

Supplementary Figure 1. Related to Figure 2

- **a** Steady-state protein levels in wild type and mutant mitochondria were analyzed by SDS-PAGE and Western blotting with indicated antibodies.
- **b** Serial dilution of wild type and mutant yeast cells was spotted on YPD or YPG plates. The plates were grown at 37°C for 2-5 days.

Supplementary Figure 2. Related to Figure 3

1 2 3 4 5 6 7 8

- **a** Wild type, $ina22\Delta$ and $ina17\Delta$ mitochondria were solubilized and protein complexes were co-immunoprecipitated with anti-Ina22 and anti-Ina17 antibodies. Input and elution fractions were analyzed by SDS-PAGE and Western blotting with indicated antibodies. Input = 1% of elution. f1, f2 Ina22 fragments.
- **b** $ina22\Delta$, wild type and $Ina22^{HA}$ mitochondria were subjected to co-immunoprecipitation with anti-Ina22 antibodies. Input and elution fractions were analyzed by SDS-PAGE and Western blotting with either anti-HA or anti-Ina22 antibodies. Input = 1% of elution. f1, f2 Ina22 fragments.
- **c** Ina22 was immunoprecipitated from wild type and *ina22Δ* mitochondria with anti-Ina22 antibodies and the molecular weight of its fragments was assessed by comparing their electrophoretic mobility (lanes 1-4) to the mobility of in vitro generated radio-labeled Ina22 fragments (lanes 5-13). Samples were analyzed by SDS-PAGE, digital autoradiography (AR) and Western blotting (WB).
- **d** Mitochondrial proteins in wild type and mutant mitochondria were analyzed by SDS-PAGE and Western blotting with the indicated antibodies. The asterisk (*) indicates a cross-reacting band. f1, f2 Ina22 fragments.
- **e** Serial dilutions of yeast cells were spotted on YPD or YPG plates. The plates were grown at the indicated temperatures for 2-5 days.

Supplementary Figure 3. Related to Figure 4

a Wild type, $Atp10^{ProtA}$ and $Atp10^{ProtA}$ ina22 Δ mitochondria were solubilized and subjected to IgG affinity chromatography. Purified complexes were eluted via TEV-protease cleavage and analyzed by BN-PAGE and Western blotting with indicated antibodies. $A\beta$ – dimer containing Atp1 and Atp2. **b** Wild type and $Atp23^{HA}$ mitochondria were subjected to in organello labeling for 20 minutes and immunoprecipitation with control or anti-Atp23 antibodies. Input and elution fractions were analyzed by Urea SDS-PAGE, Western blotting (WB) and autoradiography. Input = 2% of elution

Supplementary Figure 4. Related to Figure 6

The INA complex associates with cytochrome b biogenesis factors

- **a** Protein complexes were isolated via IgG affinity chromatography from Cbp3^{ProtA}, Cbp4^{ProtA}, Cbp6^{ProtA} and control wild type mitochondria and analyzed by SDS-PAGE and Western blotting with indicated antibodies. Input = 1% of elution.
- **b** Mitochondrial-encoded proteins were radiolabeled in organello and protein complexes were isolated from Cbp3^{ProtA} and wild type mitochondria via IgG affinity chromatography and TEV-cleavage. Input and elution fractions were analyzed by SDS-PAGE, Western blotting (WB) with anti-Cbp3 antibodies, or autoradiography. Input = 1% of elution.
- **c** Part of the elution fractions of the experiment presented in Supplementary Figure 4b was analyzed by BN-PAGE, followed by either Western blotting (WB) with anti-Cbp3 antibodies (right panel) or autoradiography (left panel).
- **d** Part of the Cbp3^{ProtA} elution of the experiment presented in Supplementary Figure 4b was analyzed by BN-PAGE, followed by second dimension SDS-PAGE, autoradiography (upper panel) or Western blotting with the indicated antibodies.
- e cbp3Δ, cbp4Δ, cbp6Δ and control wild type mitochondria were solubilized and analyzed by BN-PAGE followed by either gel

Supplementary Figure 5. Related to Figure 6

Chloramphenicol-pretreated wild type and Ina22^{FLAG} mitochondria were subjected to in organello labeling for 20 min, anti-FLAG affinity chromatography and further analysis as described in Figure 6a. Input = 1% of elution.

Supplementary Figure 6.

Figure 2a

Figure 2b

Figure 2d

Figure 3a

Supplementary Figure 7.

Figure 3b

Figure 3e

Supplementary Figure 8.

Figure 3f

Figure 4a

Figure 3g

Figure 4a

Supplementary Figure 9.

Figure 4c

EA BAB Ap4 Eletions M426 SDS- PAGE

Figure 4e

Supplementary Figure 10.

Figure 4f

Figure 5a

Supplementary Figure 11.

Figure 5b

Figure 6a

Figure 5c

Figure 5g

Supplementary Figure 12.

Figure 6c

Supplementary Figure 2a

Supplementary Figure 1a

Original scans of key Western blots and gels presented in the paper

Supplementary Figure 2c

Supplementary Figure 2d

Supplementary Figure 14.

Supplementary Figure 15.

Supplementary Figure 4b

Supplementary Figure 4c

Supplementary Figure 4d

SUPPLEMENTARY INFORMATION

Supplementary Table 1

Yeast strains used is this study.

Strain	Genotype	Source or author
		reference
BY4741	MATa, his3Δ1, leu2Δ, met15Δ0, ura3Δ0	32
ina22∆	MATa, $his3Δ1$, $leu2Δ$, $met15Δ0$, $ura3Δ0$, $INA22::kanMX4$	Euroscarf
ina17∆	MATa, his3Δ1, leu2Δ, met15Δ0, ura3Δ0, INA17::kanMX4	Euroscarf
Ina22 ¹⁻¹⁸⁸ (NNY42)	MATa, his3 Δ 1, leu2 Δ , met15 Δ 0, ura3 Δ 0, INA22 ¹⁸⁹⁻²¹⁶ ::HIS3MX6	This study
Ina22 ¹⁻¹⁶⁸ (NNY40)	MATa, his3 Δ 1, leu2 Δ , met15 Δ 0, ura3 Δ 0, INA22 ¹⁶⁹⁻²¹⁶ ::HIS3MX6	This study
Atp23↑ (NNY106)	MATa, his3Δ1, leu2Δ, met15Δ0, ura3Δ0, GPD:Atp23	This study
<i>ina22∆</i> Atp23↑ (NNY108)	MATa, his3 Δ 1, leu2 Δ , met15 Δ 0, ura3 Δ 0, INA22::kanMX4, GPD:Atp23	This study
Ina22 ^{FLAG}	MATa, $his3Δ1$, $leu2Δ$, $met15Δ0$, $ura3Δ0$, $ina22::INA22$ ^{FLAG} -	This study
(NNY136)	URA3	
Ina22 ^{HA} (OLY03)	MATa, his3 Δ 1, leu2 Δ , met15 Δ 0, ura3 Δ 0, ina22::INA22 ^{HA} -HIS3MX6	24
Atp23 ^{HA} (NNY52)	MATa, his3 Δ 1, leu2 Δ , met15 Δ 0, ura3 Δ 0, atp23::ATP23 ^{HA} -HIS3MX6	This study
Atp10 ^{ProtA}	MATa, his3 Δ 1, leu2 Δ , met15 Δ 0, ura3 Δ 0, atp10::ATP10-	This study
(NNY112)	TEV-ProtA-7His-HIS3MX6	
Atp10 ^{ProtA} ina22∆	MATa, his3Δ1, leu2Δ, met15Δ0, ura3Δ0, INA22::kan $MX4$,	This study
(NNY113)	atp10::ATP10-TEV-ProtA-7His-HIS3MX6	
Cbp3 ^{ProtA} (NNY23)	MATa, his3 Δ 1, leu2 Δ , met15 Δ 0, ura3 Δ 0, cbp3::CBP3-TEV- ProtA-7His-HIS3MX6	This study
Cbp4 ^{ProtA} (NNY24)	MATa, his3 Δ 1, leu2 Δ , met15 Δ 0, ura3 Δ 0, cbp4::CBP4-TEV-ProtA-7His-HIS3MX6	This study
Cbp6 ^{ProtA} (NNY25)	MATa, his $3\Delta1$, leu 2Δ , met $15\Delta0$, ura $3\Delta0$, cbp 6 ::CBP 6 -TEV-ProtA-7His-HIS $3MX6$	This study
cbp3Δ (NNY26)	MATα, his3Δ1, leu2Δ, met15Δ0, ura3Δ0, CBP3::HIS3MX6	This study
cbp4Δ (NNY27)	MATα, $his3Δ1$, $leu2Δ$, $met15Δ0$, $ura3Δ0$, $CBP4::HIS3MX6$	This study
<i>cbp6∆</i> (NNY28)	MATα, his3Δ1, leu2Δ, met15Δ0, ura3Δ0, CBP6::HIS3MX6	This study

Supplementary Table 2

Oligonucleotides used is this study

Oligo	Sequence	Purpose
NN034	GGATTTAGGTGACACTATAGAATACATGGTTG	Forward primer for
1111001	CATCAGCAAATGCGGG	synthesis of radiolabeled
	5/11 6/10 6/10 11 11 COOCC	truncated Ina22 (devoid of
		a presequence)
NN035	GAGCCTACTACATCATCATTAGAAATTTTGGG	Synthesis of radiolabeled
1111000	6,10001,101,10,110,110,111,110,101,111,11000	Ina22 ²⁷⁻²¹⁶ protein
NN036	CTACTACATCATCATGGCGATTTCATTCAAATC	Synthesis of radiolabeled
1414000	ACC	Ina22 ²⁷⁻²⁰⁶ protein
NN037	CTACTACATCATCATCATCATATGGACAT	Synthesis of radiolabeled
1414007	OTACTACATCATCATCATATCCACAT	Ina22 ²⁷⁻¹⁹⁶ protein
NN038	CTACTACATCATCATAACCTTTTCATCTTCTTT	Synthesis of radiolabeled
1414000	TTTC	Ina22 ²⁷⁻¹⁸⁶ protein
NN039	CTACTACATCATCATTAAATCTTTTAGAACATT	Synthesis of radiolabeled
1414033	C	Ina22 ²⁷⁻¹⁷⁶ protein
NN040	CTACTACATCATCATAATCCCTTCTTTGTTCTT	Synthesis of radiolabeled
1414040	AACGC	Ina22 ²⁷⁻¹⁶⁶ protein
NN041	CTACTACATCATCATTGGAGTTTTTTCGATTAC	Synthesis of radiolabeled
ININU4 I	TTC	Ina22 ²⁷⁻¹⁵⁶ protein
NN042	CTACTACATCATCATCTCGTCTATTATACTTTG	Synthesis of radiolabeled
ININU42	CC	Ina22 ²⁷⁻¹⁴⁶ protein
NN043	CTACTACATCATCATCAATGACTCTTCCTTAGG	Synthesis of radiolabeled
1111043	AACC	Ina22 ²⁷⁻¹³⁶ protein
S1 Ina22	CAACAAGGAAAGACAAGTCATACGTAAAAGGT	
SI_IIIaZZ		Forward primer for <i>INA22</i> deletion
CO 1500	GTAAGGAAAAATGCGTACGCTGCAGGTCGAC	
S2_Ina22	GCGTTATATTTACATGTGGTATATCCGGATGC	Reverse primer for INA22
CO 1500	ATAGAGCCTACTAATCGATGAATTCGAGCTCG	deletion/HA-tagging
S3_Ina22	TTGAATGAAATTGCCCAAAGAACATGATAAAAT	C-terminal HA-tagging of
NINIOZO	CCCAAAATTCTACGTACGCTGCAGGTCGAC	Ina22 Generation of Ina22 ¹⁻¹⁶⁸
NN079	GAAAAACTCCAGATGCTGGCGTTAAGAACAA	
	AGAAGGATTGTCACTTAGCGTACGCTGCAG	strain
NINIOOA	GTCGAC	Generation of Ina22 ¹⁻¹⁸⁸
NN081	GTTCTAAAAGATTTAGAAAAGTCGAAAAAAGA	
	AGATGAAAAGGTTTACCTATAGCGTACGCTGC AGGTCGAC	strain
NN181	GCTTGCGTTATATTTACATGTGGTATAT-	C terminal FLAC tegging
ININ IOI		C-terminal FLAG-tagging
	CCGGATGCATAGAGCCTAATCGATGAATTCGA GCTCG	of Ina22
NN182	GATAAAATCCCAAAATTTCTAGACTACAAAGA	C-terminal FLAG-tagging
ININ 102	CGATGACGACAAGTTTCTAGACTACAAAGA	of Ina22
	GAC	or mazz
NN090	GGAAAGCTGATAGTACCGAATTTTTTTTTTTT	Generation of ATP23
ININU9U		
NN093	TGGCACGATATGCGTACGCTGCAGGTCGAC GCATGGTCCGTCTCCACCACTCAAACCCAGC	overexpression strain Generation of <i>ATP23</i>
เทเทบลว	ATTATCCCACTGCTATTCATCGATGAATTCTC	
	TGTCG	overexpression strain
NN091	GCGTCTATATATTTTCTATTATAGAATATTGTC	C-terminal tagging of
ININUSI	ATTTATTACATTGGTTCAATCGATGAATTCGAG	C-terminal tagging of Atp23
	CTCG	Λίμζο
NN092	GGGACAGTTGCTTCGCCGATACGAGACCGTT	C-terminal tagging of
ININUSZ	TGATGAGATTTACAGACGTACGAGACCGTT	C-terminal tagging of Atp23
	GAC	Λίμζο
NN150	GCCAAATAGCCGCCCATCCCTTGTTGGCCGC	C-terminal ProtA-tagging
UCI VIVI	CGCACAAAGCGTCAACTTCAATCGATGAATTC	of Atp10
	UGUAUAAAUUUTUAAUTUAATUUATUAATIU	οι Αιμτο

	GAGCTCG	
NN151	GGCTACTCCATCTGAAAAGGAAGCATTGTGGA	C-terminal ProtA-tagging
	AGTTTGCCAAACGTCTGCGTACGCTGCAGGT	of Atp10
	CGAC	
NN185	GGATTTAGGTGACACTATAGAATACATGCAGG	Synthesis of radiolabeled
	GCACTTTTAAAAGGTTTTACCATCCC	Atp10
NN186	TTACATCATCAGACGTTTGGCAAACTTCC	Synthesis of radiolabeled
	ACAATGCTTCCTTTTC	Atp10
NN222	GATCTCCGTAACAATCTCTTCAGCTATTCCAA	Deletion of CBP3 gene
	CACTTGATGCGTACGCTGCAGGTCGAC	
NN223	CTAAACGAGCTAGTTTGTAACTTCAAAACTTAT	Deletion/C-terminal
	GAAAACACATCGATGAATTCGAGCTCG	tagging of CBP3
NN224	CCTAAAACCTTACCAAGCGAGAGAAGTAGGCT	C-terminal tagging of
	GTCATATACAAACCGTACGCTGCAGGTCGAC	Cbp3
NN225	GCTCATCCCCGGGGTATTTTATCAAGATAAA	Deletion of CBP4 gene
	ATTTTATATACATGCGTACGCTGCAGGTCGAC	
NN226	GCAAAAGTTCAAGCTGCCCTTCCTAATTGAGT	Deletion/C-terminal
	GACCCGACCCATCTAATCGATGAATTCGAGCT	tagging of CBP4
	CG	
NN227	GGAAATAGTCCAGGATAAGCAGGTTAAAAGCT	C-terminal tagging of
	GGTGGCGCTTCTGGCGTACGCTGCAGGTCGA	Cbp4
	C	
NN228	CAGCTTACCAAGTTAAACTCCGTATTCCACAA	Deletion of CBP6 gene
	GCAAGTGCCAAAATGCGTACGCTGCAGGTCG	
	AC	
NN229	GAATAAATATGTATTTACAAGCTTAGAAAATAA	Deletion/C-terminal
	TGTGCTCTTTA ATCGATGAATTCGAGCTCG	tagging of CBP6
NN230	GAAAAAGGAAAGCTTATTTACTGCAATGAGAA	C-terminal tagging of
	CTGTATTATTTGGTAAACGTACGCTGCAGGTC	Cbp6
	GAC	