Hamp1 but not Hamp2 regulates ferroportin in fish with two functionally distinct hepcidin

types

João V Neves^{1,2,*}, Miguel F Ramos^{1,2}, Ana C Moreira^{1,2}, Tânia Silva^{1,2}, Maria S Gomes^{1,2,3}, Pedro NS Rodrigues^{1,2,3}

 ¹ i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
 ² IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208,

4200-135 Porto, Portugal

³ ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal

* Corresponding author:

João V Neves

Iron and Innate Immunity

i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen 208, 4200-135 Porto,

PORTUGAL

Tel: +351220408800

E-mail: jneves@ibmc.up.pt

$ \begin{array}{llllllllllllllllllllllllllllllllllll$
CACCETAAACGTCAACCACAGACACCTCACACGGCAGGGGTCAGACGGTCGGT
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
CTTTGTCTTTGTCTTTGTTTTTTTTCCCCTGTGTGTGTG
TTOCATTATCAAAAGAGGTAGGAACACACTCATTGCTGCTGTTTTTTTT
APEGRAACTCTEGGAACTAGAACGACCAGAACTCACCCCGAGACTTCTCACTCGCGCCACTTGCTACTGACATGGGCCCAGCGAACTGGGAACGCTCGCGCGCCGCCGCGCGCG
M D N S T K T C M E S T K D F T S A K L I Y M G H A S I I Y G I I Y C V N S L L L C O T N S L L L C O V V S L
CTOTECAACCTGGGGCGACCAATGTGGAACTTTGCCGGGCGCGTTTTGCTGGGAGCTGTAGGGAACAACGCTGCTGCTGCGGCGGCCGAGCGGGGGGGG
L S T W N
TAGGGGCTGGTGGCCGGCCTCGTGGGGCCATCGTGGGGGCCAAGAATCCCAGACTCCAGAATCCAAAGTGGCCCAG 727 Y G V V L L G N V D N P R V A G N V D N P R V A A G D V V D N P R K V A A A D V V V V D V <t< td=""></t<>
Y G L V V A N V D N
ACTTOCCTCCTCCCAGACAGACTGCCCCCTCCTGCTCCTGATGGTTCTTTCCCAGTCAAGACAGCTTTGGAGCTT 817 T S L V V F V F K E U V 120 TACAATGGATGGATCCTGACCACCGCGCTACATTCGGGGATCACCACCGCCAACATTGCCAACAGCACCACGCACG
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
TACARTGGATGGATGTCACCATCGCCARCATGCCARCATGCCARCATGCCARCACACCATCATCACCACCGCACCATCACCACCACCACCACCACCACCACCACCACCACC
Y N G W I L V I T I A N I A N L A T S I T S I T S I T S I T S I T S I I D Q L 180 ACCAACATCTTGEGTGGTCAGGACGGGGTGGGCAGGAAGGCGGGGGTGGGCCAGGAAAGGGGGGGG
ATCCAAAGGGACTGGGTGGGGTGTGGTGGGGGCTGGGGCGGGGTGGACGGGTGGGACCATTGACCGCGGGTGGGATCATTGACCACGGTGGGGACCTG 997 I Q R V V V A G Q D S S R L A D M N A T V R I D Q L 180 ACCAACATCTTGGCTCCTATGCTGGGGGGCGGGGGGGGGCGCGCCCCATTGCACCAGAAGAGGCCCGGGCTGTGCCCATTGCACGGGGAAGGGCGGGAAGGGCGGGGGCGGGGGGGG
I Q R D W V
ACCAACATCTTGGCTCCTATGCTGGTGGGTCAGATAATGGCCTTCGGCTCCATTTGGGTGGTCATCTCTGGCTGG
T N I L A P M A F G S G F I S G W N L 210 TGCTCCATGTGTGGAGAGCGCGGCGGGGGGGGGGGGGGG
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
C S M C L W K V Y Q K T K A G Q K E Q 240 CAGGAGCTCAAACAGCTCAGCCCCAGCGCGAGAGTTGGAGAACGCCCAGAGCCCTGAGGAGAACCTCTAGCCGCCCCTCAGAGCAGCCTCAGCCGCCCCTCAGCAGCCCCCCCC
CAGGAGCTCAACAGCTCAGCCCACGCCGAGGTGGGGAATGGGCCAGGCCGAGGCCCTGGGAATGGCCGCGCCGCCGCCCACGCCAGGCCCACCTCCAGGCAGCCCCCCCC
Q E L K Q L E N G Q S P E L N
GTCGTAACTAAGCCCGCCCTCTCCCAAGCAGCGCGGCTGTTGCTATCAGGTGACCGACC
V V
TACTACAACCAGAACATCTTCTTCGCCGGCATCCCCGGCCTTCGGCTTCGACTGCATCACCACGGCGCTAC144YYNQNIFFAGMSLAFLYMVLGFDCITTGY330GCCTACACGCAGGGGCCTCACGGGCCTGGCCGGGGCCTGGGCCGGGGCCTGGGCCGGGGCCTGGGCCGGGGCCTGGGCGCGGGCCGGGCCGGGCCGGGCCGGGCCGGGCCGGGCCGGGCCGGGCCGGGCCGGGG
Y Y N Q N I F F A G N S L A F L Y M T V L G F D C I T T G Y T G Y T G Y T G Y T G G X T G G X T G G X T G G X X G G X X X G G X X X G G X
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
A Y T Q G L N G A S A V S G I C G T V A F T 360 TGGGGTCCGCAAGAGAGTGCGGCCGATCCGACCGAGGCTTCATCTCGGGCCTTGCCCAGCGCTGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGCCGC
TGGGTCCGCAAGAAGTGCGGCCTGATCCGCACAGGCTTCATCTCGGGCCTTGCCCAGCTGTCCTGCCTCATACTGTGTGTCGTCTCCGTC162 $W \ V \ R \ K \ K \ C \ G \ L \ I \ R \ T \ G \ F \ I \ S \ G \ L \ A \ Q \ L \ S \ C \ L \ I \ L \ C \ V \ V \ S \ V \ S \ V \ S \ V \ S \ V \ S \ P \ F \ Q \ D \ L \ Y \ T \ H \ L \ G \ E \ K \ P \ L \ P \ E \ A \ 420$ 1717TTTGCTCCCGGGAGCCCTTTGACCTCAGCGTCTCGCCCTTCCAGGACCTTTCAGCCCGACCCGGAGAGAGCGCGCCCCCCCC
W V R K C G L I R T G F I S G L A Q L S C L I L C V V S V 390 TTTGCTCCCGGGAGCCCCTTGACCTACGCGTCTCGCCCTTCCAGGACCTTCCAGGAGCCTTTGACCCCAGCTGATCGGAGAGAGCCGCCGCGCCGCGCCGCGCCGCGCGCG
TTTGCTCCCGGGAGCCCCTTTGACCTCAGCGTCTCGCCCTTCCAGGACCTTTACACCCACC
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
GAGCACAGCCTCACCGGCGTTCTTACCAGTGGAAACGTCACTACTGCTGCAGCCAGC
$ \begin{array}{c} E & H & S & L & T & G & V & L & T & S & G & N & V & T & T & A & A & P & A & E & E & L & P & P & L & Q & S & Y & M & S \\ GTTGTCGCGGTGTTGCTGCGCGTCATTGCTGGCTGGGTGTGGCTGTGGGTCTTTGACCGGACCCCAGCGTCATCCAGGAGAATGGG & 189' \\ V & C & L & L & F & A & G & V & I & A & R & V & G & L & W & S & F & D & L & T & V & T & Q & L & I & Q & E & N & V & 480 \\ \mbox{ATCGAGTCGGAGCGAGGGGGGGGGGGGGACACGCCAGAGACTCCAGGAACTCCATGAATTACCTCTTAGATCGCGCACTTCATCAGGGGGAACTGGGGAGGAGGCCGCCTCGGCCTTCGGCCATGGGTCACACGGGGCCAGAGGACGCCAGGGGCCAGACTCCAGGGGCCAGGGGGCCACATTATGTACTTCGGGTAACGGGGACGCGCCTCGGCCATGGCCATCGTGTCCTCGGGGCCATGGGGCCACATTATGTACTTCGGGTTGCCTACAAG & 207' \\ P & N & P & E & A & F & G & L & L & V & I & I & S & V & S & F & V & A & M & G & H & I & M & Y & F & R & F & A & Y & K & 540 \\ \mbox{AccctgGGGGGGCGCCCCCTCTCCGGGACCAGGAGGAGGAGGAGGAGGGAG$
GTTTGTCTGCTGTTGCTGGCGTCATTGCTGCTAGAGTTGGCCTGTGGTCTTTTGACCTGACCGTGACCCAGCTCATCCAGGAGAATGTG189' $V \ C \ L \ L \ F \ A \ G \ V \ I \ A \ A \ R \ V \ G \ L \ W \ S \ F \ D \ L \ T \ V \ T \ Q \ L \ I \ Q \ E \ N \ V \ 480$ 198'ATCGAGTCGGAGCGAGGTGTGATCAACGGCGTCCAGAACTCCAGAACTCCATGAATTACCTCTTAGATCTGCTGCACTTCATGGTGATACTGGGT198' $I \ E \ S \ E \ R \ G \ V \ I \ N \ G \ V \ Q \ N \ S \ M \ N \ Y \ L \ L \ D \ L \ L \ H \ F \ I \ M \ V \ I \ L \ A \ 510$ 207'CGGAACCCGGAGGCGCCCTCTGGCCTCTGGTCATCATCTGTGGTCATCTTGGTCATCCTGGGCCACATTATGTACTTCGGTTGCCTACAAG207' $P \ N \ P \ E \ A \ F \ G \ L \ L \ V \ I \ I \ S \ V \ S \ F \ V \ A \ M \ G \ H \ I \ M \ Y \ F \ R \ F \ A \ Y \ K \ 540$ 540AGCCTGGGGAGCCGCCCTCTTCCTATGCTGCCGCGGAGCAGAAGGTGGAGGAGGAGGAGGAGGAGCACCCCTCACTTCCTACCACGGTCTAACCC216' $S \ L \ G \ S \ R \ L \ F \ L \ C \ C \ S \ P \ E \ Q \ K \ V \ E \ E \ V \ D \ N \ P \ S \ L \ P \ T \ T \ V \ * \ 568$ 568CGTAAAGAGACTCTCCTCGGGTACAAATCTCTCAAGCCTTACCTGCGGAGCAGCAGCAGCACTTAACTACCTTGCACACATCATTTTTTTT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
I E S E R G V I N G V Q N S M N Y L L D L L H F I M V I L A 510 $CCGAACCCGGAGGCCTTCGGCCTTCGGTCATCATCTCTGTGTCCTTCGTGGCCATGGGTCACATTATGTACTTTCGGTTGCCTACAAG 207' P N P E A F G L L V I I S V S F V A M G H I M Y F R F A Y K 540$ $AGCCTGGGGAGCCGCTCTCCTATGCTGCCGGAGCCAGAAGGTGGAGGAGGAGAGACACCCCTCATTCTACCACGCGTCTAACCC 216' S L G S R L F L C C S P E Q K V E E V D N P S L P T T V * 568$ $CGTAAAGAGACTCTCTCTGGGTACAAATCTCTCAAGGCTAACCCTTACCTGCCGACCATTATTTAT$
$\begin{array}{c} CCGAACCCGGAGGCCTTCGGCCTTCGGTCATCATCTCTGTGTCCTTCGTGGCCATGGGTCACATTATGTACTTTCGGTTTGCCTACAAG \\ P & N & P & E & A & F & G & L & L & V & I & I & S & V & S & F & V & A & M & G & H & I & M & Y & F & R & F & A & Y & K \\ AGCCTGGGGAGCCGCCTCTTCCTATGCTGCCCGCGGAGCAGAAGGTGGAGGAGGAGAGACAACCCTCCTACCACCGTCTAACCC \\ S & L & G & S & R & L & F & L & C & C & S & P & E & Q & K & V & E & V & D & N & P & S & L & P & T & V & * \\ CGTAAAGAGACTCTCTCTCGGGTACAAATCTCTCAAGCCTTACCTGCCTG$
P N P A F G L L V I I S V A M G H I M Y F R F A Y K 540 AGCCTGGGGAGCCGCCTCTTCCTATGCTGCTCGCCGCGGAGCAGAAGGTGGAGGAGGAGCAACACCCCCCACCTCCTACCACCGCTCTAAACCC 216° S L G S P T V X 568 CGTAAAGAGACTCTCCCTGGGTACAAATCTCTCAAGCCTTACCCTTGCCCTGCATCTTATTTAT
AGCCTGGGGAGCCGCCCCCTCTTCCTATGCTGCCCGCGAGCAGAAGGTGGAGGAGGTAGACAACCCCTCACTTCCTACCACCGTCTAACCC 216' S L G S P L C C S P Q K V E V D N P S L P T V * 568 CGTAAAGAGACTCTCCCTGGGTACAAATCTCTCAAGCCTTACCCTTGCCCTGCATCTTATTTAT
S L G S R L F L C C S P E Q K V E E V D N P S L P T V * 568 CGTAAAGAGACTCTCTCCCTGGGTACAAATCTCTCCAAGCCTTACCCTTGCCCTGCATCTTATTTAT
CGTAAAGAGACTCTCTCCTGGGTACAAATCTCTCAAGCCTTACCCTTGCCCTGCATCTTATTTAT
TGGCAGATGCTAATGCTAACCAGATAAGGCAACTTAACATGCTATGCGTAGCAATTAATAAAGCACCACTCATTATCAGAAAGCTTAAAT234ACAGTTATAGAAAACTAATCCATAGCAAGACTTTAGGGGGTAAGGCAGGGTTTCTCCCTAACGTTTTCAGTCTGGGAGTCAGATGAGAGGTCT243CTCTTCTGTGGGGTCCATGCTCTTTGATAGATGCTGTACTGTCGAACAAGGATCGCATCACTTCTAGGCTCGTGATCCCAATGTGGTGGTC252
ACAGTTATAGAAAACTAATCCATAGCAAGACTTTAGGGGTAAGGCAGGGTTTCTCCTAACGTTTTCAGTCTGGGAGTCAGATGAGAGGTCT 243° CTCTTCTGTGGGGTCCATGCTCTTTGATAGATGCTGTACTGTCGAACAAGGATCGCATCACTTCTAGGCTCGTGATCCCAATGTGGTGGTC 2527
CTCTTTCTGTGGGTCCATGCTCTTTGATAGATGCTGTACTGTCGAACAAGGATCGCATCACTTCTAGGCTCGTGATCCCAATGTGGTGGTC 252
CTGTTAAGACATCAGGGGAAATGGCGCTGTAAAATATTCTCCCCAGAATGCCTCACTGCCTGGATGTAGCTGTAAAGATGTTTAAAAAGGA 261
GATTCTCTTGCAGGGAAAGCAGGCACTGAGGCTTGGATTAATGGGGCGGCGCGCTGTCGTCGAGGACCCTAAGAGACAGGCCGTCCCCCAA 270
CTTTCCTCTCTTGACACTTGCCTCTCATTGGTGCTGTAGCTGTAGCTGTGTCCGCTAGCTGTTTCTTCAGCCTCGGCTGTGTGTCCTTTCTTGCAT 2797
CTTTCCTCTCTGACACTTGCCTCTCATTGGTGCTGTAGCTGTAGCTGTGTCCGCTAGCTGTTTCTTCAGCCTCGGCTGTGTGTCCTTTCTTGCAT 279 ACATGTATGAATCGATCAGCTTTATCTTGTCGGTCGTCTTAATTAA

Supplementary Figure 1. DNA and predicted amino acid sequence of sea bass ferroportin.

Nucleotides are indicated above and numbered to the right of each lane (upper row). The deducted amino acid is shown below the nucleotide sequence. Amino acids are indicated with italic letters and numbered to the right of each lane (lower row) ending with the TAA stop codon (represented by *). A predicted Iron Responsive Element (IRE) in the 5' region is underlined.

		1											120
D.	labrax	MDNSGTK	KT <mark>C</mark> ME <mark>S</mark> TRDF	FTSAKFLIYM	GHALSTWGDR	MWNFAVAVFL	VELYGNSLLL	TAVYGLVVAG	SVLLLGAIIG	DWVDKNPRLK	VAQTSLLVQN	SCVIVCGILL	MVVFQFKEQL
Η.	sapiens	MTRAGDHNRQ	RG <mark>C</mark> CG <mark>S</mark> LADY	LT <u>SAKFLLYL</u>	GHSLSTWGDR	MWHFAVSVFL	VELYGNSLLL	TAVYGLVVAG	SVLVLGAIIG	DWVDKNARLK	VAQTS <u>LVVQN</u>	VSVILCGIIL	MMVFLHKHEL
							#		# #				
		121											240
D.	labrax	VELYNGWILT	TCYILVITIA	NIANLASTAT	SITIQRDWVV	VVAGQDSSRL	ADMNATVRII	DQLTNILAPM	LVGQIMAFGS	HFIGCGFISG	WNLCSMCLEY	ALLWKVYQKT	PALATKAGQK
Н.	sapiens	LTMYHGWVLT	SCYILIITIA	NIANLASTAT	AITIQRDWIV	VVAGEDRSKL	ANMNATIRRI	DQLTNILAPM	AVGQIMTFGS	PVIGCGFISG	WNLVSMCVEY	VLLWKVYQKT	PALAVKAGLK
	-			#		## #	#	#					
		241											360
D.	labrax	EQQQELKQLS	PTRELENGQS	PEESSQPLMN	ET <mark>S</mark> VVTKPAS	PKQRG <mark>C</mark> CY <mark>Q</mark> V	TEPLRTFKAG	WVAYYNQNIF	FAGMSLAFLY	MTVLGFDCIT	TGYA Y TQGLN	GSVLSLLMGA	SAVSGICGTV
Η.	sapiens	EEETELKQLN	LHKDT <mark>E</mark> PK	PLEGTHLMGV	KD <mark>S</mark> NIHELEH	EQEPTCASQM	AEPFRTFRDG	WVSYYNQPVF	LAGMGLAFLY	MTVLGFDCIT	TGYAYTQGLS	GSILSILMGA	SAITGIMGTV
	-	#			#					# #			
		361											480
D.	labrax	AFTWVRKKCG	LIRTGFISGL	AOLSCLILCV	VSVFAPGSPF	DLSVSPFODL	YTHL <mark>I-GE</mark> KP	L <mark>P</mark> EAEHSL T G	VLTSG <mark>N</mark> VTTA	APAEELPP	LOSYM <mark>SVCLL</mark>	FAGVIAARVG	LWSFDLTVTO
Η.	sapiens	AFTWLRRKCG	LVRTGLISGL	AOLSCLILCV	ISVFMPGSPL	DLSVSPFEDI	RSRFIOGESI	T <mark>P</mark> TKIPEI <mark>T</mark> T	EIYMS <mark>N</mark> GSNS	ANIVPETSPE	SVPIISVSLL	FAGVIAARIG	LWSFDLTVTO
	1				#		~ ~ ~						~
		481									574		
D.	labrax	LIOENVIESE	RGVINGVONS	MNYLLDLLHF	IMVILAPNPE	AFGLLVIISV	SFVAMGHIMY	FRFAYKSLGS	RLFLCCSPEO	KVEEVDNPSL	PTTV		
Η.	sapiens	LLOENVIESE	RGIINGVONS	MNYLLDLIHF	IMVILAPNPE	AFGLLVLISV	SFVAMGHIMY	FRFAONTLGN	KLF-ACGPDA	KEVRKENOAN	TSVV		
	- · T. · · · · · ·	~=					~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			-		

Supplementary Figure 2. A closer look at the amino acid alignment of sea bass and human ferroportin. Identical residues in red, different residues in black, gaps indicated by dashes. Signature features are indicated as follows: <u>underline</u>, transmembrane domains^{21,44}; <u>dotted underline</u>, extracellular hepcidin-binding loop^{43,44} with key residues required for hepcidin binding in bold; <u>wavy underline</u>, AP-2 adapter-binding motif for clathrin-dependent endocytosis⁴⁴; hashtags (#) represent the positions of the most common and some uncommon polymorphisms of human ferroportin, which cause numerous of changes in ferroportin cellular localization, iron export activity (e.g. increased or decreased iron efflux) and interaction with hepcidin (e.g. hepcidin-sensitive or hepcidin-resistant): Y64N^{30,32,33}, A77D^{21,22,31,32,33}, G80S³², N144D^{30,32,33}, N144H^{21,22,28,30,31,32,33}, N144T^{22,32}, D157G^{21,25,28,32}, $\Delta V162^{21,22,25,28,31,32,33}$, L170F²², N174I³², Q182H^{21,25,28,32}, Q248H^{30,31,32,33}, D270V³², G323V^{21,25,28,32}, C326S³², C326Y^{30,32,33}, S388R³⁴, G490D^{28,32,33}. All but one position (D270) are conserved not only between sea bass and human ferroportin, but between all ferroportins from the species presented in figure 1A.

Supplementary Figure 3 – CFU counts in the spleen. Values are expressed as means ± S.D. (n=4). Counts were performed at 24, 48, 72, 96 and 216 hours post-infection. PD – *Photobacterium damsela* ssp *piscicida*, VA – *Vibrio anguillarum*, SP - *Streptococcus parauberis*, LG – *Lactococcus garvieae*.

Supplementary Figure 4 - Hematological parameters and liver iron content in infected fish. (A) hematocrit, (B) serum iron and (C) liver iron. Values are expressed as means \pm S.D. (n=4). Samples were collected at 24, 48, 72 and 96 hours post-infection. Untreated fish were used as a 0-day control (n=4). Differences from the controls were considered significant for *p < 0.05 as (a) PD – *Photobacterium damsela* ssp *piscicida*, (b) VA – *Vibrio anguillarum*, (c) SP - *Streptococcus parauberis* and (d) LG – *Lactococcus garvieae*.

Supplementary Figure 5 - Uncropped Western blot membranes presented in cropped form in figure

8.

	Exon 1		Exon 2		Exon 3		Exon 4		Exon 5		Exon 6		Exon 7		Exon 8		
Dicentrarchus labrax	34	542	68	365	160	390	116	2132	127	310	246	122	639	442	317		
Gasterosteus aculeatus	43	282	68	363	160	241	116	1408	127	317	246	117	627	401	317		
Oreochromis niloticus	?	303	68	501	160	333	116	1030	127	638	246	?	?	848	323		
Oryzias latipes	?	35	56	382	160	208	116	1701	127	363	249	105	627	332	?		
Tetraodon nigroviridis	49	106	68	258	160	107	116	1206	127	869	246	113	636	227	317		
Takifugu rubripes	43	94	68	240	160	159	116	831	127	?	?	79	639	376	317		
Danio rerio	34	116	69	1790	160	192	116	1098	127	769	249	1168	621	1839	314		
Xenopus tropicalis	40	83	68	5325	160	555	116	2018	127	486	243	3541	657	1903	320		
Anolis carolinensis	49	7767	68	10341	160	2859	116	197	127	2115	246	1923	657	2907	320		
Gallus gallus	46	?	68	4167	160	829	116	271	127	3079	243	485	666	961	320		
Mus musculus	43	436	68	3401	160	2155	116	449	127	5827	246	705	639	1172	314		
Homo sapiens	43	537	68	4492	160	2199	116	1004	127	6115	246	1128	642	1392	314		
Caenorhabditis elegans	60	370	154	592	222	52	88	121	119	160	131	46	252	542	357	1322	147
	Exon 1		Exon 2		Exon 3		Exon 4		Exon 5		Exon 6		Exon 7		Exon 8		Exon 9

Supplementary Table 1 - Genomic comparison of sea bass ferroportin with other vertebrate and invertebrate species.

Among vertebrates, there is a high degree of conservation in both genomic structure, comprised by 8 exons and 7 introns, and exon sizes. Intron sizes

are significantly variable, with tetrapods as usual presenting the bigger ones. Question marks (?) represent regions where available sequence was considered unreliable.