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Supplementary Material 1: Distant connection implemen-

tation details

Regarding implementation details, consider the case of cells arranged in a plane.

Every elongated cell extends an axodendritic elongation p with length lp in an

arbitrary direction φp, relative to the x-axis. Where elongations cross each other

they create bidirectional connections between the originating cells. Given any

two cells i and j with coordinates (xi, yi) and (xj , yj) and elongation directions

relative to the x-axis φi and φj respectively, a triangle emerges, with at one point

cell i, another point cell j and the third point the crossing of their elongations.

Two sides of this triangle consist of the elongations themselves. The third side,

d, is the line between the cells, with an angle relative to the x-axis: φd. Assuming

φi 6= φj 6= φd
1, the sine-rule allows us to locate the crossing location, given the

angles and the locations of the cells.

d

sin(φj − φi)
=

ρi
sin(π − φj + φd)

=
ρj

sin(φi − φd)
(1)

1In practice, given the granularity of the random numbers used, this assumption always

holds.
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Furthermore,

sin(π − φj + φd) = − sin(−φj + φd) = sin(φj − φd) (2)

Cell coordinates allow us to calculate d and φd:

d =
√

(xi − xj)2 + (yi − yj)2 (3)

φd = arctan
( yj − yi
xj − xi

)
(4)

Then we can solve for ρi and ρj :

ρi = d · sin(φj − φd)

sin(φj − φi)
(5)

ρj = d · sin(φi − φd)

sin(φj − φi)
(6)

If, for a given pair of cells, ρi and ρj are shorter than lp, so 0 < ρi < lp

and 0 < ρj < lp , the cells are connected. We loosened this constraint to

− 1
2 < ρi < lp and − 1

2 < ρj < lp to account for crossings occurring on the cell

body of the originating cell.

All the above, however, is predicated on an infinite plane, while our system

is finite and tube-shaped. Although a tube is essentially a curved 2-dimensional

plane, its contiguousness results in some particular cases: elongations which

may wrap around the cylinder. If we assume the cylinder is formed by making

the x-direction periodic, we should consider not only the crossing of elongations

starting at (xi, yi) and (xj , yj) but also at (xi + ki · �, yi) and (xj + kj · �, yj),

with k representing the number of windings and � the circumference of the tube.

We can limit the number of windings we need to consider, since the maximum

elongation distance is limited: |k| < (2 · lp/�)+1. The +1 is needed because the

nearest copy might be on the other side of the tube’s period. Another particular

of the tube as opposed to a torus is that the crossing point may lie off the tube

on the finite end, so we need to check whether the y-coordinate of the crossing,

ycrossing = ρi ·sinφi+yi is on the tube: −0.5 ≤ ycrossing ≤ (ltube−1)· 12
√

3+0.5,

where ltube is the number of rings on the tube and 1
2

√
3 is the height of an

equilateral triangle with sides of length 1.
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Supplementary Material 2: The effect of transmission speed

Transmission speed of the signal affects the spatiotemporal pattern. Our main

experiment does not incorporate transmission speed; instead, it uses a fixed

synaptic delay, in essence assuming transmission speed to be fast enough not to

matter on that scale. This supplement explores that assumption. How fast a

transmission speed is fast enough, and how slow is too slow?

To investigate this issue, we extended the model to include transmission

speed. The basic model only works in terms of abstract, size-less cells, so in

order to arrive at a delay value using realistic transmission speeds we added a

cell size parameter in addition to the transmission speed variable. The effect

of transmission speed over a connection between two cells, i and j is modelled

as a delay ti,j which is dependent on a) the transmission speed variable, v; b)

the distance between connected cells in terms of cell-breadths, ci,j (for distant

connections this is ρi+ρj—see the section on distant connection implementation

above—and for nearest-neighbour connections this is 1); c) the cell size variable,

s. These interact in the obvious way: ti,j =
ci,js
v . This transmission delay was

added to the base synaptic delay of 2 ms.

The cell size parameter was set at 50 µm as eukaryote cells generally range

between 10 and 100 µm and there is no good reason to assume anything else.

Regarding transmission speeds, for modern-day, human neurons the values

vary between .5 m/s up to roughly 100 m/s. The giant squid axon achieves

27 m/s. These higher speeds are clearly the result of secondary adaptations to

improve conduction speed: myelin for the human neurons and large diameter for

the squid. Slower, unmyelinated human neurons are a good baseline to inves-

tigate how slow is too slow. We performed a parameter scan over transmission

speeds between .01 and 10 m/s, increasing logarithmically. We also included an

infinite speed condition, reflecting the parameters used in the main experiment,

for ease of comparison. The proportion of cells with elongations was fixed at

50%. We scanned all body sizes and elongation lengths 0, 2, and 4.

Figure 1 shows the results of this experiment, arranged to accentuate the

effect of transmission speed. Faster but realistic transmission speeds have results

similar to having an infinite transmission time. The generally observed patterns

break down entirely for the slowest transmission speed (0.01 m/s). Within
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Figure 1: Illustration of how variation in transmission speed affects the pat-

ternedness measure (y-axis). Transmission speed (x-axis) decreases from left

to right. Patternedness remains similar as transmission speed decreases to 1

m/s. Individual graphs represent elongation lengths: the top graph represents

nearest-neighbour; the bottom graph a distance of 4 cells. Different body sizes

are differentiated by color and point shape. There is no variation since these

are single experiments.
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any transmission speed category greater than 0.01 m/s, increasing elongation

length still improves patternedness in cases where it otherwise would, indicating

that given a sufficiently fast yet reasonable transmission speed the effect of

elongations holds.
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Supplementary Material 3: Additional notes on pattern

quantification

The constant n, denoting the number of segments into which the modelled

body is divided, requires more scrutiny. The analysis yields different outcomes

for different values of n. This supplement aims to provide an explanation of

why we chose to set the number of segments to 16 instead of iterating over it or

choosing another value.

First of all, we use a power of two when setting the length of our model.

We force our segments to all have the same length and thus our possible choices

for the number of segments are limited to powers of two as well. The shortest

length used is 32, that is 25 and thus we have 2, 4, 8, 16 and 32 to pick from. The

values 2 and 4 are theoretically allowable but do not fit our intuition on wave

propagation. The value 32 is also allowed on theoretical grounds, but already

nearest neighbor connections alone will spread out of the bin within a single

time bin. This leaves us with two prima facie suitable candidates: n = 8 and

n = 16, which we evaluated here.

Succinctly put, the qualitative results are similar when using different num-

ber of segments. Figure 2 shows that there is a difference in actual values but

hardly a difference in overall shape. The effect of a lower number of segments

is twofold: first, it causes patternedness to be higher for faster ring-shaped

patterns. The optimum values will thus be biased towards longer elongation

lengths, as those provide faster pattern propagation. Second, since more seg-

ments allows finer measurement the higher number of segments is able to show

higher values overall. Even neat patterns within a large segment result in some

lost signal. This also results in the effect visible in figure 2, where 8 segments

(top graph) for small systems (yellow circles) produces an improvement in pat-

ternedness between not having elongations at all and having elongations of

length 2, since the broader patterns generated by elongations allow the seg-

ments to fill out whereas smaller segments get filled out even with patterns 1

cell wide.

Since the aim of our study is to establish qualitative changes in whole-body

coordination, having a measure that is constant across multiple body sizes is

important, and dividing the body-tube in a fixed number of segments accom-
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Figure 2: Illustration of variation in segment number affecting the patterned-

ness measure. Individual graphs represent segmentation options: the top graph

represents 8 segments whereas the bottom graph represents 8 segments. Differ-

ent body sizes are differentiated by color and point shape. Again, patternedness

is shown on the y-axis, the different elongation lengths are on the x-axis. The

points scattered around the graph indicate the 10 individual model iterations

which were performed for each condition and the line represents the average.

plishes this. Whether that is 8 or 16 is of secondary importance for the purposes

of this study.
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