## **Supporting Information**

## Redox-responsivePolysulfide-basedBiodegradableOrganosilicaNanoparticles for Delivery of Bioactive Agents

Seyyed Pouya Hadipour Moghaddam<sup>a, b</sup>, Jiban Saikia<sup>b</sup>, Mostafa Yazdimamaghani<sup>a, b</sup>, and Hamidreza Ghandehari<sup>a, b, c, \*</sup>

<sup>a</sup> Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA

<sup>b</sup> Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA

<sup>c</sup> Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA

\* Corresponding Author. Utah Center for Nanomedicine, Nano Institute of Utah, 5205 SMBB, 36 S. Wasatch Dr, Salt Lake City, UT 84112, USA Email Address: hamid.ghandehari@utah.edu (H. Ghandehari)



Figure S1. STEM images for 60 Mesoporous D, 110 Mesoporous T, and 330 Nonporous D nanoparticles.



Figure S2. STEM spectra of (A) 60 Mesoporous D; (B) 110 Mesoporous T; and (C) 330 Nonporous D nanoparticles.



**Figure S3.** XRD graphs for (A) 60 Mesoporous D; (B) 110 Mesoporous T; (C) 120 Nonporous D; (D) 330 Nonporous D; and (E) regular non-degradable mesoporous SiNP. The degradable mesoporous nanoparticles did not exhibit the typical Bragg peaks like regular non-degradable mesoporous SiNP.



Figure S4. TGA analyses for the synthesized nanoparticles. Stöber 100 SiNP was used as a control.











**Figure S5.** XPS survey spectra of (A) 60 Mesoporous D; (B) 110 Mesoporous D; (C) 110 Mesoporous T; (D) 120 Nonporous D; and (E) 330 Nonporous D nanoparticles.



**Figure S6.** FTIR spectra of 110 Mesoporous D and 120 Nonporous D nanoparticles before and after washing. CTAB and BTESPD (disulfide-based precursor) were also analyzed for better comparison. Typical CTAB peaks around 3000 cm<sup>-1</sup> were not seen after washing the nanoparticles. This confirms complete removal of the surfactant from the pores.



**Figure S7.** Degradation images of mesoporous nanoparticles after 15 days in the presence of 8  $\mu$ M GSH; (A) 60 Mesoporous D; (B) 110 Mesoporous D; and (C) 110 Mesoporous T nanoparticles.



**Figure S8.** Degradation images of nonporous nanoparticles after 15 days in the presence of 8  $\mu$ M GSH; (A) 120 Nonporous D and (B) 330 Nonporous D nanoparticles.



Figure S9. Agglomeration of 60 Mesoporous D nanoparticles in solution containing 8 mM GSH.



Figure S10. Degradation of 110 Mesoporous D nanoparticles after 48 h in the presence of 8 mM GSH.



Figure S11. Normalized degradation percentages of all synthesized nanoparticles over the 15-day period of study.









**Figure S12.** ESI-MS for 3 precursors: (A) TEOS; (B) BTESPD; and (C) BTESPT. ESI-MS for the degradation products: (D) 60 Mesoporous D; (E) 110 Mesoporous D; (F) 110 Mesoporous T; (G) 120 Nonporous D; and (H) 330 Nonporous D nanoparticles.



**Figure S13.** Nanoparticle uptake comparison *via* flow cytometry in RAW 264.7 macrophages after 24 h incubation with the concentration of 80  $\mu$ g ml<sup>-1</sup>. Data are mean ± SD (n = 3).



**Figure S14.** Dot plots from flow cytometry analyses of RAW 264.7 macrophages after 24 h incubation with  $80 \,\mu g \, \text{ml}^{-1}$  nanoparticles.

| Nanoparticle     | 0     | С     | S     | Si    |
|------------------|-------|-------|-------|-------|
| 60 Mesoporous D  | 30.69 | 44.67 | 6.72  | 17.92 |
| 110 Mesoporous D | 26.91 | 54.88 | 4.68  | 13.53 |
| 110 Mesoporous T | 24.6  | 62    | 2.20  | 11.20 |
| 120 Nonporous D  | 19.07 | 56.73 | 11.39 | 12.81 |
| 330 Nonporous D  | 17.66 | 67.12 | 6.73  | 8.49  |
| 100 Stöber       | 31.01 | 56.14 | 0     | 12.84 |

Table S1. Atomic (top) and mass (bottom) percentages of the synthesized nanoparticles measured by XPS

| Nanoparticle     | 0     | С     | S     | Si    |
|------------------|-------|-------|-------|-------|
| 60 Mesoporous D  | 28.11 | 30.72 | 12.37 | 28.80 |
| 110 Mesoporous D | 26.58 | 40.70 | 9.26  | 23.47 |
| 110 Mesoporous T | 25.86 | 48.89 | 4.62  | 20.60 |
| 120 Nonporous D  | 17.82 | 39.81 | 21.34 | 21.03 |
| 330 Nonporous D  | 18.31 | 52.26 | 13.98 | 15.45 |
| 100 Stöber       | 32.40 | 44.04 | 0     | 23.56 |