1 Aerobic degradation of crude oil by microorganisms in soils

2 from four geographic regions of China

- 3 Qinglong Liu¹, Jingchun Tang *^{1,2,3}, Kai Gao⁴, Ranjit Gurav¹, John P Giesy^{5,6,7,8,9}
- 4 ¹College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
- 5 ² Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin

6 300071, China

- ⁷ ³Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),
- 8 Tianjin 300071, China
- 9 ⁴Tianjin Academy of Environmental Sciences, Tianjin 300191, China
- ⁵Toxicology Centre, University of Saskatchewan, Saskatchewan, Canada
- ⁶Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon,
- 12 Saskatchewan, Canada
- ¹³ ⁷ School of Biological Sciences, University of Hong Kong, Hong Kong, SAR, China
- ⁸ State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment,
- 15 Nanjing University, Nanjing, People's Republic of China
- ⁹ Department of Biology, Hong Kong Baptist University, Hong Kong, SAR, China
- 17 * Corresponding author: Jingchun Tang
- 18 Tel.: +86-22-83614117, Fax: +86-22-83614117
- 19 E-mail address: tangjch@nankai.edu.cn
- 20
- 21
- 22

Samples	Number of	Number	Ace	Chao I	Shannon(H')	Simpson	Coverage
	sequences	of OTUs		richness			(%)
DG0d	5777	247	262	263	3.58	0.0347	99.48
DG112d	7872	195	239	238	3.36	0.0723	99.39
SS0d	10029	187	236	240	1.72	0.4767	99.46
SS112d	11802	114	140	135	2.43	0.1643	99.76
NE0d	12297	270	302	312	4.16	0.0643	99.61
NE112d	10673	94	120	121	2.88	0.1904	99.76
XM0d	11238	123	140	138	2.64	0.1562	99.78
XM112d	13854	139	150	152	3.05	0.0874	99.86

Table S1. Summary of sizes of libraries of sequences for operational taxonomic units (OTUs), and
 diversity indices based on 16S rRNA gene sequences during incubations of soils in microcosms.

26 Calculations based on the operational taxonomic units (OTUs) determined at an evolutionary distance

of 0.03.

Sequence	Homologous strains	Identity	accession number in
			ENA
D0-1	Marinobacter	99%	LN649243
D0-2	Uncultured alpha	100%	LN649242
	proteobacterium sp.		
D0-3	Uncultured	98%	LN649253
	Rhodanobacter sp.		
D8-1	Uncultured	99%	LN649253
	Rhodanobacter sp.		
D16-1	Marinobacter	99%	LN681343
D16-2	Brevundimonas sp.	100%	LN681344
S0-1	Pseudomonas sp.	99%	LN649240
S1-1	Streptomyces sp.	100%	LN649246
S1-2	Uncultured bacterium	98%	LN649248
S16-1	Uncultured alpha	98%	LN681346
	proteobacterium sp.		
N0-1	Pseudomonas sp.	99%	LN649240
N4-1	Burkholderia sp.	100%	LN649249
N8-1	Uncultured alpha	100%	LN649252
	proteobacterium sp.		
N8-2	Uncultured	99%	LN649253
	Rhodanobacter sp.		
X0-1	Uncultured bacterium	98%	LN649244
X16-1	Brevundimonas sp.	100%	LN681344
X16-2	Burkholderia sp.	100%	LN649249

Table S2. Results of sequencing of DGGE bands.

			0d		7d		28d		56d		112d	
	Samples	СК	Crude									
			oil									
	DG	3.23	3.4	3.13	2.86	3.33	3.38	3.45	3.51	3.44	3.16	
	SS	2.24	2.16	2.15	2.03	2.99	3.12	2.85	2.96	2.83	3.13	
	NE	3.85	3.36	3.39	2.52	3.22	2.74	3.46	2.53	3.43	2.66	
	XM	2.92	2.65	2.06	2.78	2.78	3.16	2.65	2.49	2.86	2.97	
41												
42												
43												
44												
45												
46												
47												
48												
49												
50												
51												
52												
53												
54												
55												
56												
57												
58												

Table S3. Shannon-Weiner index quantified based on the DGGE profile.

62	Table S4.	Absolute nur	nbers of c	copies of	of oil-o	degrading	genes in	soils	from fo	our regions	of China.
						<u> </u>	0			0	

Samples		DG	SS	NE	XM
Abundance of	0d	$(2.75\pm0.40)\times10^4$	(3.44±0.13) ×10 ⁵	(5.42±0.31)×10 ⁵	$(3.44\pm0.53)\times10^4$
AlkB (copies/g,	7d	$(2.69\pm0.65)\times10^5$	(4.23±0.12) ×10 ⁵	$(6.15\pm0.25)\times10^{5}$	$(5.57\pm0.37)\times10^4$
dm soil)	28d	(1.51±0.46)×10 ⁶	$(3.40\pm0.57)\times10^7$	$(3.23\pm0.21)\times10^7$	$(2.90\pm0.35)\times10^{6}$
	56d	$(2.73\pm0.26)\times10^{6}$	$(5.79\pm0.43)\times10^7$	$(6.33\pm0.42)\times10^7$	$(1.70\pm0.53)\times10^7$
	112d	$(2.30\pm0.16)\times10^{6}$	$(6.29\pm0.32)\times10^7$	$(7.39\pm0.34)\times10^{7}$	$(2.48\pm0.32)\times10^7$
Abundance of	0d	$(4.62\pm0.23)\times10^3$	$(1.34\pm0.26) \times 10^3$	$(1.22\pm0.42)\times10^3$	$(1.33\pm0.39)\times10^3$
Nah (copies/g, dm	7d	$(2.83\pm0.53)\times10^4$	(3.72±0.43) ×10 ⁴	$(2.26\pm0.51)\times10^4$	$(7.85\pm0.57)\times10^3$
soil)	28d	$(4.34\pm0.57)\times10^4$	(5.37±0.35) ×10 ⁵	$(4.31\pm0.34)\times10^{5}$	$(2.95\pm0.43)\times10^{5}$
	56d	$(6.71\pm0.63)\times10^4$	(7.53±0.72) ×10 ⁵	$(6.21\pm0.48)\times10^{5}$	$(3.54\pm0.32)\times10^{5}$
	112d	(1.29±0.43)×10 ⁵	(5.36±0.64) ×10 ⁶	$(4.23\pm0.73)\times10^{6}$	$(6.42\pm0.55)\times10^{5}$
Abundance of Phe	0d	$(2.39\pm0.36)\times10^3$	$(8.12\pm0.55)\times10^3$	$(1.31\pm0.12)\times10^3$	$(1.53\pm0.19)\times10^3$
(copies/g, dm soil)	7d	$(1.68\pm0.25)\times10^4$	(1.39±0.55)×10 ⁵	$(9.40\pm0.24)\times10^4$	$(2.36\pm0.17)\times10^3$
	28d	$(5.54\pm0.54)\times10^4$	(9.67±0.25) ×10 ⁵	(1.30±0.97)×10 ⁶	$(9.40\pm0.13)\times10^4$
	56d	$(8.91\pm0.32)\times10^4$	(3.12±0.75) ×10 ⁶	$(4.47\pm0.42)\times10^{6}$	$(4.72\pm0.42)\times10^{5}$
	112d	$(1.14\pm0.47)\times10^{5}$	(2.99±0.23) ×10 ⁶	$(3.49\pm0.42)\times10^{6}$	$(5.32\pm0.26)\times10^{5}$
Abundance of 16S	0d	$(6.52\pm0.34)\times10^7$	$(2.85\pm0.54)\times10^{8}$	$(2.57\pm0.48)\times10^{8}$	$(1.52\pm0.29)\times10^7$
rRNA (copies/g,	7d	$(4.34\pm0.12)\times10^7$	(2.65±0.21)×10 ⁸	(9.40±0.64)×10 ⁸	$(1.10\pm0.22)\times10^7$
dm soil)	28d	$(7.50\pm0.44)\times10^7$	(1.14±0.45) ×10 ⁸	(1.30±0.37)×10 ⁹	$(1.15\pm0.23)\times10^{8}$
	56d	$(9.18\pm0.37)\times10^7$	(1.94±0.55) ×10 ⁹	$(4.47\pm0.42)\times10^9$	$(5.07\pm0.32)\times10^8$
	112d	(8.92±0.48)×10 ⁷	(1.22±0.36) ×10 ⁹	(3.49±0.31)×10 ⁹	$(6.43\pm0.46)\times10^8$

71

PCR Degrad Proteins targeted Amplicon Reference Sequence(5'-3') ation size annealing temperature($^{\circ}$ C) (bp) genes AlkB AACTACMTCGA AlkB Alkane monooxygenases -F RCAYTACGG 1 100 50 AlkB TGAMGATGTGG -R TYRCTGTTCC NahA NahAc Naphthalene ACTTGGTTCCGG dioxygenase c-F AGTTGATG 2 136 57 NahA CAGGTCAGCAT c-R GCTGTTGTT Phe Phenol Phe-F GTGCTGAC(C/G) monooxygenase AA(C/T)CTG(C/T) 3 TGTTC 206 49 Phe-CGCCAGAACCA(R C/T)TT(A/G)TC 16S Conservative 16S-F CGGTGAATACGT rDNA region TCYCGG 4 55 140 16S-CGGTGAATACGT TCYCGG R

72 Table S5. Sequences, sizes of amplicons, and annealing temperatures of primer sets for qPCR.

73

74 References

75 Powell, S.M., Bowman, J.P., Ferguson, S.H. & Snape, I. The importance of soil characteristics 1. 76 to the structure of alkane-degrading bacterial communities on sub-Antarctic Macquarie Island. 77 Soil Biol Biochem 42, 2012-2021 (2010).

78 2. Park, J.-W. & Crowley, D.E. Dynamic changes in nahAc gene copy numbers during 79 degradation of naphthalene in PAH-contaminated soils. Appl Microbiol Biot 72, 1322-1329

80		(2006).
81	3.	Baldwin, B.R., Nakatsu, C.H. & Nies, L. Detection and enumeration of aromatic oxygenase
82		genes by multiplex and real-time PCR. Appl Environ Microbiol 69, 3350-3358 (2003).
83	4.	Suzuki, M.T., Taylor, L.T. & Delong, E.F. Quantitative analysis of small-subunit rRNA genes
84		in mixed microbial populations via 5'-nuclease assays. Appl Environ Microbiol 66, 4605-4614
85		(2000).
86		
87		
88		
89		
90		
91		
92		
93		
94		
95		
96		
97		
98		
99		
100		
101		
102		
103		
104		
105		
106		
107		
108		
109		
110		

Figure S1. Residual concentrations and degradation of alkanes (C8-C40) and PAHs in soils quantified
by use of GC-MS. (a) Concentrations of shorter-chain alkanes (C8-C12), medium-chain alkanes
(C13-C30), and longer-chain alkanes (C31-C40). (b) Concentration of bicyclic, tricyclic, tetracyclic,
pentacyclic, and hexacyclic PAHs. (c) Degradation extent of shorter-chain alkanes (C8-C12),
medium-chain alkanes (C13-C30), and longer-chain alkanes (C31-C40). (d) Degradation extent of
bicyclic, tricyclic, tetracyclic, pentacyclic, and hexacyclic PAHs.

120 Letters on the graph indicate a significant difference among different sampling times at p < 0.05

121 according to Duncan's multiple range tests of One-Way ANOVA.

125 on HTS. Mean proportions of bacterial phyla in studied soil groups. Phyla representing more than 2%

- 126 of the bacterial community are summarized.

146 Figure S3. Heat map calculated for the total reads representing restructuring of microbial communities

147 in soils from four geographic regions of China.

175 Figure S5. Pairwise correlations between metabolic gene abundances and PHs degradation. (a)

176 Correlation between relative abundances of *AlkB* gene and oil degradation; (b) Correlation between

- *Nah* gene abundances and oil degradation.

Naphthalene

Acenaphthene

Acenaphthylene

Phenanthrene

Fluorene

Anthracene

10

Benz[a]anthracene

Chrysene

Benzo[b]fluoranthene

Indeno[1,2,3-cd]pyrene

Benzo[k]fluoranthene

10

Pyrene

⁹ ⁸ ⁷ ⁶ Fluoranthene

Benzo[a]pyrene

Dibenz[a,h]anthracene

Benzo[ghi]perylene

12

197