
B Physician decision tree & value of a negative CT scan

The flowchart depicted in Appendix Figure B.1 below shows a typical clinical pathway for a patient

who may receive a chest CT to test for PE. The most common symptom that leads to the consid-

eration of PE as a diagnosis is chest pain; this is a nonspecific symptom that could also indicate

a cardiac problem, pneumonia, or a number of other conditions. Blood oxygen tests and an EKG

are likely to be performed immediately at the bedside, and if they suggest a cardiac problem, the

patient will receive a more complete cardiac workup.

If cardiac conditions are ruled out, the doctor may then be considering pneumonia, pleural

effusion, and pulmonary embolism as possible diagnoses. A chest x-ray and D-dimer blood test

would be the typical next steps. A chest x-ray is a low cost test with low levels of radiation

exposure and little medical risk; it is highly effective at diagnosing pneumonia and pleural effusion,

which are more common than PE. If the x-ray is negative, then the physician may become more

concerned about the risk of PE, since other more common conditions causing chest pain have been

ruled out. A chest x-ray is a commonplace and recommended antecedent to a CT scan; the popular

Geneva risk scoring system for evaluating whether patient’s PE risk necessitates a CT scan includes

chest X-ray findings among the seven risk factors used to calculate the score.

At this point, the physician may consider ordering a D-dimer, an inexpensive blood test that

provides further information about a patient’s risk of PE. A low-risk result on the D-dimer suggests

the patient does not have a PE and the physician may forego a CT scan. A positive D-dimer result

is not diagnostic of PE, but suggests an elevated probability of this condition. At this point, the

physician would consider ordering a CT scan. Over our study period, the popularity of the D-dimer

as an additional screening tool for PE was on the rise. Although we cannot observe the use of

the D-dimer in our data, variation in D-dimer utilization is one mechanism by which physician CT

ordering behavior may vary.

The physician will typically order a chest CT after ruling out these common causes of chest pain.

A chest CT with contrast is useful for diagnosing pulmonary embolism, but otherwise adds little

new information that may aid diagnosis of other possible acute conditions.24 A positive test will

typically lead to a hospital admission and treatment with blood thinners. Imaging is required for

diagnosing PE; even high risk patients have a relatively low probability of PE and PE treatment is

medically risky, so it is not a condition that would be treated presumptively without imaging.

A negative CT scan will leave the physician with a broad field of possible alternative diagnoses,

including a more subtle cardiac condition, sleep apnea, infection, or a false alarm, and the CT scan

result will not be helpful in distinguishing between these possibilities. Ruling out a chest CT has

only a modest impact on the posterior probabilities of the other conditions that may be causing

a patient’s symptoms, since the ex ante probability of PE is relatively low—even for higher risk

patients. For these reasons, the informational value of a negative test is low.

24In Appendix C, we provide a detailed discussion of other conditions that can be diagnosed by chest CT and how
we empirically address these possibilities.
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Figure B.1: Clinical Assessment of Patient with Potential Pulmonary Embolism
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C Testing for Multiple Conditions

An important caveat to our above analysis is that claims data is only sufficient to identify CPT

codes for “chest CT with contrast”; we cannot isolate CT scans that follow the PE testing protocol

specifically. Although tests for PE are the primary indication for chest CTs in the emergency

room setting, there are other possibilities. Because of this limitation, some of the tests we have

labeled as “negative” since the patient is not diagnosed with pulmonary embolism may be tests

performed for a different indication. There are five main alternative indications for CT scans in

an emergency department setting: trauma, lung or chest cancers, aortic dissection, pleural effusion,

and pneumonia. We discuss our approach to each of these alternative diagnoses in turn.

We exclude from the estimation sample patients with diagnosis codes related to trauma (such as

fractures, injury, motor vehicle accidents), when these codes are associated with bills on the same day

as the patient’s emergency department evaluation. Chest CTs for these patients are likely aiming

to assess damage from a trauma rather than a pulmonary embolism. In a detailed sample of patient

records from chest CT scans performed in the emergency room of a large hospital, diagnosis codes

associated with the radiology bills readily distinguished traumas from other scanning indications.

Similarly, we exclude patients with a history of aortic aneurysm, aortic dissection, or other

arterial dissection, in order to eliminate patients for whom chest CTs may be intended to evaluate

for aortic dissection. Aortic dissections are extremely rare, with only approximately 9000 cases per

year in the United States, making it over 30 times less common than pulmonary embolism (Meszaros

et al. 2000).

It is unusual for a cancer diagnosis to be made for the first time in the ED, but patients with

worsening symptoms as a result of tumor growth or metastasis and occasional new diagnoses may

be seen. CT scanning is routinely used to diagnose and stage cancers. In our sample of detailed ED

chest CT records from the academic medical center, fewer than 1% of the scans were used to diagnose

or stage cancers. In the Medicare data, we exclude those patients with chest cancer indicated on

their visit to the emergency room or associated inpatient visit from our preferred estimation sample.

Chest CTs can be used to guide a procedure to treat patients with pleural effusion, which is

typically first diagnosed with a chest X-ray. Because a chest CT is not commonly a diagnostic test

for pleural effusion but rather an input into the treatment of the disease, we can exclude patients

from the sample with diagnoses of pleural effusion. Since some patients are diagnosed with both

pleural effusion and pulmonary embolism, and in these patients the chest CT was likely serving a

diagnostic role, we do not exclude pleural effusion patients with a diagnosis of pulmonary embolism.

These sample restrictions will tend to overstate the rate of positive testing and bias us away from

finding evidence of overtesting, since we may be excluding some pleural effusion patients who are

being tested for pulmonary embolism but have a negative test result.

Together, these exclusions for patients with trauma, cancer, or pleural effusion remove 32% of

patients receiving chest CTs from our sample. Results presented in the paper are qualitatively

similar when these patients are included.

Finally, chest CTs can be used to diagnose pneumonia. Pneumonia can also be reliably diagnosed

with cheaper and lower radiation technologies (David et al. 2012); the added value of a chest CT
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with contrast in an ED setting for diagnosing these alternative conditions is very modest (Venkatesh

et al. 2013). Technically, the value of a chest CT scan for diagnosing a condition that could otherwise

be detected with an X-ray is bounded by the costs of the X-ray, which is about $30 in our sample.

Accounting for a $30 additional net benefit from diagnosing pneumonia when indicated does not

substantively change our results about the welfare costs of overtesting.

D Validating our approach to coding test results in claims data

We identify positive tests on the basis of Medicare Part A hospital claims that include a diagnosis

code for PE among any of the diagnoses associated with the hospital stay; we assume all other

CT scans failed to detect PE. We have validated our approach to identifying positive tests by using

cross-referenced patient chart and hospital billing data from two large academic medical centers. The

evidence from these centers suggest that we are unlikely to understate physicians’ testing thresholds

due to undercounting of positive test results. In particular, we may undercount positive tests in the

Medicare claims data for two reasons: if patients with PE are not admitted to the hospital; or if

patients with PE are admitted but their inpatient bill does not include a diagnosis of pulmonary

embolism.

At the two academic medical centers, we found that 90% of patients who test positive for PE in

the emergency department were admitted within 1 day. Patients with very small PEs may occasion-

ally be discharged after brief observation and treated with blood thinning agents as outpatients if

the PE appeared small on the scan and the patient has no other complicating health conditions; this

likely accounts for most of the cases where a test is coded as positive on the basis of patient chart

data but no inpatient admission is recorded. Note that this suggests that we are undercounting

positive tests precisely for the patient group for whom the benefits of treatment are the lowest.

Among patients with positive PE CT scans recorded in chart data who are subsequently admitted

to the hospital, 87% have a diagnosis of pulmonary embolism recorded on the bill for their inpatient

hospital stay. PE may not be recorded on the bill for two main reasons: the patient may have

other medical conditions that are treated during the hospital stay and are reimbursed at a higher

rate, such that there is no billing incentive to include PE among the inpatient diagnoses; or, the

bill may simply be incorrectly coded. In total, 21% of patients diagnosed with PE in the emergency

department (ED) do not have an inpatient claim with a PE diagnosis.

Of patients with a negative PE CT scan recorded in their emergency department chart, 1.5%

have a diagnosis of pulmonary embolism recorded on the bill for an ensuing hospital stay. In the

claims data, we would mistakenly attribute this diagnosis to the ED workup. This error could occur

if the patient develops a PE later in his hospital course and receives a subsequent positive CT test,

a plausible mechanism given that the immobilization frequently associated with hospital stays is a

risk factor for PEs; alternatively, these PE diagnosis codes could indicate billing errors.

Taken together, these data suggest that of the 6% of CT tests that we code as positive in the

Medicare data, 20% of the patients had negative findings on their initial ED PE CT. Of the 94%

of tests we code as negative, 1.1% of the patients had positive ED PE CTs. The overall rate of

positive tests is almost exactly equal to what it would be if no such coding mistakes were made, since
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these two types of coding errors offset each other. This suggests that the limitations of this coding

algorithm should not contribute to overstatements of the degree of overtesting in our Medicare

sample.

E Derivation and estimation of structural model

In this section, we describe the derivation and estimation of our structural model in more detail.

This section is meant to complement the discussion in Section 4, by filling in additional algebraic

steps needed to complete the estimation. We begin by outlining our parametric assumptions and

describe the testing equation. Second, we derive the test outcome equation which is used to estimate

the distribution of τd, the degree of misweighting, and a scaling factor which relates the testing and

test outcome equations.

Recall our assumption that doctor d’s ex ante belief about the probability of a positive test for

patient i is given by q′id = xidβ
′ + αd + ηid (noting, as in Section 4, that assuming the perceived α′d

equals the true αd is without loss of generality). Although our baseline model assumes that ηid is

independently and identically distributed across doctors and patients, in Section 6.2 we extend the

model to allow for physician-specific heteroskedasticity. The motivation and results of this extension

are discussed in more detail in that section. Because the heteroskedastic estimation procedure

is a straightforward generalization of our baseline model, we use notation below that allows for

heteroskedasticity and thus covers both the baseline model and its heteroskedastic extension.

We assume that the distribution of ηid follows a particular functional form, which is a mixture of

a Uniform and a Bernoulli distribution; in particular, ηid ∼ U(−ηd, ηd) with probability 1− pd and

ηid ∼ U [v−ηd, v+ηd] with probability pd. The baseline model in the text assumes homoskedasticity,

so that pd = p and ηd = η and we note below how this affects the estimation procedure.

Assume that doctors test a patient if and only if the patient’s perceived probability of a positive

test exceeds a physician-specific threshold, i.e. q′id > τd. Let I ′id ≡ xidβ
′ + θ′d where θ′d = αd − τd.

Also as in the text, qid = xidβ + αd + ηid gives the actual ex ante likelihood of a positive test. Let

Iid ≡ xidβ+ θd denote the unprimed version of the propensity to test (i.e. the testing propensity we

would observe if physicians correctly weighted observable comorbidities to maximize test yields).

Pr(Testid = 1) = Pr(q′id > τd)

= Pr(I ′id + ηid > 0)

= 1− Pr(ηid < −I ′id) (20)

Assume the distribution of ηid is such that I ′id + v < ηd for all I ′id and ηd so there is no testing

propensity I ′id at which patients are always tested regardless of the value of ηid. Assume further that

patients are never tested if the v shock is not realized. For example, the v shock could represent

symptoms that would lead the physician to suspect PE, such as chest pain and shortness of breath.

Then, given our distributional assumptions: Pr(ηid < −I ′id) = 1 − pd + pd · min
{

1,
ηd−(I′id+v)

2ηd

}
.

Thus:
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Pr(Testid = 1) = p

[
1−min

{
1,

1

2
−
I ′id + v

2ηd

}]
= max

{
0,
pd
2

+
pd(I

′
id + v)

2ηd

}
(21)

We estimate this equation by non-linear least squares. In the heteroskedastic model, we recover:

β′ (up to a scaling normalization), η̂d = C pd
2ηd

(where the value of the constant C depends on

the normalization of β), and θ̂′d = pd
2 +

pdθ
′
d+v

2ηd
. Intuitively, heteroskedasticity in ηd is identified

by the fact that observables are less predictive of testing behavior for doctors with more private

information. In the homoskedastic model where pd = p and ηd = η, this simplifies so that we are

estimating β̂′ = pβ′

2η and θ̂′d = p
2 +

p(θ′d+v)
2η .

In either the homoskedastic or heteroskedastic case, we can use the predicted values from estima-

tion of equation 21 to construct an estimate of Ĩ ′id = pd
2 +

pd(I′id+v)
2ηd

. Estimating the heteroskedastic

model requires an additional sample restriction at this stage. In theory, ηd is identified for all

doctors. In practice, for a very small number of doctors, the estimated ηd would diverge to ∞
because patients with larger xidβ

′ are less likely to be tested, due to random variation in a limited

per-doctor sample. These doctors are excluded from the final sample for estimation when we turn

to the heteroskedastic model.

Returning to the testing outcomes equation, our distributional assumptions imply that: E(ηid|ηid >
−I ′id) =

ηd−(I′id−v)
2 . Thus:

E(qid|Testid = 1) = τd + Iid + E(ηid|ηid > −I ′id)

= τd + Iid +
ηd − (I ′id − v)

2

= τd + (Iid − I ′id) +
ηd + I ′id + v

2

= τd +
ηd + I ′id + v

2
+ xid(β − β′)

= τd +
ηd + I ′id + v

2
+ xid(β − β′) (22)

From our definition of Ĩ ′id above, it follows that
ηd+I′id+v

2 = ηdĨ′id
pd

and so:

E(Zid|Testid = 1) = E(qid|Tid = 1)

= τd +
ηdĨ ′id
pd

+ xid(β − β′) (23)

where Ĩ ′id is the propensity estimated from the testing equation, and Zid is the realized testing

outcome (1 for a positive test, 0 for a negative test).

We can estimate this model by non-linear least squares but we need an additional exclusion

restriction so that the coefficient on Ĩ ′id is identified by more than just functional form. As discussed

in Section 4.3, this restriction is that we effectively know τd for high volume doctors who test
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marginal patients—i.e. patients who are very unlikely to be tested based on observables but are

nonetheless tested—because we observe test outcomes among those patients. In practice, we also

need to be careful about the misweighting term. If we average observed test outcomes Zid among

tested marginal patients (i.e. patients with Ĩ ′id = 0) for doctors who have such patients, then for

each of those doctors we obtain an estimate of:

QQd = τd + Em,d(xid|Testid = 1)(β − β′) (24)

where Em,d(xid|Testid = 1) gives the mean of xid among only tested marginal patients for a given

doctor. For doctors with marginal patients, we have:

E(Zid|Testid = 1)−QQd =
ηdĨ ′id
pd

+ (xid − Em,d(xid))(β − β′) (25)

Because we observe only a small number of marginal patients for each doctor, we can construct:

Q̂Qd = QQd + ed, a noisy estimate of QQd. Thus, let Yid = Zid for doctors with no marginal

tested patients and Yid = Zid − Q̂Qd for doctors with marginal tested patients. Further, let Xid =

(xid − Em,d(xid)) for doctors with marginal tested patients and Xid = xid for doctors with no

marginal tested patients. Finally, let Md denote an indicator for whether a doctor has marginal

tested patients. This gives the estimating equation:

Yid = (1−Md)τd +
ηdĨ ′id
pd

+Xid(β − β′) + εid (26)

where εid = Mded + uid includes both the noise in the estimation of QQd and the prediction error

in Zid = E(qid|Testid = 1) + uid. This model can be estimated by least squares.

In the homoskedastic case, ηd
pd

is a constant which we recover from least squares estimation of

equation 26. In the heteroskedastic model, we estimated η̂d = C pd
2ηd

in the testing equation, so the

2nd term in equation 26 is replaced by Ĩ′id
η̂d

and the recovered coefficient tells us C
2 , which is sufficient

given η̂d to recover pd
ηd

.

Following this procedure, we estimate the model and analyze the results described in Section 5.

This model is also the basis of the welfare exercises reported in Section 7.

F “Empirical Bayes” Estimates of τd

In this section, we describe how we compute the distribution of the underlying τd from the observed

distribution of τ̂d which includes both the underlying true variation and sampling error. We call this

an “empirical Bayes” estimate because of the intuition that we are recovering the true underlying

distribution of τd from noisy estimates, but our specific model does not recover a posterior mean

estimate of the parameter for each doctor. Results of this procedure are reported in Table 5.

(Note that the welfare results reported in Section 7 require more restrictive assumptions of the

empirical Bayes procedure and do recover a posterior estimate of τd for each doctor. These additional

restrictions are described below and in Section 7.2.)

In order to form our estimate of the true distribution of τd, we will proceed as follows:
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1. Estimate the mean and variance of this distribution for doctors with no marginal tested pa-

tients.

2. Estimate the mean and variance of this distribution for doctors who do have marginal tested

patients.

3. Apply the law of total variance to compute the mean and variance of the mixture distribution

which combines the distributions for doctors with and without marginal tested patients.

4. Make a parametric assumption so that the mean and variance uniquely pin down the posterior

distribution. (Required only for welfare simulations reported in Section 7.2.)

We start with our estimating equation from Appendix E, equation 26, reproduced below.

Yid = (1−Md)τd +
ηdĨ ′id
pd

+Xid(β − β′) + εid (27)

We can rewrite this equation in matrix form as:

Y = Dτnm +Xβ + ε (28)

where D includes the doctor fixed effects for all doctors who lack marginal tested patients (as indi-

cated by the nm subscript) and Xβ includes the constant terms, the Ĩ ′id terms and the misweighting

terms.

Our goal econometrically will be to relate the observed across doctor variance of τnm (which

includes estimation error) with the underlying true variance of τnm.

Let Mx = In −X(X ′X)−1X ′ where In is the identity matrix. Partialing out gives:

MxY = MxDτnm +Mxε (29)

Let S = MxD. Then our estimator of τ is given by:

τ̂nm = τnm + (S′S)−1S′Mxε (30)

For a vector x, define var(x) = E(xx′)−E(x)E(x′). Define vard(x) = E(x′x)−Ed(x)2, i.e. the

scalar generated by taking the variance across the observations in the vector. Taking the “outer

product” variance of both sides of equation 30 gives:

var(τ̂nm) = var(τnm) + (S′S)−1S′Mxvar(ε)MxS(S′S)−1

= var(τnm) + (S′S)−1S′var(ε)S(S′S)−1 (31)

where the second line uses the fact that MxMx = Mx. Let S(i)′ denote the ith row of S. Assuming

var(ε) is a diagonal matrix, S0 = 1
N

∑N
i=1 e

2
iS

(i)S(i)′ →p
1
N

∑N
i=1 ε

2
iS

(i)S(i)′ = 1
N S
′var(ε)S. This is
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asymptotically equivalent to:

var(τnm) = var(τ̂nm)− (S′S)−1

(
N∑
i=1

e2
iS

(i)S(i)′

)
(S′S)−1 (32)

where ei are the residuals from equation 28. Finally, using the fact that vard(τnm) = 1
Ndoc

tr(var(τnm))

where Ndoc is the number of doctors with no marginal tested patients (i.e. the docs for whom we

are currently estimating τd), we have:

vard(τnm) = vard(τ̂nm)− 1

Ndoc
tr

(
(S′S)−1

(
N∑
i=1

e2
iS

(i)S(i)′

)
(S′S)−1

)
(33)

This equation allows us to recover vard(τ), the variance of τd for doctors who lack marginal

tested patients. In order to recover τd for doctors who do have marginal tested patients, we use the

fact from equation 23 that:

E(Zid|Testid = 1)− xid(β − β′) = τd (34)

if we restrict to marginal tested patients of those doctors (meaning that Ĩ ′id = 0). This equation

can be written as a special case of equation 28, with Yid = Zid − xid(β − β′). Note that D now

denotes the matrix of doctor fixed effects for doctors with marginal tested patients, Nmarg denotes

the number of doctors with marginal tested patients, and X = 0. This simplification means that

S = D and we have:

vard(τmarg) = vard(τ̂marg)−
1

Nmarg
tr

(
(D′D)−1

(
N∑
i=1

e2
iD

(i)D(i)′

)
(D′D)−1

)
(35)

where in this case the residuals are computed from estimation of equation 34 by OLS on the sample

of physicians with marginal tested patients and only those marginal tested patients included in the

estimation.

To combine these distributions into a single distribution of τd, we note that τd is a random

variable whose mean and variance are µm = E(τmarg) and σ2
m = V ard(τmarg) with probability

Pm (the fraction of doctors who have some marginal tested patients) and µnm = E(τnm) and

σ2
nm = V ard(τnm) respectively with probability 1− Pm. This implies:

E(τ) = Pmµm + (1− Pm)µnm

vard(τ) = Pmσ
2
m + (1− Pm)σ2

nm + Pmµ
2
m + (1− Pm)µ2

nm − (Pmµm + (1− Pm)µnm)2 (36)

where the second equation follows from the law of total variance.

For simulations and welfare analyses, we further assume that τd +M is log-normally distributed

with mean E(τ), variance vard(τ) and minimum possible value M = fp. fp is the value we would

estimate for patients in equation 26 if there were no PE incidence so that the only positive tests were

false positives (implying E(Zid|Testid = 1) = fp, the rate of false positives). In order to recover an

estimate of τd for each doctor, we redraw values of τ from the simulated distribution, order them
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from least to greatest, and assign each doctor a τ from the simulated distribution which matches

that doctor’s rank among estimated τd.

G Simulations of testing behavior and test yields

This section describes how we apply our structural model to simulate the relationships plotted

in Figure 3 and discussed in sections 5.1 and 5.3. The first exercise illustrates the hypothetical

relationship between average physician testing propensities and positive test rates, if all doctors

were to have the same testing threshold. We simulate testing decisions and test outcomes under a

counterfactual where τd is held constant across doctors, at the estimated average value E(τd) = 0.056.

To calculate the new values of the testing propensities under this counterfactual where τd = E(τd)

for all doctors, we start by considering the estimated testing propensity: Ĩ ′id = p
2 +

p(xidβ
′+θ′d+v)
2η . To

simulate the testing propensity under the counterfactual where testing thresholds are held constant

at their mean, Ĩ
′τd=E(τd)
id , we need to add our estimate of (τ̂d−E(τd))

p
2η back to our original estimate

of Ĩ ′id.

Because the estimated τ̂d are noisy and overstate the true variance in the distribution, we calcu-

late a posterior, shrunk estimate of each τd before proceeding with this counterfactual exercise. At

this stage, we need to make a distributional assumption about physician testing thresholds τd. We

assume they follow a log-normal distribution with mean and variance determined by the empirical

Bayes estimates described above, and the same relative rank as in the raw estimated distribution

(i.e. the doctor with the 20th largest estimated τ̂d will also have the 20th largest posterior τd).

Plugging in our new, simulated estimates of Ĩ
′τd=E(τd)
id and setting τd = E(τd), we calculate

E(Zid|Testid = 1) for each patient following equation 13 and use these estimates to simulate average

test yields. Results of this simulation exercise are reported in Section 5.1 and pictured in Figure 3.

The second simulation exercise considers the role of misweighting in determining the relationship

between testing propensities and test yield. We simulate the counterfactual relationship between

physicians’ average testing propensities and test yields that would be observed if there were no

heterogeneity in testing thresholds and no misweighting of observable risk factors. Eliminating

misweighting should increase the test yield for all values of the testing propensity by improving the

targeting of PE CT tests to the highest risk patients.

First we simulate how testing propensities Ĩ
′τd=E(τd)
id would change if there were also no mis-

weighting of patient risk factors. In particular, we add a correction factor x β−β′
2(η/p) to Ĩ

′τd=E(τd)
id to

calculate new simulated testing propensities Ĩsimid under the counterfactual with no misweighting.

Based on these new values of Ĩsimid , we calculate the expected test yield according to the formula

E(Zsimid |Testid = 1) = E(τd) + η
p Ĩ

sim
id (from equation 13). Results of this simulation exercise are

reported in Section 5.3 and pictured in Figure 3.

H Computing the welfare costs of overtesting and misweighting

In order to calculate the welfare costs of overtesting and misweighting, we must first understand

how false positive and false negative test results will affect the costs and benefits of testing, and the
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calibrated optimal physician testing threshold. We begin by calculating the net utility of treatment,

given that there are both false positive and false negative test results. Let PEid denote the event

that patient i truly has a PE. As before, Zid is an indicator which is 1 if a test is positive. MB

denotes the medical benefits of treatment if the patient has a PE, MC denotes the medical costs of

treatment and CT denotes the financial cost of treatment. Then the net utility of a positive test is

given by:

NUid = Pr(PEid|Zid = 1)MB −MC − CT (37)

The medical benefits of treatment accrue only if the positive test result is a “true positive,” i.e. the

patient actually has a PE. If there are more false positives, the medical benefits of any observed

positive test will be smaller. In contrast, the medical risks and financial costs of treatment are

incurred for any treated patient regardless of whether he actually has a PE.

Let s denote the sensitivity of the test (one minus the probability of a false negative) and fp

denote the probability of a false positive. Applying Bayes’ Rule and the law of total probability, we

can rewrite net utility as:

NUid =
s(qid − fp)
qid(s− fp)

MB −MC − CT (38)

Given the net utility associated with treating a patient with a positive test, the net benefits

of testing also depend on the probability of a positive test, qid and the costs of testing c. We can

therefore write the net benefits of testing as:

Bid = qidNUid − c

=
s(qid − fp)

(s− fp)
MB − qidMC − qidCT − c (39)

Let N̂U = s
s−fpMB−MC −CT and ĉ = c+ s·fp

s−fpMB. Then we can rewrite the net benefits of

testing as:

Bid = qidN̂U − ĉ (40)

The optimal testing threshold τ∗ will be the threshold at which the expected net benefits of testing

are zero, or τ∗N̂U = ĉ.

Once we have recovered the optimal testing threshold, we can apply the structural model de-

scribed in Section 4 and Appendix E, to compute the welfare cost of overtesting as follows. Let

t̂id(τd,∆β) denote the probability that consumer i is tested by doctor d as a function of τd and the

vector of weighting errors physicians make in assessing PE risk. The vector of misweighting errors

is labeled as ∆β = β − β′. Let Ẑid(τd,∆β) denote the probability of a positive test conditional on

testing.

To compute testing behavior under the counterfactual where all doctors utilize the optimal

testing threshold τ∗, we estimate t̂id(τ
∗,∆β) using the fact that I(τ∗,∆β) = I(τd,∆β) + (τd − τ∗)

which implies Ĩ ′(τ∗,∆β) = Ĩ ′(τd,∆β) + p(τd−τ∗)
2η . Having adjusted the testing propensities, we can

now calculate the expected probability of a positive test Ẑid(τ
∗,∆β) = ηĨ′id(τ∗,∆β)

p + xid(β − β′).
Welfare simulations to evaluate the costs of misweighting parallel the derivation above. In
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particular, to compute the propensity to test with no misweighting, t̂id(τd, 0), we use the fact that

I(τd, 0) = I(τd,∆β) +xid∆β which implies Ĩ ′(τd, 0) = Ĩ ′(τd,∆β) + pxid∆β
2η . Given this adjustment to

the testing propensities, we can calculate expected test outcomes according to the following formula:

Ẑid(τd, 0) = τd + ηĨ′id(τd,0)
p .

To complete the welfare calculations, we must apply assumptions about the expected medical

benefits, medical costs and financial costs associated with treatment of positive tests. Following the

notation above, we have:

MB(τd,∆β) =
∑
i

Pr(Testi = 1) · Pr(PEid|Testi = 1)MBid (41)

=
∑
i

t̂id(τd,∆β)
s(Ẑid(τd,∆β)− fp)

(s− fp)
MBid

MC(τd,∆β) =
∑
i

Pr(Testi = 1)Pr(Zid = 1|Testi = 1)MCid (42)

=
∑
i

t̂id(τd,∆β)Ẑid(τd,∆β)MCid

FC(τd,∆β) =
∑
i

Pr(Testi = 1)(c+ P (Zid = 1|Testi = 1)CTid) (43)

=
∑
i

t̂id(τd,∆β)(c+ Ẑid(τd,∆β)CTid)

NB(τd,∆β) = MB(τd,∆β)−MC(τd,∆β)− FC(τd,∆β) (44)

where MB denote the medical benefits of testing (derived in Section 7.1), MC denotes the medical

costs of testing, FC denotes the financial costs of testing and NB denotes the net benefits of

testing as a function of these objects. The test sensitivity is given by s, and fp is the false positive

rate. We define the welfare cost of overtesting as NB(τ∗,∆β) − NB(τ̂d,∆β) and the welfare cost

from misweighting as NB(τ̂d, 0) − NB(τ̂d,∆β) where τ̂d is drawn from the estimated underlying

distribution of τd which we recover using the methods outlined in Appendix F above.
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