
 
 
Supplementary Figure 1. Dispersion relations for graphene magnetoplasmons. (a-b) 

Dispersion relations for bulk (a) and edge (b) plasmons on freestanding graphene. Simulation and 

theoretical results are shown for zero magnetic field (red) and for a magnetic field of 5 T (black). 

Insect: distributions of the electric-field component along the propagation direction. Scale bars: 

200 nm. 
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Supplementary Figure 2. Berry curvatures of relevant bands. (a-b) Projected band diagrams 

along the zigzag direction for magnetic fields B=0 (a) and B=4 T (b). (c-e) Distribution of Berry 

curvatures in the first Brillouin zone for band i, ii, and iii in b. The integral of the Berry curvatures 

yields the corresponding Chern numbers shown here as labels. 
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Supplementary Figure 3. Electrostatic scaling of the graphene superlattice. We show the 

scattering coefficients of graphene nanoribbon junctions (with 2L=3W as in the superlattice of Figs. 

2 and 3) for all combinations of the parameters B=0.8, 2 T, EF =0.2, 0.3 eV, and 2=1, 2.1, as a 

function of/0. The size is adjusted to ensure that c/0 is the same as in the right panel of Fig. 

4d for all calculations. 
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Supplementary Note 1. Magnetoplasmon modes on graphene nanoribbon.  

A layer of graphene supports bulk plasmons (Supplementary Fig. 1a) and more 

localized edge plasmons at the boundary (Supplementary Fig. 1b). The dispersion 

relations of bulk plasmons B ( )k (determined by  0 02k i   ) and edge 

plasmons are correlated:      1 2

E B2 3k k 
 
[1], where the prefactor implies the 

localization of the edge plasmons. With magnetic field, the dispersion of the bulk 

plasmons is shifted to 2 2 2
B B c     , where c is the cyclotron frequency defined in 

the main text, while the edge plasmons become  2 2
E, B c c2 3 3   

       
[2-5], 

where the signs before c correspond to the direction of the magnetic field normal 

to the carbon plane. Because of the symmetry of the system, for the edge 

magnetoplasmon, reversing the direction of the magnetic field is identical to 

reversing the direction of the wave vector,    E, Eq q    . Therefore, the edge 

magnetoplasmon is nonreciprocal:    E Eq q     , in contrast to the bulk 

magnetoplasmon, as shown in Supplementary Fig. 1.  

 The two lowest-order modes of the nanoribbon are bonding and antibonding 

combinations of the two edge charge pileups on opposite boundaries of the 

nanoribbon (inset in Fig. 1b).  For a graphene ribbon under a magnetic field, the edge 

modes on the two boundaries propagating toward the same direction have different 
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wave vectors. The combinations of these two edge modes are analogous to the 

asymmetric supermodes of two nonidentical coupled waveguides, leading to the 

results shown in Fig. 1b.  

 

Supplementary Note 2. Results of Berry curvatures 

As discussed in the main text, the Chern number of the first band below the 

gap determines the topological edge mode in the gap, because a lower trivial 

bandgap exists. The Berry curvature of this band (denoted as band i in 

Supplementary Fig. 2a,b) shown in Supplementary Fig. 2b reveals the mechanism 

of the nonzero Chern number of this band. Apart from the peak at the corner of the 

first Brillouin zone due to the narrowing of the lower bandgap, it also displays two 

peaks of finite height at the   and   points when a bandgap is opened at the Dirac 

points. For the bandgap opened by T-symmetry breaking as in our study, the two 

peaks in the Berry curvature of band i both have positive signs, as shown in 

Supplementary Fig. 2c. The integral of this Berry curvature yields a Chern number 

+1, thus demonstrating the topological nature of the band gap above. In contrast, for 

a trivial bandgap (e.g., one opened by inversion-symmetry breaking), the two peaks 

have opposite signs, so the resulting Chern number vanishes. 

The total Chern number is conserved, and the nonzero Chern number of the 

band i results from the exchange with upper bands during the opening of the bandgap 
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by T-symmetry breaking. The exchange of Chern numbers involve three bands, 

because the two bands above the Dirac points (denoted as bands ii and iii) also have 

a degenerate point at the  point (see Supplementary Fig. 2a). Under a magnetic 

field, the Chern numbers of the bands ii and iii are 0 and -1, respectively (see 

Supplementary Fig. 2d,e), and therefore the sum of the Chern numbers of the three 

bands i-iii is conserved as zero.  

The exchange of Chern numbers between the three bands can be understood 

from the distribution of Berry curvatures. The Chern number +1 gained by the band 

i is provided by the band ii, as clearly seen from the two peaks with negative signs 

in the Berry curvature of band ii at the   and   points. However, the Chern number 

of band ii is zero, because the it also exchanges Chern number with band iii at the  

point, as shown by the bending of the Berry curvatures of both bands ii and iii at the 

corner of the first Brillouin zone. Consequently, the Chern number of band iii is -1. 

Therefore, the total Chern number of the three bands i-iii is conserved. 

 

Supplementary Note 3. Electrostatic scaling of graphene plasmons 

The general electrostatic potential associated with a plasmon is 

     11 2
0, 4 ,d         r r r r r , where the  , r  is the charge distribution on 

the graphene, which is related to the surface current through the continuity equation, 

   , ,i      j r r , while  =  s m / 2   is the average permittivity of the 
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environment (substrate s and superstrate m) and a substrate. The current is 

     , , ,        j r σ E r σ r . Therefore, using a dimensionless coordinate vector 

Wθ r , the electrostatic potential can be expressed as 

                     
2 2

1 2
0

1

4 x y y x

d d      
 

  
           

 
θ θ

θ θ θ θ ,
 

where 1 xxi W    and 
2
 i

xy
W  are functions of the normalized frequencies 

0   and c 0  , where 
0
 e 2E

F
W 

0
 h 3  . 

The above analysis shows that the plasmon fields in the graphene superlattices 

under study only depend on the geometrical parameters W and L, and on the 

normalized frequencies 0   and c 0  . We provide a numerical corroboration of 

this electrostatic scaling law in Supplementary Fig. 3. These simulations 

demonstrate that sub-tesla magnetic fields are sufficient to generate topologically 

protected plasmon states. By carrying out FEM simulations similar to those used to 

obtain Fig. 2a, in which we calculate the scattering coefficients of a single 

nanoribbon junction (with L=3W, similar to Figs. 2-5), but with different 

combinations of parameters as a function of /, with W adjusted to ensure that 

c/=0.31 is same as in Fig. 4d. The simulation results show that the scaling law is 

perfectly fulfilled for different ribbon widths, doping levels, substrate environments 

and strengths of the magnetic field. These results also indicate that a superlattice of 
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larger size (W=806 nm with L=3W) operating under a magnetic field of only 0.8 T 

and a plasmon energy of 14 meV exactly resembles the results of Fig. 4d. Therefore, 

the required magnetic field can be further decreased into sub-tesla regime when the 

lower-energy plasmons are considered. 
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