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Supplementary Figure 1: Numerator and denominator of synchronizability with age in years. (Left) The
numerator of the synchronizability function: d2, where d := 1

N

∑
i

∑
j 6=iAij is the average coupling strength per node.

(An overall factor of N − 1 = 233 is the same for all subjects and hence is left out). (Right) The denominator of the

synchronizability function
∑N−1

i=1 |λi− λ̄|2, where λ̄ := 1
N−1

∑N−1
i=1 λi. We see that the denominator varies much more

with age than the numerator, and hence synchronizability is driven by variation in the eigenspectrum (denominator)
much more than by differences in connection density (numerator).
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Supplementary Figure 2: Histogram of subject ages. We examine 882 healthy individuals from the ages of 8 to
22.

Supplementary Figure 3: Trajectories without truncation. While Pareto optimization trajectories in the
forward direction (yellow) display very smooth curves, trajectories in the backwards direction (pink) do not. These
trajectories were truncated where the curve gradient in the controllability plane (left plot) became negative, often

resulting in little loss of overall trajectory length.
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Supplementary Table 1: Average super-
controllers. List of brain regions that strongly 

increase in average controllability with age, with their 
laterality and whether they are found in the cortex or 
subcortex. Labels are standard designations from the 

125-scale Lausanne atlas.

Average super-controllers

Region Hemisphere Cortex/subcortex

Superior frontal 2-3 Right Cortex

Precentral 6 Right Cortex

Paracentral 3 Right Cortex

Superior parietal 3 & 5 Right Cortex

Superior frontal 8 Left Cortex

Precentral 13 Left Cortex

Paracentral 2 Left Cortex

Postcentral 1 Left Cortex

Superior parietal 1 & 5 Left Cortex

Precuneus 1 & 3-4 Left Cortex

Brainstem Left Cortex
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Supplementary Table 2: Modal super-controllers. 
List of brain regions that strongly increase in modal 

controllability with age, with their laterality and 
whether they are found in the cortex or subcortex. 
Labels are standard designations from the 125-scale 

Lausanne atlas.

Modal super-controllers

Region Hemisphere Cortex/subcortex

Lateral orbito frontal 1-4 Right Cortex

Pars orbitalis 1 Right Cortex

Medial orbito frontal 2 Right Cortex

Pars triangularis 1-2 Right Cortex

Pars opercularis 1-2 Right Cortex

Rostral middle frontal 1-4 & 6 Right Cortex

Caudal middle frontal 1-3 Right Cortex

Precentral 4 Right Cortex

Paracentral 1-3 Right Cortex

Rostral anterior cingulate 1 Right Cortex

Caudal anterior cingulate 1 Right Cortex

Posterior cingulate 1-2 Right Cortex

Isthmus cingulate 1 Right Cortex

Postcentral 1-4 Right Cortex

Supramarginal 1-4 Right Cortex

Superior parietal 1-6 Right Cortex

Inferior parietal 2 & 5 Right Cortex

Precuneus 3 Right Cortex

Cuneus 1 Right Cortex

Lateral occipital 4 -5 Right Cortex

Lingual 2-3 Right Cortex

Fusiform 1-2 & 4 Right Cortex

Parahippocampal 1 Right Cortex

Entorhinal 1 Right Cortex

Inferior temporal 1 & 4 Right Cortex

Middle temporal 1-4 Right Cortex

Bankssts 1 Right Cortex

Superior temporal 1-5 Right Cortex

Transverse temporal 1 Right Cortex

Insula 1-3 Right Cortex

Putamen Right Subcortex

Pallidum Right Subcortex

Hyppocampus Right Subcortex

Amygdala Right Subcortex

Modal super-controllers

Region Hemisphere Cortex/subcortex

Lateral orbito frontal 2-3 Left Cortex

Pars orbitalis 1 Left Cortex

Pars triangularis 1 Left Cortex

Pars opercularis 2 Left Cortex

Rostral middle frontal 1-6 Left Cortex

Superior frontal 2, 4 & 6 Left Cortex

Caudal middle frontal 2-3 Left Cortex

Precentral 3 & 6 Left Cortex

Rostral anterior cingulate 1 Left Cortex

Caudal anterior cingulate 1 Left Cortex

Posterior cingulate 1-2 Left Cortex

Isthmus cingulate 1 Left Cortex

Postcentral 2-7 Left Cortex

Supramarginal 1-2 & 4-5 Left Cortex

Superior parietal 2-3 & 6 Left Cortex

Inferior parietal 2-3 & 5 Left Cortex

Precuneus 5 Left Cortex

Lateral occipital 4 Left Cortex

Lingual 1-4 Left Cortex

Fusiform 1-4 Left Cortex

Parahippocampal 1 Left Cortex

Entorhinal 1 Left Cortex

Temporal pole 1 Left Cortex

Inferior temporal 1-2 & 4 Left Cortex

Middle temporal 1 & 3-4 Left Cortex

Bankssts 1-2 Left Cortex

Superior temporal 1-5 Left Cortex

Transverse temporal 1 Left Cortex

Insula 1-2 & 4 Left Cortex

Caudate Left Subcortex

Putamen Left Subcortex

Pallidum Left Subcortex

Hyppocampus Left Subcortex
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SUPPLEMENTARY RESULTS: REPLICATION OF 
RESULTS

Adult subsample

In order to separate our findings on individual vari-
ability displayed in controllability and synchronizability
and verify that they hold independent of developmental
effects, here we examine only the 190 subjects aged 18
and older. By repeating the analyses just on this subject
group, we can verify if they already replicate the rela-
tionships shown in controllability and synchronizability
metrics.

Adults whose brains display high average controlla-
bility also tend to display high modal controllability:
Pearson’s correlation coefficient r = 0.85, df = 189,
p < 1× 10−5. Further, the brain networks that are more
synchronizable tend to display lower average controlla-
bility (r = −0.84, df = 189, p < 1 × 10−5;) as well
as lower modal controllability (r = −0.78, df = 189,
p < 1× 10−5). Hence, this smaller adult sample demon-
strates well these relationships between controllability
and synchronizability, independent of age-related effects.
In subsequent sections below, we continue to first exam-
ine this smaller adult sample as well as developmental
trends across the entire youth sample.

Controlling for network strength

As networks with higher strength (weighted degree, or
sum of all edge weights) tend to have higher average con-
trollability values, here we verify that network strength
is not a confound in our results. We do this by first di-
viding each network by its average strength, to ensure
that each matrix has the same average strength of 1 —
then repeat our analysis. We find that the 190 adults
show an even stronger correlation between mean average
controllability and mean modal controllability: Pearson’s
correlation coefficient r = 0.89, df = 189, p < 1 × 10−5.
These controllability metrics continue to display strong
negative correlations with synchronizability: r = −0.85,
df = 189, p < 1 × 10−5 for mean average controllability
and r = −0.78, df = 189, p < 1 × 10−5 for mean modal
controllability respectively.

In the larger youth sample from ages 8 to 22, the re-
lationships between controllability metrics and age also
persist. Mean average controllability remains positively
correlated with age (r = 0.32, df = 881, p < 1 × 10−5)
and mean modal controllability does as well (r = 0.22,
df = 881, p < 1 × 10−5). As synchronizability is cal-
culated independent of the matrix normalization, that
result remains unchanged. All these results control for
sex, brain volume, handedness and head motion. The
emergence of ‘super-controllers’ – regions of higher av-
erage and modal controllability that increase more with

age, is also still present. Regions that display increas-
ing average controllability with age are positively corre-
lated with their average controllability values: r = 0.50,
df = 233, p < 1 × 10−5, just as regions that display
increasing modal controllability with age are also posi-
tively correlated with their modal controllability values:
r = 0.37, df = 233, p < 1 × 10−5. Lastly, the stable
controllers in the subcortical region still show a negative
correlation between the mean average controllability in
those regions, and the subject’s IQ (Spearman correla-
tion coefficient ρ = −0.14, df = 881, p < 1 × 10−5, con-
trolling for age, sex, brain volume, handedness and head
motion). Together, these results show that accounting
for network strength does not change (or can improve)
the results we obtain in the main text. While average
network strength does contribute to network controlla-
bility measures, it cannot account for our findings, which
depend on the particular network topology even given
the same average network strength.

Controlling for network density

In addition, in this section we verify that network de-
gree (number of all non-zero edges in the network) does
not explain our results, by including network density
as a covariate in our calculations. We find that mean
average controllability remains strongly correlated with
mean modal controllability: Pearson’s correlation coef-
ficient r = 0.88, df = 881, p < 1 × 10−5. These
controllability metrics continue to display strong neg-
ative correlations with synchronizability: r = −0.85,
df = 881, p < 1 × 10−5 for mean average controllabil-
ity and r = −0.85, df = 881, p < 1 × 10−5 for mean
modal controllability, respectively.

In examining the relationships between these metrics
and age across the sample from ages 8 to 22, we find that
our results persist when including network density as an
additional covariate (in addition to sex, brain volume,
handedness and head motion). Mean average controlla-
bility remains positively correlated with age (r = 0.28,
df = 881, p < 1× 10−5) and mean modal controllability
does as well (r = 0.25, df = 881, p < 1×10−5). Synchro-
nizability continues to show a strong negative correlation
with age: r = −0.33, df = 881, p < 1 × 10−5. Taken
together, these results indicate that our findings on con-
trollability, synchronizability, and their changes across
development are not driven by network density.

Application of streamline thresholds to minimize the
probability of spurious edges

To verify that the relationships between controllability
or synchronizability with age are not driven by the effect
of spurious streamlines in network analysis, we tested
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Supplementary Figure 4: Lack of mathematical dependence between modularity and controllability or 
synchronizability. Re-wiring of a brain network (red dot) while keeping the strength distribution constant, in a 

similar manner to Pareto-optimization, shows that modularity and mean average controllability or synchronizability, 
can vary independently from each other. a. Green dots denote re-wired networks that vary in mean average 

controllability while their modularity varies little. Blue dots denote re-wired networks that vary in modularity while 
their mean average controllability varies little. b. Green dots denote re-wired networks that vary in global 

synchronizability while their modularity varies little. Blue dots denote re-wired networks that vary in modularity 
while their synchronizability varies little.

whether our findings are robust to the application of ab-
solute streamline count thresholds, to minimize the prob-
ability of spurious edges. To do this, we apply an absolute
cut-off to the streamline counts present in the structural
connectivity networks, where edges with fiber counts less
than and up to the threshold are set to zero. We use a
range of thresholds that change the corresponding net-
work densities and show that when reducing the average
network density down to as low as 60% of the original
networks, our results remain robust.

We begin by using a threshold of 1 streamline count
(i.e. only streamlines of weight 2 and above are retained),
which reduces the average network density from 17% to
15%. We find that the mean average controllability re-
mains significantly correlated with age (Pearson’s corre-
lation coefficient r = 0.28, df = 881, p < 1 × 10−5), as
does mean modal controllability (r = 0.22, df = 881,
p < 1 × 10−5), while synchronizability remains signif-
icantly negatively correlated (r = −0.37, df = 881,
p < 1 × 10−5). All of these computations control for
sex, head motion, brain volume and handedness as in
the main analyses. We repeat this analysis next using a
threshold of 5 streamline counts, which reduces the av-
erage network density further to 12%. In this case, all
these results remain the same (up to reported precision),
i.e. mean average controllability remains as r = 0.28,
df = 881, p < 1 × 10−5, mean modal controllability still
gives r = 0.22, df = 881, p < 1× 10−5, while synchroniz-
ability is still negatively correlated with age: r = −0.37,
df = 881, p < 1× 10−5.

Lastly, we use a threshold of 10 streamline counts,
which brings the average network density down to just

10%. In this case, the results are barely changed, where
mean average controllability is still significantly corre-
lated with age (r = 0.29, df = 881, p < 1 × 10−5),
as is mean modal controllability (r = 0.22, df = 881,
p < 1 × 10−5), while synchronizability still shows a
negative correlation with age (r = −0.36, df = 881,
p < 1 × 10−5) — all while controlling for sex, hand-
edness, brain volume and head motion. Taken together,
our results show that across a range of applied absolute
streamline count thresholds, our findings remain robust
and hence are not driven by the possible contribution of
spurious network edges.

Controlling for modularity

A natural question is whether modularity could be a
mediating factor in these results, since one might expect
that networks with increasing modular organization show
less synchronizability, and therefore may be more control-
lable. However, we find that the relationship between
modularity and controllability or synchronizability is not
straightforward, which we demonstrate using a set of nu-
merical experiments.

To show this rigorously, we perform a set of numeri-
cal experiments capitalizing on the approaches developed
and exercised in the manuscript. Specifically, we con-
duct a network re-wiring procedure similar to that used
in Pareto-optimization, that changes an edge of the net-
work while keeping the overall strength distribution con-
stant. We ask whether it is possible to devise a rewiring
scheme that can hold controllability steady while chang-
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Supplementary Figure 5: Relation between mean average controllability and modularity Q across graphs
for the Gaussian edge weighting scheme. Mean average controllability and modularity Q values in each graph
model ensemble, where scatterplots show values for each graph in the ensemble. Results are shown for the Gaussian
edge weighting scheme. The eight graph models include the weighted random graph (WRG), the ring lattice (RL),

the Watts-Strogatz small-world (WS), the modular graphs (MD2, MD4, MD8), the random geometric (RG), and the
Barabasi-Albert preferential attachment (BA) models.

ing modularity, or hold modularity steady while chang-
ing controllability. If it is impossible to devise rewiring 
schemes to affect these outcomes, then it suggests that 
modularity and controllability have an inherent mathe-
matical dependence, even if we – as a field – do not yet 
understand exactly what that mathematical relationship 
is. On the other hand, if we can successfully change one of 
these variables while holding the other constant, it 
suggests that controllability and modularity do not have a 
strict mathematical dependence on one another.

To enact this numerical experiment, we choose a brain
network at random from the ensemble. We rewire the
network using Pareto-optimization, at each step calculat-
ing the mean average controllability and the modularity
as estimated by a maximization of a modularity quality
function [1] using a Louvain-like [2] locally greedy algo-
rithm [3] with a structural resolution parameter value

of unity [4]. Importantly, we find that the modularity
and controllability are not bound together with any clear
relationship (Supplementary Fig. 4, left). We also re-
peat this with synchronizability and modularity, to show
that similarly, modularity and synchronizability are not
bound together with any clear relationship (Supplemen-
tary Fig. 4, right). This numerical experiment demon-
strates that controllability and modularity (or synchro-
nizability and modularity) are not mathematically de-
pendent at a fundamental level. More generally, these
results suggest that modularity cannot simply explain
the observed correlation between controllability and syn-
chronizability as a function of age during normative neu-
rodevelopment.

To further demonstrate that our results are not driven
by modularity, we here include the modularity metric Q
as a covariate in our calculations. In this case, we run
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100 iterations of a Louvain-like locally greedy algorithm
to maximize the modularity quality function with γ = 1
for each subject’s structural adjacency matrix [4]. For
each subject we then obtain a consensus partition [4]
and the consensus Q value. We then calculate the re-
lationship between synchronizability and controllability
after regressing out the effects of modularity. We find
that mean average controllability remains strongly cor-
related with mean modal controllability: Pearson’s cor-
relation coefficient r = 0.87, df = 881, p < 1 × 10−5.
These controllability metrics continue to display strong
negative correlations with synchronizability: r = −0.84,
df = 881, p < 1 × 10−5 for mean average controllabil-
ity and r = −0.81, df = 881, p < 1 × 10−5 for mean
modal controllability, respectively. These data suggest
that individual differences in modularity are not suffi-
cient to explain the relationship between controllability
and synchronizability.

Furthermore, in examining the relationships between
these metrics and age across the sample of youth from
ages 8 to 22, we observe that our findings remain sig-
nificant when including modularity as one of the covari-
ates, along with sex, brain volume, handedness and head
motion. Mean average controllability remains positively
correlated with age (r = 0.28, df = 881, p < 1×10−5) as
does mean modal controllability (r = 0.21, df = 881,
p < 1 × 10−5). Synchronizability continues to show
a strong negative correlation with age: r = −0.36,
df = 881, p < 1× 10−5. Taken together, these results in-
dicate that our findings on controllability, synchronizabil-
ity, and their changes across development are not driven
by the varying modular structure of the networks.

In addition, modularity and controllability can be com-
putationally related to one another in some classes of
graphs, but are not related to one another in other classes
of graphs. Hence, there is no instrinsic relationship be-
tween these two quantities, as we demonstrate by inves-
tigating various families of networks below.

For our ensemble of brain graphs, we find that mod-
ularity is negatively correlated with mean average con-
trollability r = −0.26, as is mean modal controllability, 
r = −0.39. Synchronizability is actually positively cor-
related with modularity, r = 0.37. We illustrate that 
different families of graphs will show different relation-
ships between controllability and modularity, by simu-
lating ensembles of networks (100 instantiations each) 
for 8 varying graph topologies, where each of these sets 
of 8 x 100 topologies are overlaid with two different edge 
weight distributions. For a given edge weight distribu-
tion – Gaussian (Fig. 5) or streamline counts (Fig. 6) –
we find that when holding the network size and edge den-
sity constant, the network topology alone gives strongly 
varying relationships between average controllability and 
modularity. A summary of the Spearman ρ correlation 
coefficients and associated p-values for all 2 x 8 graph 
types is given in Table. 1 in the main text. For more

details on graph generation and edge weight assignment,
please see the Methods subsection “Network generation”.

Collectively, these results indicate that the relationship
of modularity with controllability is not consistent across
different families of graph types or edge weight distribu-
tions, and hence that modularity cannot be considered
to be a fundamental driver or proxy for our results on
controllability or synchronizability.

Lastly, we also examine the effect of changes in modu-
larity in both a simulated modular network (as generated
from the Brain Connectivity Toolbox) and an empirical
brain network. This is done by altering the network mod-
ularity through random edge swaps while leaving control-
lability and synchronizability unconstrained, see Fig. 7.
We start with a modular small-world network (top row),
and perform several iterations of edge swaps, in order to
maintain the same network weight distribution but alter
its topology. We find that different runs change control-
lability and synchronizability in inconsistent ways, which
depend on the particular edges being changed – and that
increasing modularity (blue tones) and decreasing mod-
ularity (green tones) both can produce increasing and
decreasing controllability and synchronizability.

These simulations are repeated starting from an empir-
ical brain network (bottom row), where again we find in-
consistent impact on controllability and synchronizability
upon altering modularity. Similarly, increasing modular-
ity (blue tones) and decreasing modularity (green tones)
both can produce increasing and decreasing controllabil-
ity and synchronizability. Further, any global trends that
may be present are very different between the modular
small-world network and the brain network, especially in
the dependence of controllability on changes in modular-
ity. Taken together, these results demonstrate that our
results are not driven by changes in modularity.

Notably, the same modularity index Q can broadly de-
scribe many different topologies of networks, which may
have different controllability or synchronizability. For in-
stance, we can understand synchronizability as a measure
of the variance of length scales within the network (cap-
tured by the eigenvalues of the Laplacian matrix). When
a modular network becomes more randomized, this can
be done in a way that either increases the heterogeneity
of length scales in the network, or homogenizes them –
depending on the initial topology of the network and the
precise re-wiring done during the randomization. More
generally, questions regarding the development of mathe-
matical relations between modularity and synchronizabil-
ity or controllability are extremely fascinating and pose
an excellent avenue for further exploration in the future;
however such efforts are beyond the scope of our present
work.
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Supplementary Figure 6: Relation between mean average controllability and modularity Q across graphs
for the streamline counts weighting scheme. Mean average controllability and modularity Q values in each
graph model ensemble, where scatterplots show values for each graph in the ensemble. Results are shown for the

streamline counts weighting scheme. The eight graph models include the weighted random graph (WRG), the ring
lattice (RL), the Watts-Strogatz small-world (WS), the modular graphs (MD2, MD4, MD8), the random geometric

(RG), and the Barabasi-Albert preferential attachment (BA) models.

Subjects with lowest in-scanner head motion

Our work employs stringent restrictions to rule out
head motion during the scanning procedure as a potential
confounding factor, by ensuring that data have passed
rigorous visual and automatic quality assurance to detect
head motion [5]. We excluded subjects with in-scanner
head motion of above 2mm (see Methods) and controlled
for motion in all analyses using the 882 subject sample.

As a last check, we verify that the significant results
we observe across the entire sample are replicable on the
200 subjects with the lowest head motion. While all 882
subjects have an average head motion of 0.45mm mean
relative displacement, here we retain the 200 subjects
with the lowest relative head motion (below 0.22mm)
to replicate our findings. We find that these subjects
with lowest in-scanner head motion still display a positive

correlation between whole-brain average and modal con-
trollabilities (Pearson’s correlation coefficient r = 0.86,
df = 199, p < 1× 10−5), while synchronizability remains
negatively correlated with both mean average and modal
controllabilities (r = −0.84, df = 199, p < 1× 10−5 and
r = −0.84, df = 199, p < 1× 10−5 respectively).

We also find that these subjects display increasing con-
trollability with age, for both mean average controllabil-
ity (Pearson’s correlation coefficient r = 0.20, df = 199,
p = 5× 10−3) and mean modal controllability (r = 0.16,
df = 199, p = 4 × 10−2). Synchronizability decreases
with age: r = −0.27, df = 199, p = 1 × 10−4; and sex,
brain volume, handedness and head motion have been
controlled for. These results are consistent with our find-
ings in the main text, although the p-values are larger as
expected for this smaller sample size. There is a similar
emergence of ‘super-controllers’ where brain regions with
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Supplementary Figure 7: Varying modularity in a modular network and an empirical brain network. We 
examine the effect of changes in modularity in both a generated modular network (top) and the empirical brain network 

of a single subject (bottom). Using edge swaps, network modularity can be altered while controllability (left and 
middle) and synchronizability (right) are unconstrained. Starting from the same initial network (red dot), this 

randomization can be repeated, where we show two instances of increasing modularity (blue tones) and two instances of 
decreasing modularity (green tones) for each network. Different runs change controllability and synchronizability in 

inconsistent ways, which depend on the particular edges being changed, demonstrating that increasing modularity and 
decreasing modularity can both produce increasing and decreasing controllability and synchronizability. Furthermore, 
any global trends that may be present are very different between the modular small-world network and brain network, 

especially in the dependence of controllability on changes in modularity.

higher average and modal controllability, are also increas-
ing in their controllability with age more than regions
with low controllability. Regions that display increas-
ing average controllability with age are positively corre-
lated with their average controllability values: r = 0.60,
df = 233, p < 1 × 10−5, just as regions that display
increasing modal controllability with age are also posi-
tively correlated with their modal controllability values:
r = 0.38, df = 233, p < 1 × 10−5. Lastly, the stable
controllers in the subcortical region again show a nega-
tive correlation between the mean average controllability
in those regions, and the subject’s IQ (Spearman corre-
lation coefficient ρ = −0.19, df = 233, p = 8 × 10−3,
controlling for age, sex, brain volume, handedness and
head motion). Together, these findings match well with
the results we obtain in the main text, and rule out head
motion as a confounding factor for our conclusions.

Volume-normalized streamline connectivity

In the main text we use the raw number of streamline
counts between brain regions as a measure of connectiv-

ity in our networks. Aware that larger regions are likely
to have more streamlines that begin and end in them, we
normalize each streamline count by the the total volume
of the node pair [6]. This results in brain networks with
much smaller weights (average strength of 0.011) as com-
pared to the unnormalized networks (average strength of
19). When repeating our analysis on these normalized
networks, in order to obtain controllability metrics that
can be reasonably compared with those from the unnor-
malized networks, the internal normalization of 1+ξ0(A)
has to be modified accordingly (where ξ0(A) is the largest
singular value of the network adjacency matrix A; see
Methods). For consistency of analysis, we choose a new
normalization of f + ξ0(A), where f = 0.011/19 — the
ratio between the average strengths of the normalized to
unnormalized networks respectively.

Here we find that the 190 adults still display a positive
correlation between whole-brain average and modal con-
trollabilities (Pearson’s correlation coefficient r = 0.67,
df = 189, p < 1 × 10−5), and synchronizability is neg-
atively correlated with both mean average and modal
controllabilities (r = −0.49, df = 189, p < 1 × 10−5

and r = −0.62, df = 189, p < 1 × 10−5 respectively).
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In the entire youth sample from ages 8 to 22, we again
see that mean average controllability and mean modal
controllability are both positively correlated with age:
Pearson’s correlation coefficient r = 0.28, df = 881,
p < 1 × 10−5 and r = 0.24, df = 881, p < 1 × 10−5 re-
spectively. Synchronizability shows an extremely strong
negative correlation with age: Pearson’s correlation co-
efficient r = −0.49, df = 881, p < 1 × 10−5. These
results are controlled for sex, brain volume, handedness
and head motion, and replicate well our findings for the
unnormalized streamline connectivity.

On the regional level, we still see the presence of ‘super-
controllers’ where brain regions with higher average and
modal controllability are also increasing in their control-
lability with age more than the regions with low con-
trollability. Regions that display increasing average con-
trollability with age are positively correlated with their
average controllability values: r = 0.60, df = 233,
p < 1×10−5, just as regions that display increasing modal
controllability with age are also positively correlated with
their modal controllability values: r = 0.48, df = 233,
p < 1 × 10−5. Lastly, the stable controllers in the sub-
cortical region again show a negative correlation between
the mean average controllability in those regions, and
the subject’s cognitive performance (Spearman correla-
tion coefficient ρ = −0.067, df = 233, p = 5× 10−2, con-
trolling for age, sex, brain volume, handedness and head
motion). Together, these findings are consistent with the
results we obtain using unnormalized streamlines.

Different parcellation scale

The analysis in the main text relies on brain networks
that have been constructed on regions assigned from the
Lausanne atlas at the scale of 234 regions [7]. Here we re-
peat our analysis on networks constructed at a finer scale
of 463 brain regions in this atlas. As in the earlier sec-
tions, we find that the 190 adults still display a positive
correlation between whole-brain average and modal con-
trollabilities (Pearson’s correlation coefficient r = 0.85,
df = 189, p < 1 × 10−5), and synchronizability is neg-
atively correlated with both mean average and modal
controllabilities (r = −0.81, df = 189, p < 1× 10−5 and
r = −0.74, df = 189, p < 1 × 10−5 respectively). In the
entire youth sample from ages 8 to 22, we also see that
mean average controllability and mean modal controlla-
bility are both positively correlated with age: Pearson’s
correlation coefficient r = 0.28, df = 881, p < 1 × 10−5

and r = 0.19, df = 881, p < 1 × 10−5 respectively.
Synchronizability also decreases with age: r = −0.36,
df = 881, p < 1 × 10−5, where we control for sex, brain
volume, handedness and head motion. These results all
replicate our findings at the 234-region scale well.

On the regional level, there is again the presence of
‘super-controllers’ where brain regions with higher aver-

age and modal controllability are also increasing more
in their controllability with age. Regions that display
increasing average controllability with age are positively
correlated with their average controllability values: r =
0.35, df = 233, p < 1× 10−5, just as regions that display
increasing modal controllability with age are also posi-
tively correlated with their modal controllability values:
r = 0.27, df = 233, p < 1 × 10−5. In this parcella-
tion, the stable controllers in the subcortical region show
no significant correlation between the mean average con-
trollability in those regions and the subject’s cognitive
performance (Spearman correlation p = 0.71), after con-
trolling for age, sex, brain volume, handedness and head
motion, suggesting that the finer parcellation masks the
global drivers of individual differences in cognitive per-
formance.

Probabilistic tractography

We used a ball and two sticks multi-compartment fiber
model to fit the DTI data using the FSL bedpostx al-
gorithm [8], which utilizes Markov chain Monte Carlo
sampling to estimate uncertainty of fiber orientations
at each voxel. For probabilistic tractography, we gen-
erated subject-specific seed volumes at the intersection
of 234 dilated gray matter regions and the FreeSurfer
GM-WM boundary [9]. We ran FSL probtrackx [10],
initiating 1000 probabilistic samples in each GM-WM
boundary voxel identified in the 234 seed regions. Other-
wise, we used default tracking parameters (a step-length
of 0.5mm, 2000 steps maximum, curvature threshold of
0.02). We retained 878 subjects from the original sample,
which passed the quality control measures for probabilis-
tic tractography.

Networks were constructed where edge weights were
equal to the number of probabilistic streamlines connect-
ing each region pair [11]. As the resulting matrices have
many more weak connections, thresholding of the low-
est weights was done to obtain matrices of equivalent
density (17%) to the deterministically obtained matri-
ces. Normalization for each subject by their total net-
work strength was also performed, and for simplicity we
report the statistics for the whole youth sample. We find
that mean average controllability and mean modal con-
trollability remain positively correlated (Pearson’s cor-
relation coefficient r = 0.83, df = 877, p < 1 × 10−5),
and remain both negatively correlated with global syn-
chronizability (r = −0.90, df = 877, p < 1 × 10−5 and
r = −0.83, df = 877, p < 1 × 10−5, respectively). The
trends with age remain robust: mean average controlla-
bility increases with age (Pearson’s correlation coefficient
r = 0.33, df = 877, p < 1 × 10−5) as does mean modal
controllability (r = 0.25, df = 877, p < 1 × 10−5). Syn-
chronizability decreases with age: r = −0.32, df = 877,
p < 1 × 10−5, where we control for sex, brain volume,
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handedness and head motion.

The above results demonstrate consistency with find-
ings obtained from determinstic tractography. Still, it
will be important in future to determine a data-driven
method for which to threshold the probabilistic tractog-
raphy matrix, and better understand the role of these
weak connections in controllability and synchronizabil-
ity.
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