
 
 

Supplementary Note 1 

Experiments performed at 100º C and 150º C were very similar, and are therefore discussed 

together below.   

0-Mg 100-Fe3+ Control - Subsequently Oxidized 

The 100-Fe control directly replicated the previous work of Mizutani et al.1, in which 

nontronite was synthesized under initially reducing conditions and subsequently oxidized 

through exposure to atmospheric conditions with oxidation confirmed by Mössbauer 

spectroscopy1,2.  Trioctahedral ferrous smectites are very unstable under oxidizing conditions and 

have been shown to oxidize during desiccation under laboratory conditions3.  The initial 150º C 

precipitate was dark green in color and slowly became reddish brown in color, which may be an 

indicator of the oxidation of Fe from ferrous to ferric (Figure S9).  In contrast, the 100º C 

experiment appeared to be slightly greener in color, but still was a reddish orange color upon 

drying and crushing (Figure S10).  Diffraction patterns of the synthesized products included a 

broad low angle peak of approximately 12.5 Å, indicative of a smectite clay mineral (Figure S11 

(150º C) and Figure S12 (100º C)).  The lack of other peaks at or near 7 Å suggests the absence 

of other clay minerals such as kaolins and chlorites. The μXRD analyses of the 150º C 

synthesized material also showed distinct reflections characteristic of clay minerals (e.g. 001, 

020 and 060) (Figure S13 (150º C)). Treatment with ethylene glycol produced only a slight 

expansion (~ 13-14 Ǻ) more characteristic of a high-charge smectite / vermiculite, which 

expands very little when exposed to ethylene glycol vapor (Figure S11 (150º C) and Figure 12 

(100º C)2.  A VNIR absorption feature at 0.975 μm is due to Fe electronic transitions which have 

a distinctive overall continuum slope toward shorter wavelengths, distinct from the other samples 

(Figure S14 and S15 (150º C) and S16 and S17 (100º C)).  The absorption feature at 1.422 μm is 



 
 

characteristic of OH and H2O (2vOH) features of metal-hydroxyl bonds and structural and 

absorbed water.  In addition, an absorption feature located at 1.914 μm is indicative of H2O 

(VOH + δm-OH).  The M-OH (2vOH) absorption feature was located at 2.294 μm, a somewhat 

longer wavelength than expected for the Fe(III)-smectite nontronite (2.28-2.29 μm). 

0-Mg 100-Fe3+ 

The initial precipitate was dark red in color (Figure S18 (150º C) and S19 (100º C)).  

Diffraction patterns of the synthesized products suggest the precipitates remained relatively 

amorphous (Figure S20 (150º C) and S21 (100º C)), which is supported by previous studies 

suggesting that Fe-dioctahedral clay mineral formation from ferric solutions only is prohibitively 

slow and difficult2,4 due to the absence of a divalent cation to stabilize the octahedral layers, a 

necessity for the early bi-dimensional growth of these clay minerals4-6.  Treatment with ethylene 

glycol had little if any effect (Figure S20 (150º C)).  An absorption feature at 1.013 μm indicates 

Fe electronic transitions (Figure S14 and S15 (150º C) and S16 and S17 (100º C)).  The 

absorption feature at 1.426 μm is characteristic of OH and H2O (2vOH) features of metal-

hydroxyl structural and absorbed water.  This absorption feature is close to that of nontronite 

(1.43 μm).  In addition, an absorption feature located at 1.925 μm is indicative of H2O (VOH + 

δm-OH).  This absorption feature is broad and shallow, which may suggest a lack of Fe-OH 

structural elements and/or poorly crystalline components. 

100-Mg 0-Fe3+ 

The initial precipitate was white in color (Figure S22 (150º C) and S23 (100º C)).  

Diffraction patterns of the synthesized products contained broad low angle peaks (Figure S24 

(150º C) and S25 (100º C)) that made it difficult to determine an accurate 001 d-spacing of the 



 
 

150º C experiment (Figure S24). After treatment with ethylene glycol, expansion occurred, 

although the exact expansion is difficult to determine in the 150º C experiment (Figure S24); the 

100º C experiment expanded from approximately 12 to 19 Å (Figure S25). These data are 

consistent with a Mg-trioctahedral smectite (e.g. saponite or stevensite).  The VNIR spectra of 

the experiments contain several vibrational absorptions located at 1.157 and 1.281 μm that are 

likely due to structural H2O  (Figure S14 and S15 (150º C), and S16 and S17 (100º C)).  The 

absorption feature at 1.389 and 1.417 μm is characteristic of Mg-OH and H2O (2vOH) features 

of structural and absorbed water.  An absorption feature located at 1.914 μm is indicative of H2O 

(VOH + δm-OH).  The M-OH (2vOH) absorption feature is located at 2.314 μm, indicating Mg-

OH vibrations.  The spectral properties are also consistent with a Mg-trioctahedral smectite (e.g. 

saponite or stevensite).  

15-Mg 85-Fe3+ 

The initial precipitate was red-brown in color (Figure S26 (150º C) and S27 (100º C)).  

The diffraction pattern of the synthesized material contained a broad low-angle peak, indicative 

of a clay mineral and also showed other distinct reflections of clay minerals (e.g. 020 reflection) 

(Figure S28 (150º C) and S29 (100º C)).  These results were also supported by μXRD for the 

150° C experiment (Figure S30).  In addition, treatment with ethylene glycol resulted in some 

expansion, which is a property of smectites, although due to the poor/nano crystallinity the exact 

expansion is difficult to determine (Figure S28 (150º C) and Figure S29 (100º C)). These data are 

indicative of a Fe-rich dioctahedral clay mineral, such as a high-charge nontronite2. In the VNIR 

spectra, an absorption feature at 1.009 μm indicates Fe electronic transitions (Figure S14 and 15 

(150º C), and S16 and S17 (100º C)).  The absorption feature at 1.424 μm is characteristic of OH 

and H2O (2vOH) features of structural and absorbed water, and this absorption feature is 



 
 

suggestive of nontronite when at 1.43 μm, although band shifts may occur as a result of multiple 

cations within the mineral structure.  An absorption feature located at 1.921 μm is indicative of 

H2O (VOH + δm-OH). The M-OH (2vOH) absorption feature is located at 2.295 μm.  This 

absorption feature is closest to that of nontronite (2.28 - 2.29 μm).  The VNIR absorptions of the 

15-Mg 85-Fe3+ experiments are slightly broader than some terrestrial samples, however the “L-

shape” with a shoulder rather than a sharp absorption is a common characteristic of Fe/Mg 

phyllosilicate-bearing terrain observed with CRISM and OMEGA (e.g. Poulet et al.7).  

50-Mg 50-Fe3+ 

The initial precipitate was red-brown in color (Figure S31 (150º C) and S32 (100º C)).  

Diffraction patterns of the synthesized products contained broad, low angle peaks at 

approximately 14 -15 Å, indicative of a smectite clay mineral (Figure S33 (150º C) and Figure 

S34 (100º C)).  These results were also supported by μXRD for the 150º C experiment indicating 

the presence of 020 and 060 reflections of clay minerals (Figure S35).  Treatment with ethylene 

glycol produced an expansion to ~17 Å indicative of smectite (Figure S33 (150º C)). However, 

the 100º C precipitate only expanded to approximately 15 Å (Figure S34 (100º C)).  These 

precipitates may contain domains of both Mg-trioctahedral and Fe-dioctahedral clay 

minerals/smectites8.  An absorption feature at 0.984 μm is due to Fe electronic transitions (~1 

μm) (Figure S14 and S15 (150º C), and S16 and S17 (100º C)). The absorption feature at 1.420 

μm is characteristic of OH and H2O (2vOH) features of hydroxyl and structural and absorbed 

water.  This absorption feature’s center wavelength is between that of montmorillonite and 

nontronite (1.41 and 1.43 μm).  In addition, an absorption feature located at 1.920 μm is 

indicative of H2O (VOH + δm-OH).  The M-OH (2vOH) absorption feature is located at 2.309 

μm, but is broad and ranges from 2.300 to 2.318 μm.  This absorption feature occurs between 



 
 

that of nontronite (2.28 – 2.29 μm) and saponite (2.31 – 2.32 μm), although it is closer to that of 

saponite. The VNIR absorptions of 50-Mg 50-Fe3+ experiments are slightly broader than well-

crystalline terrestrial samples (Figures S14 and S16), which is also a common characteristic of 

Fe/Mg phyllosilicate-bearing terrain observed with CRISM and OMEGA (e.g. Poulet et al.7).  

10-Mg 90-Fe3+ 

The initial precipitate was red-brown in color (Figure S36).  Diffraction patterns of the 

synthesized product contained a broad, low angle peak, indicative of clay minerals (Figure S37). 

The diffraction pattern also contained a 020 reflection indicative of clay minerals. Treatment 

with ethylene glycol resulted in only a slight expansion of the basal plane, roughly expanding 

from 13 Å to approximately 14 Å. The diffraction data are similar to materials previously 

described as high-charge nontronites2. A VNIR absorption feature at 0.975 μm is due to Fe 

electronic transitions (Figure S14 and S15).  The absorption feature at 1.433 μm is characteristic 

of OH and H2O (2vOH) features of metal-hydroxyl bonds and structural and absorbed water and 

coincides with the absorption of nontronite (1.43 μm). In addition, an absorption feature located 

at 1.914 μm is indicative of H2O (VOH + δm-OH).  The M-OH (2vOH) absorption feature was 

located at 2.289 μm, indicative of the clay mineral nontronite (2.28 – 2.29 μm). The VNIR 

absorptions of the 10-Mg 90-Fe3+ material are slightly broader than well-crystalline terrestrial 

samples (Figures S14 and S16), which is also a common characteristic of Fe/Mg phyllosilicate-

bearing terrain observed with CRISM and OMEGA (e.g. Poulet et al.7).  

5-Mg 95-Fe3+ 

The initial precipitate was red-brown in color (Figure S38).  Diffraction patterns of the 

synthesized product contained a broad, low angle peak, indicative of a clay mineral (Figure S39). 



 
 

Although it was difficult to determine the exact position of the basal plane due to poor/nano 

crystallinity, when treated with ethylene glycol expansion appears to have occurred (Figure S39). 

The diffraction pattern also contained the 020 reflection indicative of clay minerals. Only 5% Mg 

was used in the synthesis of this precipitate, which therefore indicates that only very minor 

amounts of Mg are required in the formation of Fe-rich clay minerals such as this high-charge 

nontronite2.  Many naturally occurring nontronites contain a similar amount of Mg9-12 (Table 

S5). A VNIR absorption feature at 0.975 μm is due to Fe electronic transitions (Figure S14 and 

S15).  The absorption feature at 1.434 μm is characteristic of OH and H2O (2vOH) features of 

metal-hydroxyl bonds and structural and absorbed water and coincides with the absorption in 

nontronite (1.43 μm). In addition, an absorption feature located at 1.914 μm is indicative of H2O 

(VOH + δm-OH).  The M-OH (2vOH) absorption feature was located at 2.287, indicative of the 

clay mineral nontronite (2.28 – 2.29 μm). The VNIR absorptions of the 5-Mg 95-Fe3+ 

experiments are slightly broader than well crystalline terrestrial samples, which is also a  

common characteristic of Fe/Mg phyllosilicate-bearing terrain observed with CRISM and 

OMEGA (e.g. Poulet et al.7).  

 

 

 

 

 

 



 
 

Supplementary Table 1: Concentration of reagent grade chemicals that were incorporated into 

solution to produce the synthesized products at 150° C 

  

100-Fe Control

Chemical Name Molecular Weight (g/mol) Amount (g or mL) Amount Cation (mol)

Sodium Metasilicate - Pentahydrate 212.7400 4.35 0.0204

Iron (II) Sulfate - Heptahydrate 278.0500 3.94 0.0142

Sodium Dithionite 174.1070 4.20 0.0241

Fe:Mg ratio - - 1:0

Solution Name Molecular Weight (g/mol) Amount (mL) Amount Cation (mol)

Sodium Hydroxide (5 M) - 19.80 -

H2O 18.0153 417.52 -

Sulfuric Acid (0.5 M) - 41.00 -

Ending pH - - 12.49

100-Fe 3+

Chemical Name Molecular Weight (g/mol) Amount (g or mL) Amount (mol)

Sodium Metasilicate - Pentahydrate 212.7400 4.35 0.0204

Iron (III) Sulfate - Rhomboclase & Ferricopiapite 321.0340 4.02 0.0138

Fe:Mg ratio - - 1:0

Solution Name Molecular Weight (g/mol) Amount (mL) Amount Cation (mol)

Sodium Hydroxide (5 M) - 19.80 -

H2O 18.0153 419.96 -

Sulfuric Acid (0.5 M) - 42.00 -

Ending pH - - 12.69

100-Mg

Chemical Name Molecular Weight (g/mol) Amount (g or mL) Amount (mol)

Sodium Metasilicate - Pentahydrate 212.7400 4.36 0.0205

Magnesium Sulfate - Epsomite 246.4700 3.49 0.0142

Fe:Mg ratio - - 0:1

Solution Name Molecular Weight (g/mol) Amount (mL) Amount Cation (mol)

Sodium Hydroxide (5 M) - 19.80 -

H2O 18.0153 417.87 -

Sulfuric Acid (0.5 M) - 42.00 -

Ending pH - - 12.88

15-Mg 85-Fe 3+

Chemical Name Molecular Weight (g/mol) Amount (g or mL) Amount (mol)

Sodium Metasilicate - Pentahydrate 212.7400 4.36 0.0205

Iron (III) Sulfate - Rhomboclase & Ferricopiapite 321.0340 3.42 0.0117

Magnesium Sulfate - Epsomite 246.4700 0.53 0.0022

Fe:Mg ratio - - 17:3

Solution Name Molecular Weight (g/mol) Amount (mL) Amount Cation (mol)

Sodium Hydroxide (5 M) - 19.80 -

H2O 18.0153 416.41 -

Sulfuric Acid (0.5 M) - 42.00 -

Ending pH - - 12.76



 
 

 

 

 

 

 

50-Mg 50-Fe 3+

Chemical Name Molecular Weight (g/mol) Amount (g or mL) Amount (mol)

Sodium Metasilicate - Pentahydrate 212.7400 4.35 0.0204

Iron (III) Sulfate - Rhomboclase & Ferricopiapite 321.0340 2.02 0.0069

Magnesium Sulfate - Epsomite 246.4700 1.76 0.0071

Fe:Mg ratio - - 1:1

Solution Name Molecular Weight (g/mol) Amount (mL) Amount Cation (mol)

Sodium Hydroxide (5 M) - 19.80 -

H2O 18.0153 417.11 -

Sulfuric Acid (0.5 M) - 42.00 -

Ending pH - - 12.79

10-Mg 90-Fe 3+

Chemical Name Molecular Weight (g/mol) Amount (g or mL) Amount (mol)

Sodium Metasilicate - Pentahydrate 212.7400 4.35 0.0204

Iron (III) Sulfate - Rhomboclase & Ferricopiapite 321.0340 3.90 0.0134

Magnesium Sulfate - Epsomite 246.4700 0.33 0.0013

Fe:Mg ratio - - 9:1

Solution Name Molecular Weight (g/mol) Amount (mL) Amount Cation (mol)

Sodium Hydroxide (5 M) - 19.80 -

H2O 18.0153 417.11 -

Sulfuric Acid (0.5 M) - 42.00 -

Ending pH - - 12.71

5-Mg 95-Fe 3+

Chemical Name Molecular Weight (g/mol) Amount (g or mL) Amount (mol)

Sodium Metasilicate - Pentahydrate 212.7400 4.35 0.0204

Iron (III) Sulfate - Rhomboclase & Ferricopiapite 321.0340 4.25 0.0146

Magnesium Sulfate - Epsomite 246.4700 0.18 0.0007

Fe:Mg ratio - - 19:1

Solution Name Molecular Weight (g/mol) Amount (mL) Amount Cation (mol)

Sodium Hydroxide (5 M) - 19.80 -

H2O 18.0153 417.11 -

Sulfuric Acid (0.5 M) - 42.00 -

Ending pH - - 12.64



 
 

Supplementary Table 2: Concentration of reagent grade chemicals that were incorporated into 

solution to produce the synthesized products at 100° C 

 

 

100-Fe Control 

Chemical Name Molecular Weight (g/mol) Amount (g or mL) Amount Cation (mol)

Sodium Metasilicate - Pentahydrate 212.7400 4.36 0.0205

Iron (II) Sulfate - Heptahydrate 278.0500 3.93 0.0141

Sodium Dithionite 174.1070 4.17 0.0240

Fe:Mg ratio - - 1:0

Solution Name Molecular Weight (g/mol) Amount (mL) Amount Cation (mol)

Sodium Hydroxide (5 M) NA 19.80 -

H2O 18.0153 417.74 -

Sulfuric Acid (0.5 M) NA 41.00 -

Ending pH - - 12.58

100-Fe 3+

Chemical Name Molecular Weight (g/mol) Amount (g or mL) Amount (mol)

Sodium Metasilicate - Pentahydrate 212.7400 4.34 0.0204

Iron (III) Sulfate - Rhomboclase & Ferricopiapite 321.0340 4.04 0.0139

Fe:Mg ratio - - 1:0

Solution Name Molecular Weight (g/mol) Amount (mL) Amount Cation (mol)

Sodium Hydroxide (5 M) NA 19.80 -

H2O 18.0153 417.87 -

Sulfuric Acid (0.5 M) NA 35.00 -

Ending pH - - 12.87

100-Mg

Chemical Name Molecular Weight (g/mol) Amount (g or mL) Amount (mol)

Sodium Metasilicate - Pentahydrate 212.7400 4.34 0.0204

Magnesium Sulfate - Epsomite 246.4700 3.51 0.0142

Fe:Mg ratio - - 0:1

Solution Name Molecular Weight (g/mol) Amount (mL) Amount Cation (mol)

Sodium Hydroxide (5 M) - 19.80 -

H2O 18.0153 417.62 -

Sulfuric Acid (0.5 M) - 35.00 -

Ending pH - - 12.98

15-Mg 85-Fe 3+

Chemical Name Molecular Weight (g/mol) Amount (g or mL) Amount (mol)

Sodium Metasilicate - Pentahydrate 212.7400 4.34 0.0204

Iron (III) Sulfate - Rhomboclase & Ferricopiapite 321.0340 3.41 0.0117

Magnesium Sulfate - Epsomite 246.4700 0.50 0.0020

Fe:Mg ratio - - 17:3

Solution Name Molecular Weight (g/mol) Amount (mL) Amount Cation (mol)

Sodium Hydroxide (5 M) - 19.80 -

H2O 18.0153 417.47 -

Sulfuric Acid (0.5 M) - 35.00 -

Ending pH - - 12.89



 
 

 

 

50-Mg 50-Fe 3+

Chemical Name Molecular Weight (g/mol) Amount (g or mL) Amount (mol)

Actual Experiment

Sodium Metasilicate - Pentahydrate 212.7400 4.33 0.0204

Iron (III) Sulfate - Rhomboclase & Ferricopiapite 321.0340 2.00 0.0069

Magnesium Sulfate - Epsomite 246.4700 1.76 0.0071

Fe:Mg ratio - - 1:1

Solution Name Molecular Weight (g/mol) Amount (mL) Amount Cation (mol)

Sodium Hydroxide (5 M) - 19.80 -

H2O 18.0153 416.62 -

Sulfuric Acid (0.5 M) - 35.00 -

Ending pH - - 12.94



 
 

Supplementary Table 3: Mössbauer parameters for synthesized materials precipitated at 150° C, 

as well as natural nontronites for comparison.  

 

*Isomer shifts are reported relative to alpha-Fe. 

 

 

Sample Site Weight δ (Isomer Shift) Δ (Quadrupole Splitting) χ2 Source

*Nontronite NAu-1 Fe3+ 0.61 0.35 0.24 2.10 This study

Fe3+ 0.39 0.60 0.68

*Experiment 1 (100-Fe Control - Subsequently Oxidized) Fe3+ 0.60 0.81 1.09 5.57 This study

Fe3+ 0.40 0.67 0.46

*Experiment 4 (15-Mg 85-Fe3+) Fe3+ 0.60 0.45 0.24 4.63 This study

Fe3+ 0.40 0.64 0.68

*Experiment 5 (50-Mg 50-Fe3+) Fe3+ 0.54 0.33 0.24 2.35 This study

Fe3+ 0.46 0.58 0.68

Nontronite (Garfield) Fe3+ 0.55 0.48 0.23 2.03 Ribeiro et al., 2009

Fe3+ 0.43 0.47 0.65

Nontronite Fe3+ NA 0.36-0.39 0.24-0.27 NA Vandenberghe and De Grave, 2013

Fe3+ NA 0.37-0.40 0.59-0.68

Nontronite (Washington) Fe3+ 0.7 0.48 0.29 485 Goodman et al., 1976

Fe3+ 0.24 0.48 0.62

Fe3+
tet 0.06 0.29 0.6

Nontronite (Washington) Fe3+ 0.52 0.47 0.27 675 Goodman et al., 1976

Fe3+ 0.48 0.45 0.62

Nontronite (Garfield) Fe3+ 0.54 0.5 0.27 437 Goodman et al., 1976

Fe3+ 0.37 0.5 0.62

Fe3+
tet 0.09 0.3 0.47

Nontronite (Garfield) Fe3+ 0.59 0.48 0.25 567 Goodman et al., 1976

Fe3+ 0.41 0.47 0.65

Nontronite (Clausthal) Fe3+ 0.64 0.5 0.33 636 Goodman et al., 1976

Fe3+ 0.21 0.5 0.67

Fe3+
tet 0.15 0.3 0.61

Nontronite (Crocidolite) Fe3+ 0.59 0.49 0.34 469 Goodman et al., 1976

Fe3+ 0.22 0.49 0.67

Fe3+
tet 0.19 0.29 0.56

Nontronite (Koegas) Fe3+ 0.54 0.5 0.32 541 Goodman et al., 1976

Fe3+ 0.19 0.51 0.62

Fe3+
tet 0.27 0.31 0.53

Nontronite (Amosite) Fe3+ 0.51 0.49 0.34 556 Goodman et al., 1976

Fe3+ 0.21 0.5 0.64

Fe3+
tet 0.28 0.31 0.54

Nontronite (California) Fe3+ 0.44 0.5 0.33 475 Goodman et al., 1976

Fe3+ 0.24 0.5 0.6

Fe3+
tet 0.32 0.31 0.48

Nontronite (Riverside) Fe3+ 1 0.19 0.3 NA Weldon et al., 1982

Nontronite (Washington) Fe3+ 1 0.5 0.4 NA Taylor et al., 1968



 
 

Supplementary Table 4: Compositions of synthesized material determined through microprobe analysis 

 

*Low totals, characteristic of many clay minerals, are likely due to dehydration under desiccation and significant structural OH.  In 

addition, EMP analysis relies on a relatively flat sample surfaces; this can be difficult to achieve, due to etching and pitting during the 

polishing process.  Clay minerals are also highly porous, which may contribute to low totals observed in this study and within the 

literature by EMP analysis17.  

 

Weight Percent 0 - Mg Control σ 0 - Mg σ 100 - Mg σ 15 - Mg 85 - Fe3+
σ 50 -Mg 50 Fe3+

σ

Na2O 2.974 1.168 5.553 1.239 1.766 0.601 4.083 1.081 3.041 0.583

Cr2O3 0.011 0.009 0.010 0.015 0.017 0.022 0.012 0.016 0.019 0.020

Cl 0.022 0.016 0.031 0.012 0.024 0.012 0.018 0.016 0.014 0.014

MgO 0.012 0.011 0.067 0.023 25.633 9.036 4.789 0.998 17.384 0.634

SiO2 39.066 1.097 23.578 0.359 42.078 3.866 32.060 2.033 41.958 1.063

TiO2 0.021 0.026 0.015 0.017 0.015 0.014 0.024 0.020 0.015 0.019

K2O 0.399 0.135 0.656 0.130 0.208 0.041 0.627 0.263 0.383 0.162

Al2O3 0.078 0.021 0.144 0.050 0.090 0.059 0.117 0.046 0.113 0.033

MnO 0.035 0.017 0.034 0.021 0.014 0.015 0.041 0.024 0.033 0.024

CaO 0.042 0.030 0.117 0.030 0.039 0.014 0.070 0.027 0.054 0.022

F 0.020 0.057 0.000 0.000 0.074 0.097 0.018 0.036 0.011 0.023

FeO 48.383 1.286 65.221 1.068 0.052 0.027 54.699 2.549 31.758 0.981

P2O5 0.452 0.133 1.464 0.272 0.277 0.198 0.547 0.151 0.406 0.189

Total 91.502 1.315 96.881 2.148 70.251 11.770 97.094 2.050 95.181 1.129



 
 

Supplementary Table 5: Composition of synthesized materials determined through Inductively Coupled Plasma – Optical Emission 

Spectroscopy.  

 

*A conservative upper limit on the uncertainty in the chemical analysis is 10 percent.  

 

 

 

 

 

 

Nau-1 0 - Mg Control 0 - Mg 100 - Mg 15 - Mg 50 - Mg 5 - Mg

Al2O3 13.92 0.05 0.05 0.08 0.04 0.16 0.00

CaO 2.08 0.00 0.17 0.04 0.12 0.19 0.00

FeOT 29.22 56.23 62.73 0.03 49.39 30.48 53.03

K2O 0.22 0.02 0.00 0.00 0.00 0.00 0.00

MgO 1.15 0.01 0.05 33.50 5.16 17.19 1.46

Na2O 0.22 4.88 10.72 12.29 13.74 9.55 16.33

SiO2 53.18 38.82 26.28 54.05 31.56 42.44 29.17



 
 

Supplementary Table 6: Proposed chemical formulae for select experiments, and the calculated amount of Fe and Mg secondary 

phases. 

 

To generate mineral percentages we assume that the interlayer charge is 0.25 (for  a O10(OH)2 half unit cell) for all samples that did 

expand to the classic ~17 Å upon glycolation (100-Mg and the 50:50 Mg:Fe).  The value of 0.75 is used for samples that did not 

expand to  ~17 Å upon glycolation2.  Fe and Mg were added at the ratio determined through ICP-OES to the octahedral and tetrahedral 

sites to balance the required charge.  Because Mg does not reside within tetrahedral sites18, Mg was given priority when assigning it to 

the octahedral sites.  The remaining Fe not present in the octahedral layer was then placed within the tetrahedral sites.  The remaining 

Fe and Mg not assigned to the clay mineral structure was portioned into the secondary phases observed by μXRD (e.g. ferrihydrite 

and/or brucite). The resulting Fe:Mg ratio of the bulk clay minerals is within one percent (molar ratio) of the initial solution chemistry.  

The  lower ratios of Si to Fe and Mg may have resulted from the incomplete solubilization of Si, as HF was not added during the 

digestion19.  The Mg:Fe ratio in the octahedral layer determined using the assumptions described above was used to define the tri- and 

di-octahedral nature of the precipitates. 

Experiment Formula Volume (cm3) % Mass Moles Fe-Residual Volume (cm3) % Mass Moles Mg-Residual Volume (cm3) % Mass

100-Fe Control Na0.75[Fe3+
2][Si3.25Fe3+

0.75]O10(OH)2 132.11 78.2 1.19Fe(OH)3 40.8884 21.8 - 0 0.0

100-Fe3+
Na0.75[Fe3+

2][Si3.25Fe3+
0.75]O10(OH)2 132.11 53.3 3.74Fe(OH)3 128.5064 46.7 - 0 0.0

5-Mg 95-Fe3+
Na0.75[Fe3+

1.91Mg0.13][Si3.25Fe3+
0.75]O10(OH)2 132.32 63.7 2.28Fe(OH)3 78.3408 35.4 0.11Mg(OH)2 2.7093 0.9

15-Mg 85-Fe3+
Na0.75[Fe3+

1.69Mg0.46][Si3.25Fe3+
0.75]O10(OH)2 132.84 67.8 1.81Fe(OH)3 62.1916 29.2 0.34Mg(OH)2 8.3742 3.0

50-Mg 50-Fe3+
Na0.25[Fe3+

1.09Mg1.36][Si3.75Fe3+
0.25]O10(OH)2 134.42 73.2 0.91Fe(OH)3 31.2676 17.2 0.92Mg(OH)2 22.6596 9.5

100-Mg Na0.25[Mg2.75][Si4]O10(OH)2 136.69 86.7 - 0 0.0 0.97Mg(OH)2 23.8911 13.3



 
 

Supplementary Table 7: Compositions of naturally occurring nontronites, all of which contain at least minor concentrations of Mg. 

Name Formula Source

NAU-1 - Nontronite M2+
0.5025[Al1.02Si6.98][Fe3.68Mg0.04Al0.29]O20(OH)4 Keeling et al., 2000

NAU-2 - Nonronite M2+
0.36[Al0.45Si7.55][Fe3.83Mg0.05]O20(OH)4 Keeling et al., 2000

Garfield - Nontronite M2+
0.405[Al0.780Si7.22][Al0.31Fe3+

3.64Fe2+
0.01Mg0.04]O20(OH)4 Manceau et al., 2000

PV - Nontronite Mg0.445[Al0.43Si7.57][Al0.65Fe3+
2.87Fe2+

0.01Mg0.47]O20(OH)4 Manceau et al., 2000

SWA-1 - Nontronite M2+
0.435[Al0.623Si7.38][Al1.08Fe3+

2.67Fe2+
0.01Mg0.23]O20(OH)4 Manceau et al., 2000

NG-1 - Notnronite M2+
0.35[Fe3+

0.63Al0.08Si7.29][Al0.88Fe3+
3.08Fe2+

0.01Mg0.06]O20(OH)4 Manceau et al., 2000

Chad - Nontronite M2+
0.22[Al0.17Si3.83][Fe1.77Mg0.21]O10(OH)2 Tardy and Frtiz, 1981

Caledonia - Nontornite M2+
0.135[Al0.27Si3.73][Al0.07Fe1.72Mg0.315]O10(OH)2 Tardy and Fritz, 1981

CLA - Nontornite M2+
0.52[Al0.13Si6.81Fe1.06][Fe4.01Mg0.07]O20(OH)4 Goodman et al., 1976

CRO - Nontronite M2+
0.535[Al0.063Si6.75Fe1.19][Fe3.90Mg0.24]O20(OH)4 Goodman et al., 1976

CAL - Nontornite M2+
0.625[Al0.14Si6.21Fe1.65][Fe4.04Mg0.21]O20(OH)4 Goodman et al., 1976

AMO - Nontronite M2+
0.37[Al0.04Si6.84Fe1.12][Fe4.04Mg0.15]O20(OH)4 Goodman et al., 1976

GAR - Nontronite M2+
0.6[Al1.05Si6.84Fe0.11][Fe3.96Mg0.04]O20(OH)4 Goodman et al., 1976

WAS - Nontornite M2+
0.405[Al0.70Si7.30][Al1.06Fe2.73Mg0.26]O20(OH)4 Goodman et al., 1976

KOE - Nontronite M2+
0.505[Al0.08Si6.61Fe1.31][Fe4.06Mg0.10]O20(OH)4 Goodman et al., 1976

Fe-Smectite M2+
0.475[Al0.42Si7.58][Al1.49Fe2.07Mg0.39]O20(OH)4 Gates et al., 2002

SWa-1 M2+
0.475[Al0.60Si7.40][Al1.10Fe2.62Mg0.25]O20(OH)4 Gates et al., 2002

Cheney M2+
0.500[Al0.94Si7.06][Al1.00Fe2.95Mg0.05]O20(OH)4 Gates et al., 2002

Giralong M2+
0.460[Al0.63Fe0.05Si7.32][Al0.44Fe3.29Mg0.28]O20(OH)4 Gates et al., 2002

Manito M2+
0.510[Al0.81Fe0.12Si7.07][Al0.42Fe3.47Mg0.28]O20(OH)4 Gates et al., 2002

NAu-1 M2+
0.525[Al0.81Fe0.07Si6.98][Al0.36Fe3.61Mg0.04]O20(OH)4 Gates et al., 2002

Bingham M2+
0.530[Al0.59Fe0.24Si7.17][Al0.30Fe3.47Mg0.23]O20(OH)4 Gates et al., 2002

Garfield M2+
0.535[Al0.88Fe0.10Si7.02][Al0.33Fe3.63Mg0.03]O20(OH)4 Gates et al., 2002

Mountainville M2+
0.520[Al0.77Fe0.22Si7.01][Al0.41Fe3.54Mg0.04]O20(OH)4 Gates et al., 2002

NG-1 M2+
0.480[Al0.26Fe0.62Si7.12][Al0.72Fe3.22Mg0.05]O20(OH)4 Gates et al., 2002

NAu-1 M2+
0.360[Al0.16Fe0.29Si7.55][Al0.52Fe3.45Mg0.03]O20(OH)4 Gates et al., 2002

HQ-Tasmania M2+
0.515[Al0.60Fe0.42Si6.98][Al0.52Fe3.45Mg0.03]O20(OH)4 Gates et al., 2002

Spokane M2+
0.460[Al0.04Fe0.70Si7.26][Al0.03Fe3.89Mg0.04]O20(OH)4 Gates et al., 2002

CZ-Germany M2+
0.500[Al0.04Fe0.92Si704][Al0.23Fe3.73Mg0.04]O20(OH)4 Gates et al., 2002



16 
 

 

Visible Ref. Code Score Compound 

Name 

Displaceme

nt [°2Th.] 

Scale Factor Chemical 

Formula 

* 01-070-1820 30 Rhomboclase, 

syn 

0.000 0.851 ( H5 O2 ) Fe 

( S O4 )2 ( 

H2 O )2 

* 00-029-0714 29 Ferricopiapite 0.000 0.158 Fe4.67 ( S 

O4 )6 ( O H 

)2 !20 H2 O 

* 00-025-0421 19 Rhomboclase 0.000 0.465 H Fe ( S O4 

)2 !4 H2 O 

 

Supplementary Figure 1: Diffraction pattern of the reagent grade Fe3+-sulfate. This diffraction 

pattern is indicative of the Fe-sulfates rhomboclase – HFe3+(SO4)2∙4(H2O) and ferricopiapite – 

Fe3+
0.66Fe3+

4(SO4)6(OH)2∙20(H2O). 

 

Position [°2Theta]

10 20 30 40 50 60 70

Counts

0

1000

2000

3000

 Fe-Sulfate 1-2 SLIT 7-17-14



17 
 

 

Visible Ref. Code Score Compound 

Name 

Displacemen

t [°2Th.] 

Scale Factor Chemical 

Formula 

* 01-072-0696 46 Epsomite, 

syn 

0.000 0.081 Mg S O4 ( 

H2 O )7 

* 00-036-0419 39 Epsomite, 

syn 

0.000 0.136 Mg S O4 !7 

H2 O 

* 00-001-0399 35 Epsomite 0.000 0.026 Mg S O4 !7 

H2 O 

 

Supplementary Figure 2: Diffraction pattern of the Mg-sulfate. This diffraction pattern is 

indicative of the Mg-sulfate epsomite – MgSO4∙7(H2O). 
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Supplementary Figure 3: Synchrotron Mössbauer Spectra of NAu-1 (blue) and NAu-1 with a 

10μm stainless steel foil (orange) to determine center shifts (blue arrow).  Note the increased 

abundance of 57Fe results in a shift to lower time for the sample with stainless steel foil.  The 

isomer shifts and quadrupole splittings of both Fe3+ sites occur within the single observed 

absorption which is consistent with the ferric-clay mineral nontronite13-15. 
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Supplementary Figure 4: Synchrotron Mössbauer data of NAu-1 without stainless steel foil.  The 

plot was fitted in CONUSS21. Blue lines represent the error of the analysis.  



20 
 

 

Supplementary Figure 5: Synchrotron Mössbauer data of NAu-1 with stainless steel foil.  The 

plot was fitted in CONUSS21.  Blue lines represent the error of the analysis.  
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Supplementary Figure 6: Synchrotron Mössbauer data of the 15-Mg 85-Fe3+ precipitate (150º C) 

with stainless steel foil.  The plot was fitted in CONUSS21.  Blue lines represent the error of the 

analysis.  The variation between the fit produced within CONUSS and the actual data is likely 

due to the low number of counts towards higher time.  However, the very low number of counts 

in this time-range are a minor contribution to the total spectra. 
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Supplementary Figure 7: Synchrotron Mössbauer data of the 50-Mg 50-Fe3+ precipitate (150º C) 

with stainless steel foil.  The plot was fitted in CONUSS21. Blue lines represent the error of the 

analysis.  The variation between the fit produced within CONUSS and the actual data is likely 

due to the low number of counts towards higher time.  However, the very low number of counts 

in this time-range are a minor contribution to the total spectra. 
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Supplementary Figure 8: Synchrotron Mössbauer data of the 100-Fe Control - Subsequently 

Oxidized precipitate (150º C) with stainless steel foil.  The plot was fit in CONUSS21.  Blue lines 

represent the error of the analysis.  The variation between the fit produced within CONUSS and 

the actual data is likely due to the low number of counts towards higher time.  However, the very 

low number of counts in this time-range are a minor contribution to the total spectra.   
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Supplementary Figure 9: Photograph of the synthetic nontronite control (100-Fe Control - 

Subsequently Oxidized) precipitated at 150º C, dried in-vacuo and ground to a fine powder in a 

mortar and pestle.  The reddish color is likely due to the oxidation of the ferrous precursor into 

nontronite as indicated by our Mössbauer data (Table S3 and S8), as well as the Mössbauer 

spectroscopy data collected by Mizutani et al.1 on material previously produced by this method.   
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Supplementary Figure 10: Photograph of the synthetic nontronite control (100-Fe Control - 

Subsequently Oxidized) precipitated at 100º C, dried in-vacuo and ground to a fine powder in a 

mortar and pestle.  The reddish color is likely due to the oxidation of the ferrous precursor into 

nontronite. This is supported by the Mössbauer spectroscopy data collected by Mizutani et al.1 on 

material synthesized in an similar manner, as well as our Mössbauer data of the corresponding 

150º C experiment (Table S3 and Figure S8). 
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Supplementary Figure 11: X-Ray diffraction pattern of the 100-Fe Control - Subsequently 

Oxidized, precipitated at 150º C.  Note the slight expansion when exposed to ethylene glycol 

vapor for over 24 hours.  The clay mineral did not expand to the diagnostic 17 Å of smectite, but 

only to approximately 14 Å which is consistent with previous descriptions of material 

synthesized in this manner as a high-charge (expands very little during exposure to ethylene 

glycol vapor) nontronite2.  
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Supplementary Figure 12: X-Ray diffraction pattern of the 100-Fe Control - Subsequently 

Oxidized precipitated at 100º C - note the low angle broad reflection, which is indicative of clay 

minerals. In addition, the diffractions occurring at approximately 20 degrees (020 reflection) 

characterizes the b dimension of the unit cell and is also indicative of clay minerals, having been 

used to identify clay mineralogy on Mars17.  Material synthesized in this manner has been 

previously characterized as high-charge (e.g. expands very little when exposed to ethylene glycol 

vapor) nontronite2. 
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Supplementary Figure 13: Synchrotron μ-XRD (0.86 Å wavelength) pattern for the 100-Fe 

Control - Subsequently Oxidized) precipitated at 150º C.  Note the multiple peaks produced 

which are the direct result of crystallinity.  This diffraction pattern is consistent with a clay 

mineral structure in that the diffraction peaks are produced through the 001 (large low-angle 

reflection) 020 and 060 reflections. 
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Supplementary Figure 14: Visible Near Infrared (VNIR) spectra of the synthesized clay minerals 

precipitated at 150º C as described in the methods.  For complete information regarding the 

compositions see Table 1.  Spectra were collected with an Analytical Spectra Devices (ASD) 

VNIR spectrometer.  The continuum has been removed in the right columns.  0-Mg-control 

refers to the sample synthesized with initial Fe2+.  
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Supplementary Figure 15: Spectra of the 4000 to 2400 cm-1 region, for the 150° C precipitates.  

Note the systematic shift of absorptions to higher energies (lower wavenumber) with increasing 

Mg, with the 3Mg-OH absorption occurring at 2.72 μm (3676 cm-1) in Mg-rich clay minerals.  

The 2Fe-OH absorption occurs at a lower wavelength of 2.80 μm (3571 cm-1).  These spectra 

have absorptions characteristic of Fe and/or Mg-rich clay minerals.   
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Supplementary Figure 16: Visible Near Infrared (VNIR) spectra of the synthesized clay minerals 

precipitated at 100º C as described in the methods.  For complete information regarding the 

compositions see Table 2.  Spectra were collected with an Analytical Spectra Devices (ASD) 

VNIR spectrometer.  The continuum has been removed in the right two columns.  
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Supplementary Figure 17: Spectra of the 4000 to 2400 cm-1 region, for 100° C precipitates.  Note 

the systematic shift of absorptions to higher energies (lower wavenumber) with increasing Mg 

with the 3Mg-OH absorption occurring at 2.72 μm (3676 cm-1) in Mg-rich clay minerals. The 

2Fe-OH absorption occurs at a lower wavelength of 2.80 μm (3571 cm-1).  These spectra have 

absorptions characteristic of Fe and/or Mg-rich clay minerals.   
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Supplementary Figure 18: Photograph of the 100-Fe3+ precipitate (150º C) after drying in-vacuo 

and grinding to a fine powder in a mortar and pestle.  Note the reddish color which is likely from 

the presence of Fe3+.  
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Supplementary Figure 19: Photograph of the 100-Fe3+ precipitate (100º C) after drying in-vacuo 

and grinding to a fine powder in a mortar and pestle.  Note the reddish color which is likely from 

the presence of Fe3+.  
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Supplementary Figure 20: X-Ray diffraction pattern of the 100-Fe3+ precipitate aged at 150º C - 

note the lack of crystallinity of this relatively amorphous sample, which indicates the importance 

of a divalent cation, and is consistent with previous studies1,2,4.  In addition, no expansion 

occured when exposing the sample to ethylene glycol vapor for over 24 hours.  
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Supplementary Figure 21: X-Ray diffraction pattern of the 100-Fe3+ precipitate aged at 100º C - 

note the lack of crystallinity of this amorphous sample which indicates the importance of a 

divalent cation, and is consistent with previous studies1,2,4.  
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Supplementary Figure 22: Photograph of the 100-Mg precipitate (150º C) after drying in-vacuo 

and grinding to a fine powder in a mortar and pestle.   
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Supplementary Figure 23: Photograph of the 100-Mg precipitate aged at 100º C after drying in-

vacuo and grinding to a fine powder in a mortar and pestle.   
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Supplementary Figure 24: X-Ray diffraction pattern of the 100-Mg precipitate aged at 150º C.  

Note the diffraction peak shifts when exposed to ethylene glycol for over 24 hours.  This 

material lacks crystal coherency in the c-axis which makes it difficult to determine the exact 

peak positions. This pattern is indicative of a trioctahedral Mg-clay/smectite such as saponite or 

stevensite.    
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Supplementary Figure 25: X-Ray diffraction pattern of the 100-Mg precipitate aged at 100º C - 

note the low angle broad reflection, which is indicative of clay minerals.  Exposure to ethylene 

glycol resulted in an expansion of the basal 001 reflection to approximately 20 Å, which is 

indicative of a smectite.  In addition, the broad diffraction occurring at approximately 20 degrees 

2-theta characterizes the b-dimension of the unit cell and is used to identify clay mineralogy on 

Mars17. This pattern is indicative of a trioctahedral Mg-smectite such as saponite or stevensite.  
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Supplementary Figure 26: Photograph of the 15-Mg 85-Fe3+ precipitate (150º C) after drying in-

vacuo and grinding to a fine powder in a mortar and pestle.  
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Supplementary Figure 27: Photograph of the 15-Mg 85-Fe3+ precipitate (100º C) after drying in-

vacuo and grinding to a fine powder in a mortar and pestle.  
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Supplementary Figure 28: X-Ray diffraction pattern of the 15-Mg 85-Fe3+ precipitate aged at 

150º C.  Note the low angle basal reflection under air-dried conditions and the subsequent result 

when exposed to ethylene glycol vapor for over 24 hours.  Due to the loss of the basal reflection 

resolution, which may be due to the low angle background, it is difficult to determine the exact 

peak position.  However, exposure likely produced an expansion within the clay mineral along 

the c-axis consistent with a dioctahedral Fe-rich clay mineral. 
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Supplementary Figure 29: X-Ray diffraction pattern of the 15-Mg 85-Fe3+ precipitate aged at 

100º C – note the low angle reflection (although not prominent, diffraction is occurring at 

approximately 6 degrees 2θ), which is indicative of clay minerals.  In addition, the diffractions 

occurring at approximately 20 degrees characterizing the b dimension of the unit cell have been 

used to identify clay mineralogy on Mars17.  This material is similar to the previously 

synthesized high-charge nontronites produced by Mizutani et al.1 and Decarreau et al.2. 
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Supplementary Figure 30: Synchrotron μ-XRD (0.86 Å wavelength) pattern for the 15-Mg 85-

Fe3+ precipitate aged at 150º C.  Note the multiple peaks produced due to some crystallinity.  

This diffraction pattern indicates some clay mineral structure, in that the diffraction peaks are 

produced through the 020 and 060 reflections. 
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Supplementary Figure 31: Photograph of the 50-Mg 50-Fe3+ precipitate (150º C) after drying in-

vacuo and grinding to a fine powder in a mortar and pestle.  
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Supplementary Figure 32: Photograph of the 50-Mg 50-Fe3+ precipitate (100º C) after drying in-

vacuo and grinding to a fine powder in a mortar and pestle.  
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Supplementary Figure 33: X-Ray diffraction pattern of the 50-Mg 50-Fe3+ precipitate aged at 

150º C.  Note the expansion between the air-dried and ethylene glycol treated samples (exposed 

to vapor for over 24 hours).  This expansion to approximately 17 Å is indicative of a smectite 

clay mineral. 
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Supplementary Figure 34: X-Ray diffraction pattern of 50-Mg 50-Fe3+ precipitate aged at 100º C 

- note the low angle broad reflection, which is indicative of clay minerals. Exposure to ethylene 

glycol resulted in a slight expansion from approximately 14 to 15 Å. In addition, the diffractions 

occurring at approximately 20 degrees characterize the lateral dimension of the b-dimension and 

have been used to determine clay mineralogy on Mars17.  
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Supplementary Figure 35: Synchrotron μ-XRD (0.86 Å wavelength) pattern for the 50-Mg 50-

Fe3+ precipitate aged at 150º C.  Note the multiple peaks produced due to some crystallinity.  

This diffraction pattern is consistent with a clay mineral structure in that the diffraction peaks are 

produced through the 020 and 060 reflections.   
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Supplementary Figure 36: Photograph of the 10-Mg 90-Fe3+ precipitate at 150º C, after drying 

in-vacuo and grinding to a fine powder in a mortar and pestle.  
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Supplementary Figure 37: X-Ray diffraction pattern of the 10-Mg 90-Fe3+ precipitate aged at 

150º C.  The broad low angle diffraction is indicative of a clay mineral.  Note the minimal 

expansion that occurred between the air-dried and ethylene glycol treated samples (exposed to 

vapor for over 24 hours).  This material is similar to the previously synthesized high-charge 

nontronites produced by Mizutani et al.1 and Decarreau et al.2. 
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Supplementary Figure 38: Photograph of the 5-Mg 95-Fe3+ precipitate aged at 150º C, after 

drying in-vacuo and grinding to a fine powder in a mortar and pestle.  
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Supplementary Figure 39: X-Ray diffraction pattern of 5-Mg 95-Fe3+ precipitated at 150º C - the 

diffraction pattern of the product is consistent with a poorly crystalline clay mineral.  This 

indicates that Fe-rich clay minerals can precipitate with very minor concentrations of Mg.  Note 

that the expansion which occurred between the air-dried and ethylene glycol treated samples 

(exposed to vapor for over 24 hours), was less than the characteristic 17 Å of smectite.  

However, this material is similar to previously studied materials which were characterized as 

high-charge (e.g. does not fully expand when exposed to ethylene-glycol vapor) nontronites1,2.  
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Supplementary Figure 40: EDS spectra and SEM images of 0-Mg 100-Fe control (initially 

reducing - top), and 0-Mg 100-Fe (oxidized - bottom).  Notice the extremely fine grained nature 

of the precipitates.  
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Supplementary Figure 41: EDS spectra and SEM images of the 15-Mg 85-Fe (top), and 5-Mg 

95-Fe experiments (bottom). Notice the extremely fine grained nature of the precipitates.  
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Supplementary Figure 42: Synchrotron μ-XRD patterns of 15-Mg 85-Fe and 50-Mg 50-Fe 

experiments.  Note that both samples show an indication that ferrihydrite may be present within 

these precipitates.  In addition, the higher intensity within the 50-Mg 50-Fe relative to the 15-Mg 

85-Fe experiment at approximately 1.5 and 1.25 Å is suggestive of the presence of brucite.  
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