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Weinberger et. al. Innovations and the growth of human population

Part I: Mathematical Analysis of the Basic Model

In the main text we introduce the basic model (Eqs. 1 and 3 in the main text) that accounts for the dynamics
of human population biomass φ and habitat quality ω as:

(1)

{
φ′ =

(
f ω −m

)
φ(1− φ),

ω′ = λ(1− ω)− (B + Ef ω)φ,

Fixed points are found by solving the previous set of equations in the time-independent case. Possibles
outcomes are classical and characterized by

• Extinction φ∗ = 0 and ω∗ = 1. By performing a linear stability analysis, the eigenvalues of the Jacobian
matrix are given by f −m and −λ. The stability of the extinction scenario holds true only when f < m
meaning than fecundity is smaller than mortality.

• Habitat Limitation ω∗ = m/f . Only attainable when f > m, population size is then limited by the
habitat quality at large times. It holds that

φ∗ = G(λ) = min

{
1,
λ(1−m/f)

B + Em

}
.

• Space Limitation φ∗ = 1. The habitat quality is sufficient and human biomass “fills” its habitat. It
follows that

ω∗ = H(λ) :=
λ−B
λ+ Ef

,

and eigenvalues are −(λ+ Ef) and −(f H(λ)−m), therefore stability holds true only when

H(λ) > m/f.

Set λ∗ = (B + Em)/(1 − m/f), since H(·) is a strictly increasing function, then the following dichotomy
holds:

• For any value λ > λ∗ the Space Limitation equilibrium is stable

• For any value λ < λ∗ the Habitat Limitation equilibrium kicks in.

Part II: Extended model

The basic model now includes the impact of technological innovation upon the supply and potential deterio-
ration of ecosystem services, and keeps track of the technological stock µ. Under the simplifications explained
in the main text, the dynamics are given by

(2)


φ′ =

(
f ω −m

)
φ(1− φ),

ω′ = c1µ
α(1− ω)− c2µβφ,

µ′ = ρµφ− l(µ− ε)

Notice that for the sake of simplicity, the equation for ω does not include the term Efω that accounts for
the maintenance energy of a unit biomass since this is very small as compared to the extra metabolic energy
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required for individuals in a social group engaged in social learning dynamics and CCE. The set of fixed points
associated to the extended model (2) is more complicated than in the basic model, and stability conditions
cannot be trivially listed. Linear stability of any fixed point (φ, ω, µ) is determined by the sign of the larger
eigenvalue of

J(φ, ω, µ) :=

(f ω −m)(1− 2φ) f φ(1− φ) 0
−c2µβ −c1µα αc1µ

α−1(1− ω)− βc2µβ−1φ
ρµ 0 ρφ− l

 .
The steady states are those points (φ, ω, µ) such that the left hand side of (2) becomes zero, i.e.

0 =
(
f ω −m

)
φ(1− φ),

0 = c1µ
α(1− ω)− c2µβφ,

0 = ρµφ− l(µ− ε),

and from the first equation we notice that the solutions are restrained to the three following cases

φ∗ = 0 [extinction], φ∗ = 1 [space limitation], ω∗ = m/f [habitat limitation].

Indeed, if (φ∗, ω∗, µ∗) is such that
(fω∗ −m)φ∗(1− φ∗) = 0,

then at least one of the factors must be exactly zero from where we obtain the only candidates to steady
states are under the form listed above.

Remark 1: In the following and unless otherwise specified, we assume that l > ρ. The case l < ρ will be
analyzed separately in the final part of these notes. Condition ρ < l means that technologies with great
impact on further technological innovation should have small lifetimes.

Extinction φ∗ = 0

The other two variables are given by the solution of the system{
0 = c1|µ∗|α(1− ω∗)
0 = −l(µ∗ − ε),

meaning that ω∗ = 1 and µ∗ = ε. The eigenvalues of the Jacobian matrix are (f −m), −c1εα and −l. Once
again, stability of the extinction scenario is given by the condition f < m.

Space Limitation φ = 1

The system that give us the variables ω∗ and µ∗ is{
0 = c1|µ∗|α(1− ω∗)− c2|µ∗|β ,
0 = ρµ∗ − l(µ∗ − ε)

and the solution is simply

µ∗ =
lε

l − ρ
, ω∗ = 1− c2|µ∗|β

c1|µ∗|α
= 1− c−1

0 |µ∗|−θ = 1− 1

c0

(
l − ρ
lε

)θ
,

with θ = α−β and c0 = c1/c2. Since µ∗ must be nonnegative, it is necessary that ρ < l. While this condition
ensures the existence of a fixed, positive µ∗ equilibrium point, it also forces a limit upon technological stock,
constraining the possibility for infinite and/or arbitrarily large values of µ, especially when ε or the minimum
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Figure S1: Space limitation scenario with θ = 0.5. Parameters: β = 0.9, ρ = 0.03, l = 0.05, f = 0.04,
m = 0.012 and ε = 1 (left panel) ε = 0.01 (right panel). Notice that in the right panel the stability condition
lε
l−ρ = µ∗ > exp

[
1
θ log

(
f

c0(f−m)

)]
(see below) does not hold and we are not longer in the Space Limitation

equilibrium but in the Habitat Limitation one and specifically in the regime HL1 in Figure 3 in the main
text.

technological toolkit is small (Figure S1). Indeed, as µ increases the dynamics for the technology variable
are such that

µ′ = ρµφ− l(µ− ε) ≤ (ρ− l)µ+ lε < 0

implying that µ cannot keep increasing.

Jacobian matrix becomes

J(1, ω∗, µ∗) :=

−(f ω∗ −m) 0 0
−c2|µ∗|β −c1|µ∗|α αc1|µ∗|α−1(1− ω∗)− βc2|µ∗|β−1

ρµ∗ 0 ρ− l

 ,
and the eigenvalues are

−(f ω∗ −m), −c1|µ∗|α < 0, ρ− l < 0 [see remark 1].

Since stable conditions require negative eigenvalues, and knowing that that both −c1|µ∗|α and ρ − l are
negative, this imply that the stability condition is given by:

1− c−1
0 |µ∗|−θ = ω∗ >

m

f
⇒ c0

(
1− m

f

)
> |µ∗|−θ,

meaning that the steady state of the habitat quality variable ω∗ is larger than m/f . This can be obtained in
the following subcases:

• Positive technological impact θ > 0 (Figure 1 and see also SL1 Figure 3 in the main text). To have the
stability condition, the steady value for the technology variable µ∗ must be such that

lε

l − ρ
= µ∗ > exp

[
1

θ
log

(
f

c0(f −m)

)]
,

getting a bound by below for µ∗. Considering the parameters given in Figure 1, this condition implies
that µ∗ > 1.36, which is satisfied for ε = 1 where µ∗ = 2.5 but not for ε = 0.01 since µ∗ = 0.025. The
equilibrium in this later case has shifted to the Habitat limitation one (HL1, see Figure 3 in the main
text and below).

• Negative technological impact θ < 0 (Figure 2, see SL2 in Figure 3). For convenience, let Θ = −θ > 0
such that the steady value for µ∗ writes

c0

(
1− m

f

)
> |µ∗|−θ = |µ∗|Θ ⇔ exp

[
1

Θ
log

(
c0(f −m)

f

)]
> µ∗ =

lε

l − ρ
,
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Figure S2: Space limitation scenario with θ = −0.5. Parameters: ρ = 0.03, l = 0.05, f = 0.04, m = 0.012
and ε = 1 (right) ε = 0.01 (left). Notice that in the right panel the stability condition lε

l−ρ = µ∗ <

exp
[

1
Θ log

(
c0(f−m)

f

)]
(see above) does not hold and we are not longer in the Space Limitation equilibrium

but in the Habitat Limitation one and specifically in the regime HL2 in Figure 3 in the main text.

getting now an upper bound for steady state µ. Everything else being equal, for large values of ε the
SL2 equilibrium becomes unstable and the dynamics transitions to the HL2 equilibrium (see Figure 3
in the main text and below).

• Zero technology impact θ = 0. We have 1 − m
f > c−1

0 = c2
c1
, in particular, c2 must be smaller than

c1(1−m/f).

Habitat Limitation

In this scenario habitat quality takes value ω∗ := m/f , thus restricting the maximal stable population size
φ∗ and the technology variable µ∗. According to the value of θ different sub-scenarios are possible. Solutions
to the steady values of φ and µ can not be trivially listed and we only present the following formulas

φ∗ = c0|µ∗|θ
(

1− m

f

)
, µ∗ =

lε

l − ρφ∗
.

It might seem that it suffices to know µ∗ to have φ∗, but at the same time we need to know φ∗ to characterise
µ∗, thus solutions are not explicit. However, from the second formula, we do have that the solution φ∗ is also
given by

φ∗ =
l

ρ

(
1− ε

µ∗

)
,

then all admisible values µ∗ are given by the solutions to the nonlinear equation

l

ρ

(
1− ε

µ∗

)
= c0|µ∗|θ

(
1− m

f

)
,

that can be seen as the points of intersection between the curves of the left and right side of the equation.

For x > 0, we can define the function

f1(x) :=
l

ρ

(
1− ε

x

)
,

which is strictly increasing from −∞ to l/ρ. On the other hand, the function

f2(x) := c0x
θ

(
1− m

f

)
is always positive and has different shapes depending on the value θ, in particular
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(θ > 0) in this case f2(µ) is a strictly increasing function that starts from 0 and diverges to infinity. The
existence of a fixed point is given by the particular values of the parameters.

(θ < 0) meaning that f2(µ) is a strictly decreasing function going from +∞ to 0. We conclude that for any set
of parameters there is only one φ∗ and only one µ∗ fixed point when ω∗ = m/f .

(θ = 0) then f2(µ) is constant and equal to c0(1 − m/f). We have solutions µ∗ and φ∗ to the steady state
system, when ω∗ = m/f if and only if c0 < l/ρ(1−m/f).

Nonetheless, in any of the previous subcases, we need to impose that 0 < φ∗ < 1 (otherwise we are in the
extinction or in the space limitation case) it follows that

0 < φ∗ =
l

ρ

(
1− ε

µ∗

)
< 1 ⇒ ε < µ∗ <

εl

l − ρ
,

implying that the steady state of µ∗ is bounded.

Infinite technology analysis

Conditions for obtaining infinite and/or arbitrarily large technologies (ρ > l and ρφ∗ > l) do not allow
reaching stable equilibria; however, if we make µ diverge to infinity, under convergence of φ and ω, long-term
dynamics can be analysed by reinterpreting the Basic Model. In this final subsection we explain roughly how
to proceed in this case.

Since the linear stability analysis is difficult to perform explicitly for a 3 dimensional ODE system (it involves
the Routh-Hurwitz stability criterion), we only focus in a dimensional reduction of the model. To have a
notion of the stability of the system we assume first that µ is a parameter and then take the limit as µ goes
to infinity. The Extended Model is then reduced to

(3)

{
φ′ =

(
f ω −m

)
φ(1− φ),

ω′ = c1µ
α(1− ω)− c2µβφ,

which is nothing but the Basic Model with λ and B rewritten as functions on the variable µ. Again, two non
trivial steady states emerge:

Space Limitation

The steady state is φ∗ = 1 and
ω∗ = 1− c−1

0 µ−θ,

then taking µ→∞:

(θ > 0) habitat quality ω∗ goes to 1, and the carrying capacity φ∗ = 1 is stable.

(θ < 0) habitat quality ω∗ goes to 0 and φ∗ = 1 becomes unstable.

(θ = 0) once again carrying capacity φ∗ = 1 is stable if and only if 1− c−1
0 > m/f.

Habitat Limitation

We have now ω∗ = m/f and
φ∗ = min

{
1, c0µ

θ(1− ω∗)
}
.

Population can go to the carrying capacity if and only if θ > 0 or in words, technological costs are smaller
than the benefits they accrue in terms of energy and material flows of ecosystem services. However, as soon
as φ∗ = 1 we fall into the Space Limitation case previously studied.
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Figure S3: Simulations for the reduced two dimensional model with µ(t) = µ
θ(t)
0 . Parameters: θ0 = 0.1,

τ = 4000, ρ = 0.09, l = 0.05, f = 0.04, m = 0.012 and ε = 0.01.

Further explorations

In this final section we explore numerically the case when l < ρ, more precisely, we simulate the system of
the previous section for µ(t) = µ0 fixed and focus on the changes of φ and ω as µ0 takes large values. In
particular, we are concerned with the effects on the dynamics of sudden changes in the sign of θ and the
resilience to change of the solutions.

Consider a time horizon τ , that θ(t = 0) = θ0 is positive at time 0 and that it remains constant for t ∈ [0, τ).
At t = τ we change the sign of θ and let θ(t) be constant and equal to −θ0 for t ∈ [τ, 2τ). Iterating this
procedure adequately we will find that the solutions of the system behave as periodic functions whose shapes
are determined by the function

µ(t) =

{
µθ00 if t ∈ [2k, 2k + 1), some k ∈ N
µ−θ00 if t ∈ [2k − 1, 2k), some k ∈ N

This situation is depicted in Figure S3 where we have used the parameter values explained in the main text.
It is interesting to remark that for µ0 large, the population φ takes more time to be sensitive to the change
of θ and they remain close to the saturation point φ∗ = 1 for a larger time interval after the critical times
(2k − 1)τ , k ∈ N. Also, the recuperation of the population and convergence towards φ∗ = 1 after any time
2kτ , k ∈ N is faster. However, the opposite occurs for habitat quality, as technological stock increases,
oscillations in habitat quality becomes larger and remain destructed or extinguished for longer time lapses.
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