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Material and Methods  

Neutron scattering sample preparation 

A 10% wt/wt solution of lysozyme powder in D2O buffer has been prepared. Protein was purchased 

from SIGMA Chemical Co in fully hydrated form and was employed without further purification 

It has been dissolved in pure D2O solvent to exchange labile hydrogen atoms, followed by 

lyophilization. The final solution was obtained by dissolving the protein powder in D2O buffer 

with a concentration of 100 mg/ml. A 10-mM Tris buffer with a final pD = 6.0 has been used. 

Protein solutions have been finally stirred for 10 min at 9000 r/min at 292 K. 

 
Large volume high pressure sample holder 

The new interest and demand of the biophysical community, interested in food science and biology 

under extreme conditions, has pushed the development and construction of a pressure sample 

holder adapted to large solution volumes (0.7 cm3), which is suitable for neutron scattering 

experiments. The sample holder (Figure S1), made from titanium alloy, is designed to withstand 

pressures of up to 3 kbar, which can be extended up to 5 kbar. The cell design is also compatible 

with most of ILL Orange cryostats, for studies as a function of pressure and temperature. It is 

mounted on a sample holder stick. The pressure device has been conceived with a flat geometry. 

It is constituted of two manufactured titanium pieces, which are held together with height 12.9 

security class screws and a thermally treated aluminum joint. The illuminated neutron window has 

an outer diameter of 27.8 mm and an inner diameter, the sample illuminated part, equals to 19.5 

mm. The total thickness of the two illuminated titanium windows is of 11 mm, which results in a 

calculated transmission of the empty cell of 0.52. The cell is conceived for in situ measurements. 



The hydrostatic pressure is achieved through a hand pump and monitored through a pressure sensor 

mounted on the cell. The loading, unloading and cleaning of the cell can be performed without 

opening the device, using capillaries connected to the pump. The actual thickness of the sample 

solution has been adapted to the new Brillouin Spectrometer BRISP, at ILL, and it is of 7 mm.  

	a)		 	b)	

Figure S1. Large volume titanium high pressure sample holder a) face; b) section profile. 

 
Neutron Brillouin Scattering 

The measurements have been carried out on the BRISP spectrometer at the high-flux reactor ILL 

(Grenoble, France). The chosen configuration was: incident wavelength 0.9885 Å, scattering 

angles from 1° to 13°. Therefore the dynamic Q-region was ranging from 0.2 to 1.4 Å−1. A 

vanadium standard measurement was used to determine the elastic instrumental energy resolution, 

which is well-described by a Gaussian function with FWHM = 2.7 meV (incident energy 83.7 

meV), nearly constant with Q.  

All data were acquired at 300 K at a pressure of 1 bar, 2 kbar and 3 kbar. The acquisition time for 

each sample was about 1 day. Standard procedures for the correction of raw data have been used 



(correction for incident flux, sample transmission, cell scattering, environmental background, and 

detector efficiency). Multiple scattering contributions were evaluated with a proper simulation 

program and subtracted from corrected data. 

To study the coherent scattering of a mixture of lysozyme and heavy water, data collected from 

BRISP were analyzed by fitting a two-mode model based on an elastic line plus two damped 

harmonic oscillators (DHOs): 

In this picture, the hydration water dynamic structure factor can be expressed with 𝜔 = 𝐸/ℏ as 

follows:  

𝑆 𝑄, 𝜔 = 𝑎 𝑄 𝛿 𝜔 + 𝑛 𝜔 + 1
𝑎. 𝑄 Γ. 𝑄 𝜔

𝜔0 − Ω.0 (𝑄) 0 + Γ. 𝑄 𝜔 0 +
𝑎5 𝑄 Γ5 𝑄 𝜔

𝜔0 − Ω50(𝑄) 0 + Γ5 𝑄 𝜔 0  

The first term is a Dirac delta function δ(w) of intensity a(Q) , which represents both the elastic 

and the quasi-elastic response of the biomolecular system. The quasi-elastic component is assumed 

to have a negligible width compared to the instrument energy resolution. When this is not the case, 

a finite width function is employed instead of the delta function, (e.g. a Lorentzian function). The 

term n(w) is the Bose factor, while the term between curly brackets is the sum of two DHO 

response functions: a high-energy term, whose parameters are identified by the subscript H, and a 

low-energy term, identified by the subscript L. Each DHO function is characterized by three Q-

dependent parameters, that is the proper frequency Ω(Q), the damping factor Γ(Q), and the 

intensity a(Q). The resulting data were corrected and analyzed using the ILL LAMP programs. 

All propagating modes confound with an inelastic mode at frequencies of 1-3 THz, simply because 

at these frequencies the acoustic excitations confound with intermolecular vibrations. At these 

frequencies the wavelengths are not propagating and the modes are localized. The low energy optic 



like mode is probably the so-called Boson peak, which is characteristic of localized vibrational 

modes. The low frequency mode does not have the same origin for all materials, and in the case 

of water has been identified as an O-O-O bending mode. This point remains an active subject of 

discussion, but is not in the focus of this work and therefore not discussed in detail. Taking into 

account earlier published data and preliminary results, the adopted fitting strategy includes a 

boundary for the low energy mode ( [2.6 meV]). This approach allowed a faster and more reliable 

fitting convergence. The Q-dependent spectra were fitted in sequence and one by one, adopting as 

initial condition the optimized parameters of the previous minimization.  

In addition to the experimental data in Figures 3 in the main text, Figure S2 below shows a 

comparison of the experimental high frequency sound propagation velocities C in protein solutions 

and neat water at equivalent pressures. Notably, the propagation velocities are increased relative 

to bulk water at all pressures, while the difference decreases in the high pressure regime. We note, 

that the differences between propagation velocities are less pronounced in our results from 

molecular dynamics simulation (Figure 5C in the main text). 

 
Figure S2: Comparison of the experimental high frequency sound propagation velocities at 
equivalent pressures for deuterated protein solutions and neat D2O.  



Figure S3 represents a direct comparison of the damping factor for lysozyme protein solutions and 

bulk water as a function of pressure. At both 2 and 3 kbar, the damping probed for the protein 

solution is higher than for bulk water. As already discussed in the main manuscript, the damping 

factors exhibit the most prominent characteristic differences of collective properties between the 

experimentally studied samples at ambient pressure. These differences even increase at elevated 

pressures and are likely related to interactions between hydrated protein surfaces and their 

surrounding hydration shell, which are modified upon compression due to the increased hydration 

of hydrophobic protein surface patches. 

 
Figure S3. Comparison of the damping factors for lysozyme solution water network and neat D2O 
at 2 kbar (left) and 3kbar (right).  

 
Damped harmonic oscillator (DHO) model 

The DHO serves as an analytical model to represent the data obtained from experimental and 

simulated coherent, inelastic scattering spectra. In addition to the signal frequency Ω, the damping 

factor Γ, i.e., the damping ratio Γ/Ω, has a significant influence on the fitted lineshape. For 

increasing damping ratios, the motion of the assumed DHO underlying the signal becomes 



increasingly non-oscillatory as shown below. The differential equation underlying the DHO model 

function used in our analytical model is: 

 𝑥 𝑡 + Γ	𝑥 𝑡 +Ω0	𝑥 𝑡 = 0 

In this notation, a damping ratio <1 indicates pronounced oscillatory behavior with a well-defined 

maximum in the spectrum close to the signal frequency. Between damping ratios of 1 and ~1.4 

( 2) the spectral lineshape changes characteristically towards a primarily non-oscillatory 

behavior. The latter is indicated by a maximum amplitude at zero frequency for damping ratios ≥

2 followed by a broad high-frequency tail. Therefore, we denote damping ratios >1 as close-to-

critical damping. Critical damping is obtained for a damping ratio of 2, which results in the fastest 

possible decay in the time domain. Damping ratios >2, i.e. overdamping, result in increasingly 

slow relaxations in the time domain. Examples for the time evolution and the spectrum of a DHO 

oscillating at 25 meV for various damping ratios up to critical damping are shown below in Figure 

S4.  

 

Figure S4: Time domain trajectories (left) and frequency spectra for a DHO with a fixed 
frequency/energy of 25 meV for varying damping ratios up to critical damping. 

 



The analysis of the damping ratios therefore allows for a detailed assessment of the lineshape that 

reproduces the experimental data most accurately, in addition to a qualitative assessment of the 

lifetime of the oscillation. Further, the mode frequency Ω of a collective, propagating mode follows 

a linear dispersion relation as function of Q. Therefore, a linear increase of the damping ratio, as 

observed in our samples for pressurized water and the protein solutions, indicates a Q2-dependence 

of the underlying damping factor, which has been reported in the original literature1. However, a 

linear increase in the damping ratio, which we use in our plots, is easier to identify than a quadratic 

Q-dependence of the damping factor. 

Only for bulk water at ambient pressure, the damping ratio remains constant. However, we point 

out that this data set was obtained from the literature2 and a constant damping ratio has been 

imposed in the underlying fit. 

 
Molecular dynamics simulations 

Molecular dynamics simulations were carried out with the GROMACS-4.6.1 software package3. 

The charmm22 force field parameters with CMAP corrections4 were used for hen egg white 

lysozyme (HEWL). The TIP4P-20055 parameters  were used for water. We chose this particular 

combination of protein and water force fields due to the parametrization of the TIP4P-2005 model 

for a wide range of pressures and temperatures5. Previous benchmark simulations suggest only 

minor effects on the protein, although the charmm22 parameters have been optimized for TIP3P 

water6. The particle-mesh Ewald summation method was employed with a grid spacing of 1.2	Å 

to describe long-ranged electrostatics7. Short-ranged interactions were shifted to zero at a cut-off 

distance of 9	Å. Neighbor lists were updated every 10 simulation steps with a distance cutoff of 

11 Å. For equilibrations, Berendsen weak-coupling thermostats and barostats8 were employed at 



300 K and the respective pressure using 1 picosecond time constants. For production simulations 

in the isothermal-isobaric ensemble we employed the Nose-Hoover thermostat9 and Parrinello-

Rahman barostat10 instead. Protein structures were used based on the 1HEL11 entry in the PDB 

with protonation states as predicted by the H++ software package12 for a pH of 7.0, resulting in a 

net charge per protein of +8. Simulation models for concentrated protein solutions were generated 

via positioning of 5 randomly oriented proteins within a (100 Å)3 simulation box including 129 

water molecules present in the crystal structure for each protein. The system was then neutralized 

with 40 chloride ions and the remaining volume was filled with 29210 water molecules. The 

system was then subjected to a steepest descent energy minimization for 1000 steps, prior to a 1 

nanosecond dynamics simulation with position restraints applied to non-hydrogen protein atoms 

at a temperature of 300 K and a pressure of 1 bar. Additional pre-equilibrations at the respective 

target pressure (1 bar, 500 bar, 1 kbar, 2 kbar, 3 kbar and 5 kbar) were then carried out without 

position restraints for 1 nanosecond. The simulation time step for these equilibrations steps was 

set to 1 femtosecond. This was followed by 100 nanosecond production simulations using a 

2 femtosecond timestep at the respective target pressures to sample the equilibrium properties of 

the protein solutions. Snapshots were obtained every 20 nanoseconds to generate starting points 

for 100 picosecond simulations in the micro-canonical ensemble (with a 1 femtosecond time step), 

which were used to compute longitudinal current spectra (see below). Since these simulations were 

used to analyze dynamic properties, the masses of hydrogens were modified to deuterium, atomic 

velocities were scaled accordingly, and the microcanonical simulations were preceded by a 20 

picosecond equilibration with the Berendsen thermostat. Coordinates and velocities in the 

microcanonical simulations were saved every 8 femtoseconds, cutoffs for short-ranged 

interactions were increased to 11.5 Å, switching them smoothly to zero beginning at 9.0	Å. 



Neighbor list cutoffs were increased accordingly to 13	Å. The analysis of structural properties was 

performed on the 100 nanosecond isobaric-isothermal simulations described above with light 

hydrogen atoms because structural properties formally do not depend on the isotope mass in 

classical simulations that neglect nuclear quantum effects. 

Simulations of isolated HEWL proteins in solution were treated equivalently using the same initial 

simulation box size, however, adding only a single protein and 32422 water molecules. Bulk water 

systems consisted of 33049 within the same initial volume.  

 
Simulation Analysis 

Longitudinal current spectra were obtained from correlations of current densities > 𝒓, 𝑡 	obtained 

from atomic positions ri(t) and velocities vi(t) during the 100 picosecond micro-canonical 

simulations of the deuterated HEWL solutions (5 proteins+ions in water) and bulk water, including 

weighting factors based on coherent neutron scattering cross sections 𝛽A of the individual nuclear 

species.  

 > 𝒓, 𝑡 = 	𝛽A	𝛿 𝒓 − 𝒓A 𝑡B
A 	𝒗𝒊 𝑡  

The space-time Fourier transform is easily obtained as 

 𝑱 𝑸,𝜔 = 𝑒HIJ 𝛽AB
A 𝑒H	𝑸	𝒓	> 𝒓, 𝑡 	𝑑𝒓𝒅𝒕 = 𝑒AIJ 𝛽AB

A 	𝑒H	𝑸	𝒓𝒊 𝒕 	𝒗𝒊 𝑡 𝑑𝑡 

This expression was evaluated for Q-vectors corresponding to 0.2 to 4.0 Å-1 with steps of 0.1	Å-1. 

For each Q-vector length 40 vectors were selected from a discrete reciprocal space grid defined by 

the periodic boundary conditions of the simulation cell. After projection on the respective Q-vector 

to obtain the longitudinal components of the current density, the longitudinal current spectrum is 



then simply obtained as the product of the complex conjugates in reciprocal space and in the 

frequency domain 

	 𝐼|| 𝑄, 𝜔 = 𝑱 𝑸,𝜔 𝑸
𝑸

𝑱 𝑸,𝜔 𝑸
𝑸
	

The resulting spectra were then analyzed within the two-component damped harmonic oscillator 

model used for the experimental data including a 𝜔0 𝑄0 prefactor that distinguishes the dynamic 

structure factor from the longitudinal current spectrum. Contour plots in Figure 5B of the main 

text indicate the Q-dependent longitudinal current spectra for one selected system (protein solution 

at 2 kbar). The fitted high-frequency peak positions of the spectra are compared in Figure 5C and 

5D of the main text. High-frequency sound propagation velocities were obtained from a linear fit 

of the dispersion curve between 0.3 and 1.0 Å-1. 

Density profiles of water centers were evaluated from the 100ns simulations of isolated proteins 

in solution in the isothermal-isobaric ensemble. For this purpose, the environment of the protein 

was first discretized into voxels with an edge length of 1 Å. For each voxel element and simulation 

time step then the distance to the closest protein non-hydrogen atom was evaluated. Water 

molecules in simulation snapshots stored every 10 picoseconds were then assigned to grid voxels 

based on the position of the center of mass, allowing to efficiently assign their distance to the 

protein.  

In addition, the hydrogen bond angle-based tetrahedral order parameters13-14 were computed with 

increasing pressure in bulk water as well as within 5 Å hydration shells (relative to closest non-

hydrogen protein atom) in the protein environment.  

	 𝑞 = 1 − Q
R

cos		𝜓WX +
Y
Q

0
Z
X[W\Y

Q
W 	



Here, the angles 𝜓WX describe angles between vectors connecting the hydrogen bond 

donor/acceptor atom of the four nearest neighbor sites of a water molecule with the oxygen atom 

of the central water molecule. The results of this analysis are shown together with radial 

distribution functions of the water-center of mass for increasing pressure in Figures 6 C, D, and E.  

 
Protein stability in the studied pressure range 

The stability of lysozyme solutions under comparable conditions as used in our experimental study 

have been reported by Heremans & Wong15. At a protein concentration of 10% w/w, a pH of 7.4 

and a buffer concentration of 2.5 mM, spectral changes of vibrational bands in the Raman spectrum 

were used to show virtually no changes of the protein structure up to pressures of 3.6 kbar, which 

includes the pressures used in our experiments15. Irreversible protein aggregation has been 

observed only for pressures above 5.5 kbar, which exceeds the pressure range explored in our 

study.  

Additional studies are available for dilute lysozyme solutions under varying conditions, which may 

lack stabilizing or destabilizing effects due to protein-protein interactions. Tryptophan 

fluorescence measurements of lysozyme in solution were carried out by Li et al. for pressures up 

to 11kbar16. In this experiment, the halfway point of a reversible denaturation process has been 

determined as 4.3 kbar. Fluorescence polarization experiments on solutions of labeled lysozyme 

at pH 8 by Chrysomallis et al. report a volume increase between 5 and 10 kbar17, indicative of 

unfolding. Further, proton NMR experiments have been used to follow pressure denaturation of 

lysozyme under acidic conditions (pH 3.9) and elevated temperature (68.5°C) via shifts of signals 

from various residues in the pressure range from 1 bar to 5 kbar18. Under these comparably harsh 



conditions, a 20-30% denaturation is observed at 3 kbar and a 40-50% denaturation at the 

maximum pressure of 5 kbar.  

While our experiments were carried out up to 3 kbar, we extended the studied pressure range in 

our molecular dynamics simulations to pressures up to 5 kbar. In these simulations, we can monitor 

the protein stability directly via the root mean squared displacements (RMSD) of protein heavy 

atoms (all non-hydrogen atoms) relative to the crystal structure for the five simulated proteins 

monomers in our 10% w/w solution. Protein diffusion and tumbling of each protein monomer is 

removed for this analysis by a translational and rotational fit of the corresponding protein atoms 

with respect to the reference structure. The result shown in Fig. S5 demonstrates near-native 

conformations of all protein monomers over the entire simulation length (RMSD < 2.0 Å). While 

this result does not guarantee a thermodynamically stable folded state due to the limited sampling 

time of 100 ns, it proves that the results obtained from the analysis of our trajectories are 

representative of solutions of natively folded proteins. In addition, our simulations reproduce a 

previous observation obtained from quasi-elastic neutron scattering (QENS) experiments on 

lysozyme solutions19, which reports a reduced protein flexibility with increasing pressure. The 

latter is reflected by the RMSD time traces as the maximum RMSD’s are decreasing with 

increasing pressure and the 5 distinct protein monomers show increasingly homogenous time 

traces at 3 and 5 kbar compared to lower pressures.  



 

Figure	S5:	Protein	heavy	atom	RMSD’s	after	translational	and	rotational	fitting	as	a	function	
of	 simulation	 time	 for	 each	monomer	 in	 the	 simulated	10%	w/w	protein	 solution	 for	 all	
simulated	pressures.	



Effect of pressure on pH and sidechain protonation 

In the studies summarized above, the pH was determined at ambient pressure, equivalent to our 

experiments. Pressure-induced changes in pH are therefore not specifically considered and should 

be comparable between these experiments.  

However, pressure-induced effects on the protonation state of the protein are potentially relevant 

to our simulations, where the protonation state is fixed by the topology of the employed simulation 

model. Pressure-induced changes in the pH of water are the result of an increased auto-ionization 

product for water as the ionized species occupy a smaller partial molar volume than neutral water 

molecules. Therefore, increased pressures result in a lower pH, as well as a lower pOH20. Hence, 

the increased concentrations of ionized water species themselves would not directly affect the 

equilibrium between distinct protein sidechains. Likewise the pH/pD range relevant to our 

simulations corresponds to such small concentrations of the ionized species, that virtually no H3O+ 

or OH- ions are expected in our finite size simulation box.  

Instead, the same mechanism that increases the auto-ionization product of water is likely to 

increase the probability of weakly basic and acidic sidechains to be protonated or deprotonated, 

respectively. Small angle x-ray scattering experiments19 of concentrated lysozyme solutions 

(10% wt/wt, pH 7.5, 30mM salt) for pressures up to 1.5 kbar indicate a decrease in the coulombic 

repulsion between the proteins at high pressures, which would indicate a decrease of the positive 

charge of +8 observed at near-neutral pH’s for ambient pressures. A reduced positive charge 

despite favorable ionization of sidechains would indicate an increased number of negatively 

charged sidechains.  



In our simulation, all standard acidic sidechains (ASP, GLU) are already deprotonated for 

simulations at ambient pressure. We identified TYR 20 and 23 as potential deprotonation 

candidates for non-standard negative sidechains, which would reduce the total protein charge to 

+6. We therefore repeated our simulations of lysozyme solutions at the highest pressure of 5 kbar 

with this modified charge state to infer a potential influence of pressure-induced changes in the 

protonation state on our results.  

In the following Figure S6, we compare the results for the sound propagation velocity in the 

concentrated protein solution (10% wt/wt) with the data shown in the main manuscript (Fig. 5C 

and D). We omit a comparison for the structure of the protein hydration water in dilute solutions 

as shown in Fig. 6 C and D as the results from simulations with the distinct protonation states were 

essentially indistinguishable. While not being exactly identical, the difference between the average 

high frequency sound propagation velocities at 5 kbar for simulations of the protein solution with 

the default and modified protonation states are within the statistical error bar obtained from 

averaging over 5 independent trajectories. Consequently, we are certain that our conclusion are 

not affected by pressure-induced changes in the sidechain protonation pattern for the simulated 

lysozyme proteins. 

 

Figure S6: Same as Figure 5 in the main manuscript, however, including high frequency sound 
propagation velocities obtained for protein solutions with a modified protonation state at 5 kbar. 
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