± 0.9	0.1 ± 0.1	0.0 ± 0.2
4	1.98	1.04 ± 0.01	1 ± 1	0.1 ± 0.1	0.0 ± 0.2

Table S1: GAAMP optimisation of MM charges^a

^a Optimisation occurs at the HF/6-31G* level without basis set superposition error correction. ^b $\chi^2 = \chi_{ESP}^2 + \chi_{wat_{int}}^2 + \chi_{CG}^2$; where $\chi_{wat_{int}}^2 = \chi_{Emin}^2 + \chi_{Rmin}^2$. χ^2 is the objective function used in the optimisation procedure of the MM charges. It is written as the sum of three terms: the objective functions for the electrostatic potential (χ_{ESP}^2) , compound-water interactions $(\chi_{wat_{int}}^2)$ and the restraints on reference charges (χ_{CG}^2) . ^c SE = Standard error.

Figure S2. (a) Comparison of QM, GAAMP and CGenFF dihedral energy profiles for phosphodiester-linked derivative **2**. ϕ_1 represents the dihedral O9-P1-C9-O7 and ϕ_2 represents the dihedral C10-C9-O7-P. (b) Comparison of QM, GAAMP and CGenFF dihedral energy profiles for triazole-linked derivative **3**. ϕ_1 represents the dihedral O1-C7-C8-N3 and ϕ_2 represents the dihedral N5-C10-C11-C12. (c) Comparison of QM, GAAMP and CGenFF dihedral energy profiles for carbamate-linked derivative **4**. ϕ_1 represents the dihedral O1-C7-C8-N3 and ϕ_2 represents the dihedral O1-C7-C8-N3 and ϕ_2 represents the dihedral O5-C10-P-O8.

Overview of Simulations

Name	Ligand	Equilibration (ns)	Free Simulation (ns)
ST6Gal I—in	hibitor complex MD simulations ^{a,b}		
PC1 (×3)	Phosphodiester—linked inhibitor (R)-2	10	90
PC2 (×3)	Phosphodiester—linked inhibitor (S)-2	10	90
TC1(×3)	1,2,3-Triazole—linked inhibitor (R)-3	10	90
TC2 (×3)	1,2,3-Triazole—linked inhibitor (S)-3	10	90
CC1 (×3)	Carbamate—linked inhibitor (R)-4	10	90
CC2 (×3)	Carbamate—linked inhibitor (S)-4	10	90
Inhibitor in w	vater box MD simulations ^{b,c}		
PL1 (×3)	Phosphodiester—linked inhibitor (R)-2	-	20
PL2 (×3)	Phosphodiester—linked inhibitor (S)-2	-	20
TL1 (×3)	1,2,3-Triazole—linked inhibitor (R)-3	-	20
TL2 (×3)	1,2,3-Triazole—linked inhibitor (S)-3	-	20
CL1 (×3)	Carbamate—linked inhibitor (R)-4	-	20
CL2 (×3)	Carbamate—linked inhibitor (S)-4	-	20
Free energy p	erturbation simulations ^{d,e}		
$PL1 \rightarrow CL1$	Phosphodiester—linked inhibitor (R)-2 to	-	140
288 K	Carbamate—linked inhibitor (R)-4		140
$PL1 \rightarrow CL1$	Phosphodiester—linked inhibitor (R)-2 to	_	200
298 K	Carbamate—linked inhibitor (R)-4		200
$PL1 \rightarrow TL1$	Phosphodiester—linked inhibitor (R)-2 to		140
288 K	1,2,3-Triazole—linked inhibitor (R)-3	-	140
$PL1 \rightarrow TL1$	Phosphodiester—linked inhibitor (R)-2 to		200
298 K	1,2,3-Triazole—linked inhibitor (R)-3	-	200
$CL1 \rightarrow TL1$	Carbamate—linked inhibitor (<i>R</i>)-4 to		140
288 K	1,2,3-Triazole—linked inhibitor (R)-3	-	140
$CL1 \rightarrow TL1$	Carbamate—linked inhibitor (R)-4 to	_	200
298 K	1,2,3-Triazole—linked inhibitor (R)-3	-	200

Table S2: Overview of Simulations

^aThe systems consist of approximately 49,000 atoms with a box size of 82 Å \times 82 Å \times 82 Å.

^bEach simulation was replicated three times by generating different starting coordinates using three different initial minimisation steps (2,000, 2,500 and 3,000 steps) and initial velocities.

^cThe systems consist of approximately 50,000 atoms with a box size of 82 Å \times 82 Å \times 82 Å.

^dEach system consists of 20 uniformly distributed λ values between 0 and 1 (0.0, 0.05, 0.1, ..., 0.9, 0.95, 1.0) with the transformation simulated in reverse directions beginning from the 0.×5 λ values (e.g. 0.0 \leftarrow 0.05 \rightarrow 0.1). ^eThe systems consist of approximately 58,000 atoms with a box size of 86 Å × 86 Å × 86 Å.

Monitoring of Quasi-harmonic Approximation Convergence

Table S3. Monitoring convergence of configurational entropy change upon binding of the phosphodiester-linked **2**, 1,2,3-triazole-linked **3** and carbamate-linked **4** derivatives to human ST6Gal I.

			-TΔS _{conf} (kcal/mol)	a	
Compound	11—100 ns/ 1—20 ns ^b	11—55 ns/ 1—20 ns ^c	56—100 ns/ 1—20 ns ^d	11—55 ns/ 1—10 ns ^e	56—100 ns/ 11—20 ns ^f
(R)-2	37 ± 3	37 ± 3	40 ± 2	33 ± 2	34 ± 4
<i>(S)</i> -2	41 ± 6	40 ± 6	42 ± 4	36 ± 6	35 ± 5
(R)-3	23 ± 4	29 ± 2	28 ± 4	27 ± 2	20 ± 5
<i>(S)</i> -3	27 ± 4	32 ± 1	31 ± 5	27 ± 2	27 ± 5
(R)-4	20 ± 2	22.1 ± 0.7	21 ± 3	17 ± 3	17 ± 3
<u>(S)-4</u>	25 ± 6	25 ± 6	31 ± 6	24 ± 5	26 ± 5

^aArithmetic mean ΔS_{conf} multiplied by -298.15 K ± SEM obtained from triplicate simulations of each compound. ^bCalculated using the MD trajectories of the 11th to 100th ns of ST6Gal-inhibitor complex and 1st to 20th ns of ligand in a water box; ^c11th to 55th ns of ST6Gal I-inhibitor complex and 1st to 20th ns of ligand a water box; ^d56th to 100th ns of ST6Gal I-inhibitor complex and 1st to 20th ns of ligand in a water box; ^e1st to 55th ns of ST6Gal I-inhibitor complex and 1st to 20th ns of ligand in a water box; ^e1st to 55th ns of ST6Gal I-inhibitor complex and 1st to 20th ns of ligand in a water box; ^e1st to 55th ns of ST6Gal I-inhibitor complex and 1st to 10th ns of ligand a water box; ^f56th to 100th ns of ST6Gal I-inhibitor complex and 1st to 20th ns of ST6Gal I-inhibitor complex and 1st to 20th ns of ligand a water box; ^f56th to 100th ns of ST6Gal I-inhibitor complex and 1st to 20th ns of ST6Gal I-inhibitor complex and 1st to 20th ns of ligand a water box; ^f56th to 100th ns of ST6Gal I-inhibitor complex and 1st to 20th ns of ligand a water box.

Figure S3. (a) RMSD of the C α atoms across the 90 ns of free simulation. **(b)** RMSD of the heavy atoms of the phosphodiester-linked compound **(***R***)-2** across the 90 ns of free simulation. **(c)** RMSF of the C α atoms across the 90 ns of free simulation. RMSD and RMSF were calculated after superposition to the starting structure with respect to the position of C α .

Figure S4. (a) RMSD of the C α atoms across the 90 ns of free simulation. **(b)** RMSD of the heavy atoms of the phosphodiester-linked compound **(S)-2** across the 90 ns of free simulation (large fluctuations in ligand RMSD during the PC1-2000 simulation can be attributed to the phenoxy group not being locked into a single conformation). **(c)** RMSF of the C α atoms across the 90 ns of free simulation. RMSD and RMSF were calculated after superposition to the starting structure with respect to the position of C α .

Figure S5. (a) RMSD of the C α atoms across the 90 ns of free simulation. (b) RMSD of the heavy atoms of the triazole-linked (*R*)-3 across the 90 ns of free simulation (the large increase in ligand RMSD during the TC1-2000 and -3000 simulations can be attributed to a rotation of the phosphonate and phenoxy group and a phenoxy positional shift respectively. In both cases the phenoxy substituent remained within the expected pocket). (c) RMSF of the C α atoms across the 90 ns of free simulation. RMSD and RMSF were calculated after superposition to the starting structure with respect to the position of C α .

Figure S6. (a) RMSD of the C α atoms across the 90 ns of free simulation. **(b)** RMSD of the heavy atoms of the triazole-linked **(S)-3** across the 90 ns of free simulation. **(c)** RMSF of the C α atoms across the 90 ns of free simulation. RMSD and RMSF were calculated after superposition to the starting structure with respect to the position of C α .

Figure S7. (a) RMSD of the C α atoms across the 90 ns of free simulation. (b) RMSD of the heavy atoms of the carbamate-linked (*R*)-4 across the 90 ns of free simulation. (c) RMSF of the C α atoms across the 90 ns of free simulation. RMSD and RMSF were calculated after superposition to the starting structure with respect to the position of C α .

Figure S8. (a) RMSD of the C α atoms across the 90 ns of free simulation. (b) RMSD of the heavy atoms of the carbamate-linked (*S*)-4 across the 90 ns of free simulation (large RMSD values, in particular for the CC2-2000 simulation, can be attributed to a slight phenoxy rotation from the starting structure to maintain interactions with Tyr369). (c) RMSF of the C α atoms across the 90 ns of free simulation. RMSD and RMSF were calculated after superposition to the starting structure with respect to the position of C α .

Non-Bonded Interactions of Phosphodiester-Linked Inhibitor (R)-2

Table S4. Hydrogen bonding and water bridge interactions observed for the PC1 simulations

Simulation	Hydrogen Bonds	Occupancy (%)	Hydrogen Bonds	Occupancy (%)
PC1 ^{a,b}	HZ1 _{Lys376} -O _{PC1}	30	HN _{Ala368} -O9 _{PC1}	26
	HZ2 _{Lys376} -O _{PC1}	31	HN _{Ala368} -O10 _{PC1}	37
	$HZ3_{Lys376}$ - O_{PC1}	29	$HN_{Tyr369}\text{-}O10_{PC1}$	25
	$NH_{Gly324}\text{-}O2_{PC1}$	18	$HN_{His370}\text{-}O10_{PC1}$	26
	HN _{Ser323} -OH ₂ -O3 _{PC1}	31	$HZ1_{Lys376}\text{-}N1_{PC1}$	20
	HH_{Tyr354} -O5 _{PC1}	18	$HZ2_{Lys376}\text{-}N1_{PC1}$	21
	HD21 _{Asn212} -O6 _{PC1}	18	$HZ3_{Lys376}\text{-}N1_{PC1}$	20
	$HD21_{Asn212}\text{-}OH_2\text{-}O6_{PC1}$	35	$OG1_{Thr365}$ - H_{PC1}	39
	HD22 _{Asn212} -OH ₂ -O6 _{PC1}	41	O _{Thr350} -OH ₂ -H1 _{PC1}	53
	HN _{Ser323} -OH ₂ -O6 _{PC1}	33	O _{Val352} -OH ₂ -H1 _{PC1}	49
	OG1 _{Ser323} -H ₂ O-O6 _{PC1}	51	OG _{Ser322} -H2 _{PC1}	17
	$NE2_{His370}\text{-}OH_2\text{-}O7_{PC1}$	42	O_{Cys364} -H4 $_{PC1}$	44

^aOccupancies indicated are averages of the values obtained from the PC1 simulations

^bResidues highlighted include Asn212, Ser322, Ser323, Gly324, Thr350, Val352, Tyr354, Cys364, Thr365, Ala368, Tyr369, His370 and Lys376

Simulation	Hydrophobic Contact	Occupancy (%)	Hydrophobic Contact	Occupancy (%)
PC1 ^{a,b}	CB _{Ala190} -C _{PC1}	28	CB _{Ala368} -C10 _{PC1}	32
	CB _{Ala190} -C1 _{PC1}	40	CB _{Ala368} -C10 _{PC1}	58
	CB _{Ala190} -C2 _{PC1}	53	CB _{Ala368} -C12 _{PC1}	44
	CB _{Ala190} -C3 _{PC1}	17	CB _{Tyr369} -C12 _{PC1}	11
	CD2 _{Leu372} -C3 _{PC1}	40	CB _{Ala368} -C13 _{PC1}	41
	CD1 _{Leu372} -C5 _{PC1}	68	CB _{Tyr369} -C13 _{PC1}	12
	CD2 _{Leu372} -C5 _{PC1}	56	CB_{Ala368} - $C14_{PC1}$	52
	CD2 _{Leu372} -C6 _{PC1}	18	CB_{Tyr369} -C14 _{PC1}	32
	CZ _{Phe211} -C7 _{PC1}	23	CB _{Ala368} -C15 _{PC1}	35
	CE2 _{Phe211} -C7 _{PC1}	23	CB _{Tyr369} -C15 _{PC1}	64
	CB _{Ser189} -C8 _{PC1}	11	CD2 _{His370} -C15 _{PC1}	13
	CE2 _{Phe211} -C8 _{PC1}	12	CB _{Tyr369} -C16 _{PC1}	14
	CE1 _{Tyr354} -C8 _{PC1}	42	CB _{Tyr369} -C17 _{PC1}	11

Table S5. Hydrophobic contacts observed for the PC1 simulations

^aOccupancies indicated are averages of the values obtained from the PC1 simulations ^bResidues highlighted include Ser189, Ala190, Phe211, Tyr354, Ala368, Tyr369, His370 and Leu372.

Non-Bonded Interactions of Phosphodiester-Linked Inhibitor (S)-2

 Table S6. Hydrogen bonding and water bridge interactions observed for the PC2 simulations

Simulation	Hydrogen Bonds	Occupancy (%)	Hydrogen Bonds	Occupancy (%)
PC2 ^{a,b}	HZ1 _{Lys376} -O _{PC2}	28	HD22 _{Asn233} -O10 _{PC2}	19
	HZ2 _{Lys376} -O _{PC2}	28	$HD21_{Asn233}\text{-}OH_2\text{-}O10_{PC2}$	37
	HZ3 _{Lys376} -O _{PC2}	29	$HE22_{Gln235}\text{-}OH_2\text{-}O10_{PC2}$	44
	NH _{Ser189} -O1 _{PC2}	35	$HZ1_{Lys376}\text{-}N1_{PC2}$	21
	$NH_{Gly324}\text{-}O2_{PC2}$	35	$HZ2_{Lys376}\text{-}N1_{PC2}$	22
	HD21 _{Asn212} -O4 _{PC2}	34	$HZ3_{Lys376}\text{-}N1_{PC2}$	22
	$HD22_{Asn212}\text{-}OH_2\text{-}O4_{PC2}$	38	O _{Cys353} -H _{PC2}	26
	HD21 _{Asn212} -O5 _{PC2}	43	$HN_{Gly191}\text{-}OH_2\text{-}H_{PC2}$	32
	HN _{Ser323} -O5 _{PC2}	12	O _{Thr350} -H ₂ O-H _{PC2}	31
	HG1 _{Ser323} -O5 _{PC2}	18	$O_{Val352}\text{-}H_2O\text{-}H_{PC2}$	52
	HD22 _{Asn212} -O8 _{PC2}	64	OG _{Thr365} -H1 _{PC2}	24
	OH _{Tyr356} -HOH-O8 _{PC2}	54	OG _{Ser322} -H2 _{PC2}	20
	$HH_{Tyr356}\text{-}OH_2\text{-}O8_{PC2}$	33	O _{Tyr354} -H4 _{PC2}	33
	HD22 _{Asn212} -O10 _{PC2}	12	-	-

^aOccupancies indicated are averages of the values obtained from the PC2 simulations

^bResidues highlighted include Ser189, Gly191, Asn212, Asn233, Gln235, Ser322, Ser323, Gly324, Thr350, Val352, Cys353, Tyr354, Tyr356, Thr365 and Lys376

Simulation	Hydrophobic Contact	Occupancy (%)	Hydrophobic Contact	Occupancy (%)
PC2 ^a	CB _{Ala190} -C _{PC2}	46 ^b	CE2 _{Tyr354} -C13 _{PC2}	41 ^c
	CB _{Ala190} -C1 _{PC2}	62 ^b	CZ_{Tyr354} -C14 _{PC2}	12 ^c
	CD1 _{Tyr354} -C1 _{PC2}	16 ^b	CE2 _{Tyr354} -C14 _{PC2}	21 ^c
	CE1 _{Tyr354} -C1 _{PC2}	22 ^b	CZ _{Tyr354} -C15 _{PC2}	25 ^c
	CB _{Ala190} -C2 _{PC2}	16 ^b	CE2 _{Tyr354} -C15 _{PC2}	11 ^c
	CE1 _{Tyr354} -C2 _{PC2}	24 ^b	CG _{Asn233} -C17 _{PC2}	17^{d}
	$CD2_{Leu372}\text{-}C3_{PC2}$	22 ^b	CB_{Gln235} - $C17_{PC2}$	11 ^d
	$CD1_{Leu372}$ - $C5_{PC2}$	21 ^b	CE1 _{Tyr275} -C17 _{PC2}	30 ^d
	$CD2_{Leu372}\text{-}C5_{PC2}$	49 ^b	CZ _{Tyr275} -C17 _{PC2}	23 ^d
	$CD2_{Leu372}\text{-}C6_{PC2}$	21 ^b	CB _{Asn233} -C18 _{PC2}	55 ^d
	CZ _{Phe211} -C7 _{PC2}	30 ^b	CG _{Asn233} -C18 _{PC2}	25 ^d
	CE2 _{Phe211} -C7 _{PC2}	14 ^b	CB_{Gln235} -C18 _{PC2}	26 ^d
	CE2 _{Phe211} -C8 _{PC2}	37 ^b	CD _{Pro259} -C18 _{PC2}	28 ^d
	CE1 _{Tyr354} -C8 _{PC2}	23 ^b	CG _{Pro259} -C18 _{PC2}	33 ^d
	CE1 _{Tyr354} -C9 _{PC2}	18 ^c	CE1 _{Tyr275} -C18 _{PC2}	36 ^d
	CE1 _{Tyr354} -C10 _{PC2}	23 ^c	CB_{Asn233} - $C19_{PC2}$	16 ^d
	CZ _{Tyr354} -C10 _{PC2}	55 ^c	CG _{Asn233} -C19 _{PC2}	21 ^d
	CE2 _{Tyr354} -C10 _{PC2}	14 ^c	CZ2 _{Trp257} -C19 _{PC2}	54 ^d
	CG _{Tyr354} -C11 _{PC2}	13 ^c	CH2 _{Trp257} -C19 _{PC2}	52 ^d
	$CD1_{Tyr354}\text{-}C11_{PC2}$	19 ^c	CD _{Pro259} -C19 _{PC2}	66 ^d
	CE1 _{Tyr354} -C11 _{PC2}	41 ^c	CG_{Pro259} -C19 _{PC2}	42 ^d
	CD2 _{Tyr354} -C11 _{PC2}	33 ^c	CB_{Asn233} - $C20_{PC2}$	48 ^d
	CE2 _{Tyr354} -C11 _{PC2}	65 ^c	CG_{Asn233} - $C20_{PC2}$	11 ^d
	CG _{Tyr354} -C12 _{PC2}	14 ^c	CH2 _{Trp257} -C20 _{PC2}	58 ^d
	CZ _{Tyr354} -C12 _{PC2}	36 ^c	CE1 _{Tyr369} -C20 _{PC2}	51 ^d
	CD2 _{Tyr354} -C12 _{PC2}	46 ^c	CD1 _{Tyr369} -C21 _{PC2}	28 ^d
	CE2 _{Tyr354} -C12 _{PC2}	66 ^c	CE1 _{Tyr369} -C21 _{PC2}	51 ^d
	CD2 _{Tyr354} -C13 _{PC2}	16 ^c	$CE1_{His370}\text{-}C21_{PC2}$	31 ^d

 Table S7. Hydrophobic contacts observed for the PC2 simulations

^aResidues highlighted include Ala190, Phe211, Asn233, Gln235, Trp257, Pro259, Tyr275, Tyr354, Tyr369, His370 and Leu372.

^bOccupancies indicated are averages of the values obtained from all of the PC2 simulations.

^cOccupancies indicated are the values obtained from the PC2-2000 simulation.

^dOccupancies indicated are averages of the values obtained from the PC2-2500 and PC2-3000 simulations.

NOTE: All of the hydrophobic contacts of the cytidine moiety were consistent across all three PC2 simulations.

Non-Bonded Interactions of Triazole-Linked Inhibitor (R)-3

Table S8. Hydrogen bonding and water bridge interactions observed for the TC1 simulations

Simulation	Hydrogen Bonds	Occupancy (%)	Hydrogen Bonds	Occupancy (%)
TC1 ^{a,b}	HZ1 _{Lys376} -O _{TC1}	28	HD22 _{Asn212} -N5 _{TC1}	10
	HZ2 _{Lys376} -O _{TC1}	27	$OG1_{Thr365}$ - H_{TC1}	15
	HZ3 _{Lys376} -O _{TC1}	28	$OG1_{Thr365}\text{-}H_2\text{O-}H_{TC1}$	33
	HN_{Gly324} - $O2_{TC1}$	29	$HN_{Gly191}\text{-}H_2O\text{-}H1_{TC1}$	43
	$HH_{Tyr354}\text{-}O4_{TC1}$	22	$O_{Thr350}\text{-}H_2O\text{-}H1_{TC1}$	51
	$HZ1_{Lys376}\text{-}N1_{TC1}$	24	$O_{Val352}\text{-}H_2O\text{-}H1_{TC1}$	41
	$HZ2_{Lys376}\text{-}N1_{TC1}$	23	O _{Cys353} -H1 _{TC1}	16
	$HZ3_{Lys376}\text{-}N1_{TC1}$	23	OG _{Ser322} -H6 _{TC1}	35
	HD21 _{Asn212} -N4 _{TC1}	20	OG_{Ser322} -H8 _{TC1}	18
	$HD22_{Asn212}\text{-}N4_{TC1}$	18	OH_{Tyr354} -H12 _{TC1}	26
	$HD21_{Asn212}\text{-}N5_{TC1}$	17	$NE2_{His370}\text{-}H14_{TC1}$	30

^aOccupancies indicated are averages of the values obtained from the TC1 simulations ^bResidues highlighted include Gly191, Asn212, Ser322, Gly324, Thr350, Val352, Cys353, Tyr354, Thr365, His370 and Lys376

Simulation	Hydrophobic Contact	Occupancy (%)	Hydrophobic Contact	Occupancy (%)
TC1 ^{a,b}	CB _{Ala190} -C _{TC1}	66	CG _{Tyr369} -C15 _{TC1}	26
	CB _{Ala190} -C1 _{TC1}	29	CD1 _{Tyr369} -C15 _{TC1}	28
	$CD1_{Tyr354}\text{-}C1_{TC1}$	11	CE1 _{Tyr369} -C18 _{TC1}	13
	CE1 _{Tyr354} -C1 _{TC1}	14	CB_{Gln235} - $C19_{TC1}$	17
	CB _{Ala190} -C2 _{TC1}	17	CB _{Asn233} -C20 _{TC1}	24
	CE1 _{Tyr354} -C2 _{TC1}	13	CB_{Gln235} - $C20_{TC1}$	18
	$CD2_{Leu372}$ - $C3_{TC1}$	15	CZ2 _{Trp257} -C20 _{TC1}	16
	CZ _{Phe211} -C4 _{TC1}	36	CH2 _{Trp257} -C20 _{TC1}	13
	CE2 _{Phe211} -C4 _{TC1}	25	CD _{Pro259} -C20 _{TC1}	10
	$CD1_{Leu372}$ - $C5_{TC1}$	59	CG_{Pro259} - $C20_{TC1}$	18
	$CD2_{Leu372}$ - $C5_{TC1}$	44	CE1 _{Tyr275} -C20 _{TC1}	11
	CD2 _{Leu372} -C6 _{TC1}	35	CB _{Asn233} -C21 _{TC1}	15
	CZ _{Phe211} -C7 _{TC1}	23	CD_{Pro259} - $C21_{TC1}$	38
	CE2 _{Phe211} -C7 _{TC1}	48	CG_{Pro259} - $C21_{TC1}$	37
	CE2 _{Phe211} -C8 _{TC1}	22	$CE1_{Tyr275}\text{-}C21_{TC1}$	11
	CE1 _{Tyr354} -C8 _{TC1}	14	CB _{Asn233} -C22 _{TC1}	19
	CZ_{Tyr354} - $C9_{TC1}$	12	CB_{Gln235} - $C22_{TC1}$	22
	CE1 _{Tyr369} -C12 _{TC1}	15	$CZ2_{Trp257}\text{-}C22_{TC1}$	13
	$CE1_{His370}\text{-}C12_{TC1}$	12	CH2 _{Trp257} -C22 _{TC1}	14
	$CD2_{His370}\text{-}C13_{TC1}$	20	CG _{Pro259} -C22 _{TC1}	14
	CB_{Tyr369} - $C14_{TC1}$	18	$CE1_{Tyr275}\text{-}C22_{TC1}$	23
	$CD1_{Tyr369}\text{-}C14_{TC1}$	21	CZ_{Tyr275} - $C22_{TC1}$	11
	$CD2_{His370}\text{-}C14_{TC1}$	39	$CE2_{Tyr369}$ - $C22_{TC1}$	13
	CG_{Gln235} -C15 _{TC1}	17	CB_{Gln235} - $C23_{TC1}$	19
	CB _{Tyr369} -C15 _{TC1}	24	CE1 _{Tyr369} -C23 _{TC1}	16

 Table S9. Hydrophobic contacts observed for the TC1 simulations

^aOccupancies indicated are averages of the values obtained from the TC1 simulations ^bResidues highlighted include Ala190, Phe211, Asn233, Gln235, Trp257, Pro259, Tyr275, Tyr354, Tyr369, His370 and Leu372

Non-Bonded Interactions of Triazole-Linked Inhibitor (S)-3

Table S10. Hydrogen bonding and water bridge interactions observed for the TC2 simulations

Simulation	Hydrogen Bonds	Occupancy (%)	Hydrogen Bonds	Occupancy (%)
TC2 ^{a,b}	HZ1 _{Lys376} -O _{TC2}	30	$\mathrm{HZ3}_{\mathrm{Lys376}}\text{-}\mathrm{N1}_{\mathrm{TC2}}$	22
	$HZ2_{Lys376}$ - O_{TC2}	30	$HD22_{Asn212}\text{-}N4_{TC2}$	10
	$HZ3_{Lys376}\text{-}O_{TC2}$	26	$NE2_{His370}\text{-}H_2\text{O-}N4_{TC2}$	43
	HN _{Gly324} -O2 _{TC2}	43	$HD21_{Asn212}\text{-}N5_{TC2}$	28
	$HH_{Tyr354}\text{-}O4_{TC2}$	21	$HN_{Ser323}\text{-}H_2O\text{-}N5_{TC2}$	35
	$HH_{Tyr354}\text{-}OH_2\text{-}O4_{TC2}$	33	$HG1_{Ser323}\text{-}H_2O\text{-}N5_{TC2}$	34
	HH_{Tyr354} - $O5_{TC2}$	14	O_{Cys353} - H_{TC2}	14
	$HN_{Ala368}\text{-}OH_2\text{-}O5_{TC2}$	30	$HN_{Gly191}\text{-}H_2O\text{-}H_{TC2}$	45
	$HN_{His370}\text{-}OH_2\text{-}O5_{TC2}$	30	$OG1_{Thr365}\text{-}H1_{TC2}$	15
	$HZ1_{Lys376}\text{-}N1_{TC2}$	26	OG _{Ser322} -H6 _{TC2}	31
	$HZ2_{Lys376}\text{-}N1_{TC2}$	27	OH_{Tyr354} -H12 _{TC2}	22

^aOccupancies indicated are averages of the values obtained from the TC2 simulations ^bResidues highlighted include Gly191, Asn212, Ser322, Ser323, Gly324, Cys353, Tyr354, Thr365, Ala368, His370 and Lys376

Simulation	Hydrophobic Contact	Occupancy (%)	Hydrophobic Contact	Occupancy (%)
TC2 ^{a,b}	CB _{Ala190} -C _{TC2}	44	CB _{Asn233} -C20 _{TC2}	12
	CB _{Ala190} -C1 _{TC2}	53	CB_{Gln235} - $C20_{TC2}$	12
	$CD1_{Tyr354}\text{-}C1_{TC2}$	12	CG_{Pro259} - $C20_{TC2}$	18
	CE1 _{Tyr354} -C1 _{TC2}	18	CE1 _{Tyr275} -C20 _{TC2}	11
	CB_{Cys364} - $C1_{TC2}$	33	CE1 _{Tyr369} -C20 _{TC2}	18
	CB _{Ala190} -C2 _{TC2}	31	$CEZ_{Tyr369}\text{-}C20_{TC2}$	15
	$CE1_{Tyr354}$ - $C2_{TC2}$	20	$CE1_{His370}\text{-}C20_{TC2}$	15
	CB_{Cys364} - $C2_{TC2}$	14	CB_{Asn233} - $C21_{TC2}$	11
	$CD2_{Leu372}\text{-}C3_{TC2}$	10	CB_{Gln235} - $C21_{TC2}$	10
	CZ _{Phe211} -C4 _{TC2}	34	CH2 _{Trp257} -C21 _{TC2}	14
	CE2 _{Phe211} -C4 _{TC2}	23	CG_{Pro259} - $C21_{TC2}$	45
	$CD1_{Leu372}$ - $C5_{TC2}$	54	$CE1_{Tyr275}\text{-}C21_{TC2}$	10
	$CD2_{Leu372}$ - $C5_{TC2}$	43	$CE1_{Tyr369}\text{-}C21_{TC2}$	39
	$CD2_{Leu372}$ - $C6_{TC2}$	25	CEZ_{Tyr369} -C21 _{TC2}	26
	CZ _{Phe211} -C7 _{TC2}	22	CB _{Asn233} -C22 _{TC2}	12
	CE2 _{Phe211} -C7 _{TC2}	28	CB_{Gln235} - $C22_{TC2}$	15
	CE2 _{Phe211} -C8 _{TC2}	18	CZ2 _{Trp257} -C22 _{TC2}	13
	CE1 _{Tyr354} -C8 _{TC2}	33	CH2 _{Trp257} -C22 _{TC2}	13
	CZ_{Tyr354} - $C8_{TC2}$	10	CG_{Pro259} - $C22_{TC2}$	23
	$CZ_{Tyr354}\text{-}C9_{TC2}$	17	$CE1_{Tyr275}\text{-}C22_{TC2}$	13
	$CD2_{His370}\text{-}C11_{TC2}$	18	CE1 _{Tyr369} -C22 _{TC2}	17
	CB_{Leu236} -C14 _{TC2}	12	CZ_{Tyr369} - $C22_{TC2}$	12
	CB _{Gln235} -C18 _{TC2}	17	$CE1_{His370}\text{-}C22_{TC2}$	20
	CE1 _{Tyr369} -C18 _{TC2}	11	CB_{Asn233} - $C23_{TC2}$	13
	CB_{Gln235} - $C19_{TC2}$	22	CB_{Gln235} - $C23_{TC2}$	22
	CE1 _{Tyr369} -C19 _{TC2}	10	-	-

 Table S11. Hydrophobic contacts observed for the TC2 simulations

^aOccupancies indicated are averages of the values obtained from the TC2 simulations ^bResidues highlighted include Ala190, Phe211, Asn233, Leu236, Gln235, Trp257, Pro259, Tyr275, Tyr354, Cys364, Tyr369, His370 and Leu372

Non-Bonded Interactions of Carbamate-Linked Inhibitor (R)-4

Table S12. Hydrogen bonding and water bridge interactions observed for the CC1 simulations

Simulation	Hydrogen Bonds	Occupancy (%)	Hydrogen Bonds	Occupancy (%)
CC1 ^{a,b}	HZ1 _{Lys376} -O _{CC1}	20	HN _{Tyr369} -O7 _{CC1}	43
	HZ2 _{Lys376} -O _{CC1}	24	HN_{His370} - $O7_{CC1}$	43
	$HZ3_{Lys376}\text{-}O_{CC1}$	19	HN _{Ala368} -O8 _{CC1}	34
	HG1 _{Ser189} -O2 _{CC1}	10	$HZ1_{Lys376}\text{-}N1_{CC1}$	20
	HH _{Tyr354} -O4 _{CC1}	29	$HZ2_{Lys376}$ - $N1_{CC1}$	23
	HN _{Ala368} -O6 _{CC1}	11	$HZ3_{Lys376}\text{-}N1_{CC1}$	19
	HN _{Tyr369} -O6 _{CC1}	53	O _{Val352} -H ₂ O-H _{CAR}	31
	HN _{His370} -O6 _{CC1}	35	$OG1_{Thr365}$ -H1 _{CC1}	18
	HN _{Ala368} -O7 _{CC1}	19	OG _{Ser188} -H6 _{CC1}	34

^aOccupancies indicated are averages of the values obtained from the CC1 simulations

^bResidues highlighted include Ser188, Ser189, Val 352, Tyr354, Thr365, Ala368, Tyr369, His370 and Lys376

Simulation	Hydrophobic Contact	Occupancy (%)	Hydrophobic Contact	Occupancy (%)
CC1 ^{a,b}	CB _{Ala190} -C _{CC1}	16	CD2 _{His370} -C9 _{CC1}	14
	CB _{Ala190} -C1 _{CC1}	28	CD2 _{His370} -C16 _{CC1}	53
	CB_{Cys364} - $C1_{CC1}$	27	CD1 _{Tyr369} -C17 _{CC1}	33
	CB _{Ala190} -C2 _{CC1}	28	CE1 _{Tyr369} -C17 _{CC1}	25
	CB _{Ala190} -C3 _{CC1}	28	$CE1_{His370}\text{-}C17_{CC1}$	11
	CB _{Ser322} -C6 _{CC1}	27	CG _{Tyr369} -C18 _{CC1}	16
	CD2 _{Leu372} -C6 _{CC1}	18	CD1 _{Tyr369} -C18 _{CC1}	20
	CZ _{Phe211} -C7 _{CC1}	15	CE1 _{Tyr369} -C18 _{CC1}	20
	CE2 _{Phe211} -C7 _{CC1}	23	CB _{Asn233} -C20 _{CC1}	17
	CE2 _{Phe211} -C8 _{CC1}	21	CG_{Tyr369} - $C22_{CC1}$	12
	CB _{Ser322} -C8 _{CC1}	15	CD1 _{Tyr369} -C22 _{CC1}	22
	CD1 _{Leu372} -C8 _{CC1}	18	CE1 _{Tyr369} -C22 _{CC1}	26
	CD2 _{Leu372} -C8 _{CC1}	12	-	-

 Table S13. Hydrophobic contacts observed for the CC1 simulations

^aOccupancies indicated are averages of the values obtained from the CC1 simulations ^bResidues highlighted include Ala190, Phe211, Asn233, Ser322, Cys364, Tyr369, His370 and Leu372

Non-Bonded Interactions of Carbamate-Linked Inhibitor (S)-4

Table S14. Hydrogen bonding and water bridge interactions observed for the CC2 simulations

Simulation	Hydrogen Bonds	Occupancy (%)	Hydrogen Bonds	Occupancy (%)
CC2 ^{a,b}	HG1 _{Thr365} -O _{CC2}	15	HN _{Ser323} -OH ₂ -O7 _{CC2}	32
	HZ1 _{Lys376} -O _{CC2}	35	HG1 _{Thr365} -N1 _{CC2}	21
	$HZ2_{Lys376}\text{-}O_{CC2}$	31	$HZ1_{Lys376}\text{-}N1_{CC2}$	18
	$HZ3_{Lys376}\text{-}O_{CC2}$	26	$HZ2_{Lys376}\text{-}N1_{CC2}$	19
	NH _{Gly324} -O2 _{CC2}	43	$HZ3_{Lys376}\text{-}N1_{CC2}$	16
	NH _{Ser323} -O3 _{CC2}	22	O _{Cys353} -H _{CC2}	26
	$NH_{Gly324}\text{-}O3_{CC2}$	32	$OG1_{Thr365}$ - $H1_{CC2}$	24
	HD21 _{Asn212} -O4 _{CC2}	12	O _{Thr365} -H1 _{CC2}	11
	HD22 _{Asn212} -O4 _{CC2}	43	OG _{Ser322} -H6 _{CC2}	25
	HH _{Tyr354} -O4 _{CC2}	15	OG1 _{Ser189} -H12 _{CC2}	18
	HH _{Tyr354} -O6 _{CC2}	11	-	-

^aOccupancies indicated are averages of the values obtained from the CC2 simulations

^bResidues highlighted include Ser189, Asn212, Ser322, Ser323, Gly324, Cys353, Tyr354, Thr365 and Lys376

Simulation	Hydrophobic Contact	Occupancy (%)	Hydrophobic Contact	Occupancy (%)
CC2 ^{a,b}	CB _{Ala190} -C _{CC2}	54	CD2 _{Phe211} -C8 _{CC2}	41
	CB _{Ala190} -C1 _{CC2}	34	CZ_{Tyr354} -C11 _{CC2}	13
	$CD1_{Tyr354}\text{-}C1_{CC2}$	27	CD2 _{His370} -C12 _{CC2}	22
	CE1 _{Tyr354} -C1 _{CC2}	12	CD2 _{Leu236} -C13 _{CC2}	11
	CE1 _{Tyr354} -C2 _{CC2}	15	CB _{Cys353} -C13 _{CC2}	20
	$CD2_{Leu372}\text{-}C3_{CC2}$	14	CB_{Cys364} - $C13_{CC2}$	10
	$CD1_{Leu372}$ - $C5_{CC2}$	14	CB_{Cys364} -C14 _{CC2}	11
	$CD2_{Leu372}$ - $C5_{CC2}$	11	CE1 _{Tyr354} -C16 _{CC2}	31
	CD2 _{Phe211} -C7 _{CC2}	31	CD2 _{Tyr354} -C17 _{CC2}	17
	CB _{Ser189} -C8 _{CC2}	25	CE2 _{Tyr354} -C18 _{CC2}	24
	CB _{Phe211} -C8 _{CC2}	16	CD2 _{Tyr354} -C22 _{CC2}	10
	CG _{Phe211} -C8 _{CC2}	39	CE2 _{Tyr354} -C22 _{CC2}	11

Table S15. Hydrophobic contacts observed for the CC2 simulations

^aOccupancies indicated are averages of the values obtained from the CC1 simulations

^bResidues highlighted include Ser189, Ala190, Phe211, Leu236, Cys353, Tyr354, Cys364, His370 and Leu372

Cluster Analysis of Complexed MD Simulations

Figure S9. The most populated clusters of each respective ligand from the human ST6Gal I-ligand complex simulations. Clusters were generated using combined trajectories that represented every 10 ps of the triplicate simulations during their 90 ns production runs (i.e. 27,000 structures in total per simulation type). The clusters shown represent the following percentage of simulation time: PC1 68%; TC1 49%; CC1 31%; PC2 67%; TC2 42%; CC2 67%.

Cluster Analysis of Ligand MD Simulations

Figure S10. The distribution of cluster population for the (R)- (A) and (S)-inhibitors (B) in water box MD simulations. Clusters were generated using combined trajectories that represented every 10 ps of the triplicate simulations (i.e. 6,000 structures in total per simulation type).