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I – OCT geometry and signal 17 

Consider a medium containing hard spheres of a single size, where the position of the i’th particle is given 18 
by 𝛿(𝒓 − 𝒓𝒊); measured from a given reference particle (see Figure SI-1 below). These spheres can touch, 19 
but not overlap in space. This medium is imaged using an OCT system with the reference arm length 20 
(‘zero delay’ matched to the position of a reference particle located at depth zb below the boundary. The 21 
scattered light is collected at the lens in the detection arm, with R the distance between reference particle 22 
and lens.  23 

 24 

 25 

Figure SI-1: OCT geometry. The optical path length in the reference arm is matched to 26 
the position of a reference particle in the sample (‘zero delay’). The sample consists of 27 
identical randomly placed spheres with position ri with respect to the reference particle. 28 
The distance R is between the reference particle and the detection lens in the sample arm.  29 

 30 

The (complex) scattered field from a volume containing N particles is given by 𝐸𝑠 = ∑ 𝐸𝑖
𝑁
𝑖=1 . For 31 

identical particles (equal size and refractive index), the scattering efficiency of the individual particles is 32 
the equal, but the amplitudes and phases of the scattered fields depend on the individual particle positions. 33 

The total field at the detector is given by 𝐸𝐷 = 𝐸𝑅 + ∑ 𝐸𝑖
𝑁
𝑖=1  were ER is the field scattered from the 34 

reference mirror (phase-matched to the reference particle).   35 

The real part of the (Time-Domain) OCT signal as function of depth x(z) is obtained from the detector 36 
current 37 

 𝑖𝐷𝐸𝑇(𝑧) ∝ 〈|𝐸𝐷|2〉 = 𝐼𝑆(𝑧) + 𝐼𝑅(𝑧) + 2〈𝐸𝑅 ∑ 𝐸𝑖
𝑁
𝑖=1 〉    (1a) 38 

𝑥(𝑧) ∝ 〈𝐸𝑅 ∑ 𝐸𝑖
𝑁
𝑖=1 〉     (1b) 39 

where the brackets denote averaging over the detector response time. IS and IR are intensities from sample 40 
and refernce arm, respectively. Removing these DC-terms yields x(z) as a cosine-modulated signal with 41 
zero-mean and non-zero variance that encodes the sample reflectivity. The imaginary part y(z) is sine-42 

modulated at the same frequency. In OCT, conventionally the amplitude 𝐴(𝑧) = √𝑥2(𝑧) + 𝑦2(𝑧) is 43 

plotted in a logarithmic grayscale image. Both mean and variance of A(z) are non-zero.  44 
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 45 

Figure SI-2: simulated OCT signal as function of depth of a sample containing many  46 
randomly placed reflectors. The red curve shows the real part x(z) of the complex OCT 47 
signal, cosine modulated with zero mean and non-zero variance. The imaginary part y(z) 48 
is not shown. The blue curve shows the amplitude A(z).  49 

Figure SI-2 shows simulations of x(z), red curve, and A(z), blue curve, from a sample containing many 50 
identical, randomly placed reflectors (N>10, see SI-IV). The number of reflectors is too high to resolve 51 
their individual positions: the information about particle density and scattering strength is encoded in the 52 
variance of x(z), and mean and variance of A(z). 53 

  54 
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II – Time Domain vs. Spectral domain OCT  55 

The analysis in SI-I assumed detection of the OCT signal in the spatial domain (e.g. “Time-domain 56 
OCT”) rather than in the spatial frequency domain (Spectral domain OCT). The analysis however, 57 
remains the same because the time-domain and spectral domain signal are reversibly connected through a 58 
Fourier transformation. To illustrate, Figure SI-3A shows a simulated ‘raw spectrum’ corresponding to a 59 
single reflector, i.e. a cosine modulated in source spectrum with the position of the reflector encoded in 60 
the modulation frequency (a real signal). The result of the Fourier transform of this raw spectrum is 61 
complex. Panel B shows the result if the real part of the complex FT is calculated the signal 62 
corresponding to the red curve is obtained; if the amplitude of the complex FT is calculated the envelope 63 
(blue curve) is obtained. Note that in practice, the square of the amplitude is often calculated directly from 64 
the Power Spectrum of the raw spectrum instead of via FT; and log(A

2
) is converted to a grayscale image.   65 

(A) (B) 

  

Figure SI-3: (A) Simulated raw spectrum in Spectral Domain OCT corresponding to a 66 
single reflector. (B) The Fourier transform of this spectrum yields a complex signal with 67 
real part x(z), red curve and amplitude A(z), blue curve.  68 

  69 
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III – OCT Speckle 70 

The (complex) scattered field from a volume containing N particles is written as 𝐸𝑠 = ∑ 𝐸𝑖
𝑁
𝑖=1 . Both the 71 

amplitude and phase of Ei can be considered as random variables with no dependency on each other. 72 
Therefore, the statistics of the scattered field and according to Supplementary Eq. 1B, x(z) follow that of a 73 
random phasor sum as is commonly found in speckle phenomena.

1
 Indeed, the random amplitudes and 74 

phases of the different scattering elements within a detection volume give rise to the static speckle pattern 75 
found in OCT images. For a large number of scatterers x(z) and y(z) follow a normal distribution (by the 76 

Central Limit theorem) with zero mean and non-zero variance. The amplitude 𝐴(𝑧) = √𝑥2(𝑧) + 𝑦2(𝑧) is 77 

Rayleigh distributed (Supplementary Eq. 2A) with mean A and variance A
2
 determined by the variance 78 

of the underlying real and imaginary components x
2 
=y

2 
=x,y

2 
(Supplementary Eq. 2B): 79 

𝑝(𝐴) =
𝐴

𝜎2 𝑒−𝐴2 𝜎𝐴
2⁄      (2A) 80 

〈𝐴〉 = √
𝜋

2
𝜎𝑥,𝑦

2 ;            𝜎𝐴
2 = (2 −

𝜋

2
) 𝜎𝑥,𝑦

2     (2B) 81 

This also yields the familiar result that contrast in OCT, when defined as the ratio of the standard 82 

deviation over the amplitude of the OCT signal is √4/𝜋 − 1 ≈ 0.52.
2,3

 83 

Note that when the OCT envelope is calculated as the power spectrum of a signal acquired in the spatial 84 
frequency domain, the distribution of this signal p(P) follows an exponential distribution, and the contrast 85 
is unity (see SI-II). 86 

87 
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IV – the real part of the OCT signal x(z) 88 

The information about particle density and particle scattering strength is encoded in the variance of x(z), 89 
see SI-I, and via Supplementary Eq. 2B also in the mean and variance of the OCT amplitude A(z). In 90 

order to express A and A
2
 in terms of sample scattering properties, we first derive an expression for x(z) 91 

that can be used to calculate x
2
 around the position of the reference particle: 92 

𝜎𝑥
2 ≡ 〈𝑥2(𝑧)〉 − 〈𝑥(𝑧)〉2 = 〈𝑥2(𝑧)〉     (3) 93 

The last equality holds because for discrete random media, the mean of x(z) is zero. We assume N 94 
identical particles in the probe volume, where the scattered field in the far field of the n’th particle can be 95 
written as

4
: 96 

𝐸𝑠,𝑛 = 𝐸𝑖𝑛
𝑓(𝜃,𝜑)

𝑘𝑅
𝑒𝑖𝜙𝑛       (4) 97 

Where Ein is the input field which we assume identical for each particle under the 1
st
 Born approximation; 98 

f() is the scattering amplitude of the particles (in general a complex number), n is the phase of the 99 

scattered field which depends on the position of the particle, k is the wavenumber k=2 where  is the 100 
wavelength; and R is the distance to point of evaluation. Since the distances between the particles is much 101 
smaller than the distance from the reference particle to the lens (See SI-I and Figure SI-1) we take 102 
identical R for all particles.  103 

In the following, we express the phase of the scattered field with respect to the reference particle. The 104 

phase difference between fields scattered from 2 arbitrary particles can be written as  = qr where q is 105 

the wavevector kout – kin, |q| = 2ksin½ with  the scattering angle (angle of observation); and r is the 106 

vector connecting both particles. Consequently, for the n’th particle we write n= qrn and the computed 107 
value of x is assigned to zb (the position of the reference particle). 108 

Since the reference particle is matched to the reference arm, qrn also equals the phase difference between 109 
the scattered field and the reference arm field. This allows us to express the relative contribution of the 110 

field scattered from n’th particle trough the complex coherence function (qrn). For an example of the 111 
real part of the complex coherence function see Figure SI-3B.     112 

Finally, the scattered field contribution needs to be evaluated over the solid angle corresponding to the 113 

detection numerical aperture NA(i.e. of the lens in the sample arm). Combining terms, we expand 114 
Supplementary Eq. 1b as: 115 

𝑥(𝑧𝑏) ∝ 𝑅𝑒 {∫ ∑ 𝛾(𝑞⃑ ∙ 𝑟𝑖⃑⃑ )𝑖 𝑒𝑖𝑞⃑ ∙𝑟 𝑖
𝑓(𝜃,𝜑)

𝑘𝑅Ω𝑁𝐴
𝑑Ω}    (5) 116 

Only particles within the coherence volume Vc contribute to the signal. The axial dimension of this 117 
cylindrical volume is in the order of the coherence length, the lateral radius in the order of the probe beam 118 
waist when evaluated at the focus position.  Sugita et al [Ref 15 of the manuscript] derived the following 119 
expression to which we adhere: 120 

𝑉𝐶 =
4𝜋𝜔0

2√2ln (2)𝐿𝐶 

6
      (6) 121 

Where LC is the coherence length and 0 the 1/e intensity waist of the illuminating beam. We use this to 122 
make a further simplification of Supplementary Eq. 5 by assuming that only particles within VC 123 
contribute with equal weight to the OCT signal. Therefore we can omit the complex coherence function if 124 
we sum only over these N particles: 125 
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𝑥(𝑧𝑏) ∝ 𝑅𝑒 {∫ ∑ 𝑒𝑖𝑞⃑ ∙𝑟 𝑖
𝑓(𝜃,𝜑)

𝑘𝑅
𝑁
𝑖=1Ω𝑁𝐴

𝑑Ω}     (7) 126 

where N = VC and  is the average particle density (constant for the homogeneous medium assumed 127 
here). 128 

 129 

  130 
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V – mean squared real OCT signal x
2
(z) 131 

Starting with Supplementary Eq. 7 for the real part of the OCT signal we write the mean square of the real 132 
OCT signal as: 133 

〈𝑥(𝑧𝑏)
2〉 ∝ 𝑅𝑒 {∫ 〈∑ ∑

𝑓2(𝜃,𝜑)

𝑘2𝑅2 𝑒𝑖𝑞⃑ ∙𝑟 𝑖𝑒−𝑖𝑞⃑ ∙𝑟 𝑗𝑁
𝑗=1

𝑁
𝑖=1 〉 𝑑Ω

Ω𝑁𝐴
}   (8) 134 

This equation can be further simplified by using the definition of the differential scattering cross section 135 

of the (identical) particles, 𝜎𝑠𝑐𝑎𝑡(𝜃, 𝜑) =  𝑓(𝜃, 𝜑)2/𝑘2 [Ref 22 of the manuscript] which can be taken out 136 
of the ensemble average. Further, the integration over solid angle can be written in spherical coordinates, 137 
yielding: 138 

〈𝑥(𝑧𝑏)
2〉 ∝ 𝑅𝑒 {∫ ∫ 𝜎𝑠𝑐𝑎𝑡(𝜃, 𝜑)〈∑ ∑ 𝑒𝑖𝑞⃑ ∙𝑟 𝑖𝑒−𝑖𝑞⃑ ∙𝑟 𝑗𝑁

𝑗=1
𝑁
𝑖=1 〉

𝜋

(𝜋−𝑁𝐴)
𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑

2𝜋

0
}  (9) 139 

For spherical particles as considered here, the differential scattering cross section does not depend on the 140 

azimuthal angle , and the integral over  simply yields a factor 2.  141 

The double sum within chevrons … accounts for all phase differences between the particles contributing 142 

to the signal and is known from statistical physics as the structure factor.
5
 More precisely: 143 

 𝑆(𝑞) =
1

𝑁
〈∑ ∑ 𝑒𝑖𝑞⃑ ∙𝑟 𝑖𝑒−𝑖𝑞⃑ ∙𝑟 𝑗𝑁

𝑗=1
𝑁
𝑖=1 〉    (10) 144 

Using N = VC from SI-IV where VC is the coherence volume and  is the average particle density and q 145 

is the scattering vector with magnitude 2ksin½ (see SI-IV). Consequently, the structure factor may be 146 

written as function of  for convenience. Thus, and since both the differential cross section and structure 147 
factor are real numbers: 148 

〈𝑥(𝑧𝑏)
2〉 = 𝜎𝑥

2(𝑧𝑏) ∝  𝜌𝑉𝐶 × 2𝜋∫ 𝜎𝑠𝑐𝑎𝑡(𝜃)𝑆(𝜃)
𝜋

(𝜋−𝑁𝐴)
𝑠𝑖𝑛𝜃𝑑𝜃  (11) 149 

The equality holds based on Supplementary Eq. 3.  150 

The structure factor quantifies the effect of organization of scatters in the sample on the scattering pattern 151 

(hence its name). For discrete random media, it is closely related to the pair-correlation g(r) function 152 
through a Fourier transform relationship: 153 

𝑆(𝑞) = 1 + 𝜌∫𝑔(∆𝑟)𝑒𝑖𝑞⃑ ∙∆𝑟 )𝑑∆𝑟     (12) 154 

Where the pair-correlation function is interpreted the distribution of particle separations r. Note that both 155 

the pair-correlation function and structure factor are functions of particle density . Supplementary Eq. 11 156 

demonstrates that the variance of the real OCT signal x
2 
and therefore by Supplementary Eq. 2B also the 157 

mean A and variance A
2 

of the OCT amplitude signal encode the scattering strength of the particles 158 
(differential cross section term) and the particle density and organization (structure factor term). 159 

 160 

  161 
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VI – interpretation as optical coefficient 162 

To facilitate interpretation of Supplementary Eq. 11, we first note the definitions
4
 of the (total) scattering 163 

cross section (units [m
2
]) of a single spherical particle (Supplementary Eq. 13) and scattering coefficient 164 

(units [m
-1

]) of a medium containing such particles (Supplementary Eq. 14): 165 

 𝜎𝑠𝑐𝑎𝑡 = 2𝜋 ∫ 𝜎𝑠𝑐𝑎𝑡(𝜃)
𝜋

0
𝑠𝑖𝑛𝜃𝑑𝜃     (13) 166 

𝜇𝑠 = 𝜌𝜎𝑠𝑐𝑎𝑡       (14) 167 

Comparing Supplementary Eqs 11 and 13, we find that the integral is weighted with the dimensionless 168 
structure factor to account for organization in the sample. Moreover, integral boundaries are limited to the 169 
detection NA, which leads to the following cross section and coefficient ‘in the backscatter direction, 170 
within the detection NA’: 171 

 𝜎𝑏,𝑁𝐴 = 2𝜋∫ 𝜎𝑠𝑐𝑎𝑡(𝜃)𝑆(𝜃)
𝜋

(𝜋−𝑁𝐴)
𝑠𝑖𝑛𝜃𝑑𝜃     (15) 172 

𝜇𝑏,𝑁𝐴 = 𝜌𝜎𝑏,𝑁𝐴      (16) 173 

 174 

Thus, at a given location in the sample, the variance of the real part of the OCT signal x
2
 and the 175 

variance of the envelope signal are proportional to b,NA ; the mean amplitude A is proportional to 176 

b,NA. 177 

 178 

  179 
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VI – OCT amplitude vs. depth.  180 

The numerical aperture in Supplementary Eq. 15 could theoretically be expanded to collect all scattered 181 
light. In that case, the expressions for the scattering cross section and scattering coefficient of the discrete 182 
random medium become: 183 

𝜎𝑠𝑐𝑎𝑡,𝑚𝑒𝑑𝑖𝑢𝑚 = 2𝜋 ∫ 𝜎𝑠𝑐𝑎𝑡,𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝜃)
𝜋

0
𝑆(𝜃)𝑠𝑖𝑛𝜃𝑑𝜃    (17) 184 

𝜇𝑠,𝑚𝑒𝑑𝑖𝑢𝑚 = 𝜌2𝜋 ∫ 𝜎𝑠𝑐𝑎𝑡,𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒(𝜃)
𝜋

0
𝑆(𝜃)𝑠𝑖𝑛𝜃𝑑𝜃    (18) 185 

With subscripts ‘medium’ and ‘particle’ added for emphasis but omitted henceforth.  186 

In SI-I to SI-V it was assumed that the reference arm is matched to a reference particle at arbitrary depth 187 
zb, and that under the 1

st
 Born approximation, all particles within the coherence volume VC around zb 188 

experience the same input field. The amplitude of this illuminating field however decreases in amplitude 189 
with increasing zb because of losses due to light scattering and absorption (the latter is neglected in the 190 
analysis in this SI). Likewise, part of the light scattered from VC is scattered on the way back to the 191 
sample boundary; it is assumed that this light escapes the detection NA and does not contribute. In other 192 
words, only single scattered light is considered, for which the attenuation of intensity can be described by 193 

the Lambert-Beer law, with the s of Supplementary Eq. 18 as exponential decay constant. Additional 194 
depth-dependent weighting terms exist, such as the confocal point spread function (the illuminating field 195 
will be weaker if the reference particle is chosen outside the focal region) and, specifically for Spectral 196 
Domain OCT, the sensitivity-rolloff in depth. For a thorough discussion of these factors we refer to our 197 
earlier work [

6
] and references therein.  198 

In a Time-Domain system, the moving reference arm would vary the probe depth zb and the coherence 199 
volume around it to build up an A-line. In this case, the subscript ‘b’ may be dropped and the OCT A-200 

line, defined as A(z) and variance A
2
(z) are written as: 201 

〈𝐴(𝑧)〉𝑇𝐷 = √𝛼𝑇𝐷(𝑧)
𝜋

2
𝜇𝑏,𝑁𝐴𝑉𝐶  𝑒𝑥𝑝(−2𝜇𝑠𝑧)   (19) 202 

𝜎𝐴
2(𝑧)𝑇𝐷 = 𝛼𝑇𝐷(𝑧) (2 −

𝜋

2
) 𝜇𝑏,𝑁𝐴𝑉𝐶  𝑒𝑥𝑝(−2𝜇𝑠𝑧)   (20) 203 

Were depth z is measured from the sample boundary. Here s is given by Supplementary Eq. 18, and bNA 204 
by the analysis SI-IV. The factor 2 in accounts for scattering losses to and from the coherence volume. 205 

The term TD(z) accounts for scaling factors such as power-to-current efficiency of the detector, but also 206 
depth dependent losses, most notably the confocal point spread function – either using a static focus or 207 

dynamic focusing. Importantly, TD(z) only contains parameters related to the OCT system (not the 208 

sample) and can thus in principle be calibrated to allow for absolute measurements of bNA.  209 

In a Spectral-Domain system the zero-delay position is usually not located within the sample but at some 210 
position outside. This does not change our analysis since it will only lead to a fixed phase difference 211 
between zero delay and the reference particle. Particles will contribute to the signal as long as the distance 212 
between zero-delay and the reference particle is within the instantaneous coherence length of the system, 213 
which is determined by the spectral resolution. We therefore only slightly modify Supplementary Eqs. 19 214 
and 20: 215 

〈𝐴(𝑧)〉𝑆𝐷 = √𝛼𝑆𝐷(𝑧)
𝜋

2
𝜇𝑏,𝑁𝐴𝑉𝐶  𝑒𝑥𝑝(−2𝜇𝑠(𝑧 − 𝑧0))   (21) 216 
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𝜎𝐴
2(𝑧)𝑆𝐷 = 𝛼𝑆𝐷(𝑧) (2 −

𝜋

2
) 𝜇𝑏,𝑁𝐴𝑉𝐶  𝑒𝑥𝑝(−2𝜇𝑠(𝑧 − 𝑧0))   (22) 217 

Were depth z is measured from zero-delay; and z0 is the distance between zero-delay and the sample 218 

boundary. The term SD(z) accounts for scaling factors such as power-to-current efficiency of the 219 
detector, but also depth dependent losses, most notably the confocal point spread function and sensitivity 220 

roll-off with depth inherent to SD-OCT systems. Again, SD(z) only contains parameters related to the 221 
OCT system (not the sample) and can thus in principle be calibrated to allow for absolute measurements 222 

of bNA.  223 

 224 

  225 
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VII – scaling of optical properties with volume fraction 226 

Figure SI-4 shows the volume fraction-dependent (Eq. 9 and Eq. 10) and volume fraction-independent 227 

calculations for µB,NA,µs, µB,NA/µs, anisotropy as a function of optical size (D∙k). For the latter calculations 228 

the structure factor is set to unity. Thus, the fv-independent µB,NA/µs and anisotropy curves do not change 229 

with volume fraction. For the fv -dependent calculation all shown plots change with volume fraction since 230 

the structure factor, which serves as a weighting factor on the angular scattering pattern (phase function) 231 

is a function of fv. (see also SI-VIII).  232 

 233 

Figure SI-4: Calculated backscattering coefficient (µB,NA) (and scattering coefficient (µs), 234 

µB,NA/µs and anisotropy as a function of optical particle diameter (D. k0, k0=2/λ0,vaccuum) 235 
for volume fractions of 0.01, 0.1, 0.2 and 0.3 for a center wavelength λ0 = 1300  and 236 
bandwidth of ∆λ = 100 nm. The solid lines are depict the concentration-dependent 237 
calculation using Eq.11 and Eq. 12. The dotted lines show the concentration-independent 238 

calculations, these are the MIE solutions. For these calculations the structure factor S(𝜃) 239 
in Eq. 11 and 12 is set to unity.   240 
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VIII – phase function change with concentration/volume fraction 241 

Our analysis accounts for the phase differences between the fields scattered by the individual particles in 242 
the sample. This analysis gives rise to a structure factor (see SI-V and Supplementary Eq. 10) that 243 
directly influences the angular light scattering (compare Supplementary Eqs. 13 and 15). 244 

Applied to the low-NA backscattering geometry as described in our experiments (NA=0.02; θNA ~ 1), for 245 
increasing volume fraction the NA-integrated part of the backscattered intensity increases approximately 246 
linearly with volume fraction, whereas the total scattered fraction  decreases with volume fraction [

6
].  247 

The effect of the structure factor on angular scattering is illustrated below (D=0.91 μm; λ0= 1300 nm; npart 248 
= 1.425; nmed = 1.324). We calculate the phase function, which by definition is normalized on the full 249 
solid angle. Blue curves show the phase function without inclusion of a structure factor calculated as:  250 

𝑝𝑀𝑖𝑒(𝜃) =
𝜎𝑠(𝜃)

2𝜋∫ 𝜎𝑠(𝜃)𝑠𝑖𝑛𝜃𝑑𝜃
𝜋

0

      (23) 251 

Where s() is the differential scattering cross section for a single particle obtained with Mie theory. Red 252 
curves show the phase function when the structure factor is included: 253 

𝑝𝑀𝑖𝑒−𝑃𝑌(𝜃) =
𝜎𝑠(𝜃)𝑆(𝜃)

2𝜋∫ 𝜎𝑠(𝜃)(𝜃)𝑠𝑖𝑛𝜃𝑑𝜃
𝜋

0

     (24) 254 

Where S() is the Percus-Yevick structure factor appropriate for Discrete Random Media.
5,7

 All blue 255 
curves are identical. For the red curves (including the structure factor), with increasing volume fraction 256 
the amplitude of the phase function in the forward direction decreases, the amplitude in the backward 257 
direction increases, and the overall shape of the phase function becomes broader. This corresponds to a 258 
decrease of scattering anisotropy g (the average cosine of the scattering angle) as is also observed in SI- 259 
VII, Figure SI-4.  260 

fv = 0.01 fv = 0.1 

 
 

 

 

 

fv = 0.2 fv = 0.3 
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 261 

Figure SI-5: The phase function [
4
] (scattered intensity normalized on solid angle) is 262 

calculated for volume fractions of 0.01, 0.1, 0.2 and 0.3. using Mie theory (D=0.91 μm; 263 
λ0= 1300 nm; npart = 1.425; nmed = 1.324) without (blue curves) and including the 264 
structure factor (red curves) as calculated from the Percus Yevick approximation. Note 265 
that our experiments did not exceed volume fractions of 0.06. 266 

 267 

 268 

 269 

 270 

 271 

  272 
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IX – region of interest selection for speckle distribution analysis 273 

 274 

Figure SI 6: Region of interest selection for amplitude distribution analysis. Left panel shows an OCT B-275 
scan of a sample. The area between the four red lines is the region of interest from which the distribution 276 
of the amplitude, and the mean, variance and contrast are obtained. The right panel shows the histogram 277 
of the amplitude distribution from the region of interest plotted in the left panel. The amplitude 278 
distribution is fitted with a Rayleigh distribution (Eq. 3 of the manuscript), for which the values for the R

2
 279 

and variance (𝜎2
) are given.   280 

  281 
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