Sporadic Hirschsprung Disease: Mutational Spectrum and Novel Candidate Genes Revealed by Next-generation Sequencing

Zhen Zhang¹, Qi Li¹, Mei Diao¹, Na Liu², Wei Cheng³, Ping Xiao⁴, Jizhen Zou⁴, Lin Su⁵, Kaihui Yu⁶, Jian Wu², Long Li¹, Qian Jiang^{7*}

¹Department of General Surgery, Capital Institute of Pediatrics, Beijing, China ²MyGenostics Inc. Beijing, China

³Department of Surgery, Beijing United Family Hospital, Beijing, China; Department of Paediatrics and Surgery, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia

⁴Department of Pathology, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China

⁵*Reproductive Medicine Center, Clinical College of PLA Affiliated Anhui Medical University, Hefei, China*

⁶Department of Pathophysiology, School of Preclinical Sciences, Guangxi Medical University, Nanning, China

⁷Department of Medical Genetics, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China

Supplementary Materials

Supplementary Table Legends:

Table S1: List of the 172 selected genes in targeted next-generation sequencing among Chinese

 HSCR patients.

Table S2: Quality of the targeted next-generation sequencing data.

Table S3: Comparison of the frequency, type and novelty of likely gene-disrupting variants in 13
 genes in the HSCR cases and controls.

Table S4: Results of sequence kernel association test on LGD_{broad} variants implicating genes witha FDR <0.05.</td>

Supplementary Figure Legends:

Fig. S1 Variant composition and distribution across 8 categories (frameshift, in-frame, intronic, non-synonymous, splicing, stop-gain, synonymous, and UTR) before (A) and after (B) the two-step variant filtering process.

Fig. S2 IGV screen-shot of the targeted next-generation sequencing of *FARP1* (A) and the Sanger-sequence chromatogram (B) of HSCR0048.

Fig. S3 Sample and LGD_{broad} variant spectrum. x axis, 83 sample IDs; y axis, gene symbols for LGD_{broad} variants. LGD_{broad} variants are composed of: frameshift indels (red), in-frame indels (blue), non-synonymous variants predicted to be damaging by at least three bioinformatics tools (green), splice region (\pm 5) variants (purple), and stop-gain variants (orange).

Fig. S4 Expression and spatial distribution of 12 proteins in normal human colon tissue. Images were downloaded from The Human Protein Atlas database (<u>http://www.proteinatlas.org/</u>).

No.	Official symbol	Chromosome location	Entrez gene ID	Protein size (No. of amino-acids)	Selection criteria	References
1	RET	10q11.21	5979	1114		
2	EDNRB	13q22.3	1910	442		
3	SEMA3D	7q21.11	223117	777		
4	SEMA3C	7q21.11	10512	751		
5	NRG1	8p12	3084	640		
6	PHOX2B	4p13	8929	314		
7	SOX10	22q13.1	6663	466	Known HSCR	
8	ECE1	1p36.12	1889	770	genes (evidence	1-5
9	EDN3	20q13.32	1908	238	from human study)	
10	GDNF	5p13.2	2668	211		
11	KIF1BP (KIAA1279)	10q22.1	26128	621		
12	LICAM	Xq28	3897	1257		
13	NRTN	19p13.3	4902	197		
14	TCF4	18q21.2	6925	667		
15	ZEB2	2q22.3	9839	1214		
16	NAV2	11p15.1	89797	2488		
17	WWOX	16q23.1	51741	414		
18	KIAA0368	9q31.3	23392	1845		
19	PLEKHA1	10q26.13	59338	404	Known HSCR	
20	MAPK10	4q21.3	5602	464	candidate genes	
21	LARGE 1 (LARGE)	22q12.3	9215	756	(evidence from	6-8
22	SYN3	22q12.3	8224	580	CNV or gene	
23	GRIN2B	12p13.1	2904	1484	expression study)	
24	LRRTM4	2p12	80059	590		
25	SOX2	3q26.33	6657	317		
26	NCRNA00158 (LINC00158)	21q21.3	54072	81		

Supp. Table S1. List of the 172 selected genes in targeted next-generation sequencing among Chinese HSCR patients

27	DLX2	2q31.1	1746	328		
28	GFRA1	10q25.3	2674	465		
29	ARAF	Xp11.23	369	606	Known HSCR	
30	GRB10	7p12.1	2887	594	candidate genes	0.12
31	HOXA2	7p15.2	3199	376	(evidence from	9-13
32	PHACTR4	1p35.3	65979	702	mouse study)	
33	TLX2	2p13.1	3196	284		
34	ZIC2	13q32.3	7546	532		
35	GPR98 (ADGRV1)	5q14.3	84059	6306		
36	UBR4	1p36.13	23352	5183		
37	FAT1	4q35.2	2195	4588		
38	SACS	13q12.12	26278	4579		
39	DST	6p12.1	667	7570		
40	POLE	12q24.33	5426	2286		
41	IFIH1	2q24.2	64135	1025		
42	ODZ3 (TENM3)	4q35.1	55714	2699		
43	BIRC6	2p22.3	57448	4857	Now USCD	
44	ZFHX3	16q22.3	463	3703	andidate ganas	
45	AGL	1p21.2	178	1532	calificate genes	
46	COL11A1	1p21.1	1301	1806	WES study &ENS	
47	MICAL2	11p15.3	9645	1124	overassion)	
48	ATM	11q22.3	472	3056	expression)	
49	TBC1D9B	5q35.3	23061	1250		
50	LAMA1	18p11.3	284217	3075		
51	APC	5q22.2	324	2843		
52	ANK3	10q21.2	288	4377		
53	SORL1	11q24.1	6653	2214		
54	PTPN13	4q21.3	5783	2485		
55	SPTAN1	9q34.11	6709	2472		
56	TULP4	6q25.3	56995	1543		

57	KANK1	9p24.3	23189	1352
58	NID2	14q22.1	22795	1375
59	TRRAP	7q22.1	8295	3859
60	DMD	Xp21.2	1756	3685
61	DMXL2	15q21.2	23312	3036
62	MPDZ	9p23	8777	2070
63	AGRN	1p36.33	375790	2067
64	CFTR	7q31.2	1080	1480
65	MDN1	6q15	23195	5596
66	KALRN	3q21.2	8997	2985
67	HERC1	15q22.31	8925	4861
68	FLNB	3p14.3	2317	2602
69	ACSS2	20q11.22	55902	701
70	BAZ2B	2q24.2	29994	2168
71	BCM01	16q23.2	53630	547
72	CHD1	5q15	1105	1710
73	COL14A1	8q24.12	7373	1796
74	DSP	6p24.3	1832	2871
75	EML4	2p21	27436	981
76	FRMD4B	3p14.1	23150	1034
77	LRP6	12p13.2	4040	1613
78	MAGI3	1p13.2	260425	1506
79	PLEKHH1	14q24.1	57475	1364
80	RANBP17	5q35.1	64901	1088
81	TSR1	17p13.3	55720	804
82	ARVCF	22q11.21	421	962
83	SULF1	8q13.3	23213	871
84	NUP155	5p13.2	9631	1391
85	ADAMTS15	11q24.3	170689	950
86	KIAA1109	4q27	84162	5005

87	TRAP1	16p13.3	10131	704
88	FBN2	5q23.3	2201	2912
89	UTP20	12q23.2	27340	2785
90	VPS13C	15q22.2	54832	3753
91	MYOF	10q23.33	26509	2061
92	MACF1	1p34.3	23499	7388
93	AARS	16q22.1	16	968
94	AP3B2	15q25.2	8120	1082
95	APPL2	12q23.3	55198	664
96	ASTN1	1q25.2	460	1302
97	ATG2B	14q32.2	55102	2078
98	COL6A2	21q22.3	1292	1019
99	CPNE1	20q11.22	8904	537
100	CREBBP	16p13.3	1387	2442
101	ENO3	17p13.2	2027	434
102	EPB41L3	18p11.31	23136	1087
103	EPHA7	6q16.1	2045	998
104	ERCC3	2q14.3	2071	782
105	GSN	9q33.2	2934	782
106	PATJ (INADL)	1p31.3	10207	1801
107	MMP1	11q22.2	4312	469
108	МҮН9	22q12.3	4627	1960
109	NEDD9	6p24.2	4739	834
110	NUP188	9q34.11	23511	1749
111	PKD2	4q22.1	5311	968
112	RERE	1p36.23	473	1566
113	SH3PXD2A	10q24.33	9644	1133
114	SRRM1	1p36.11	10250	904
115	TANC1	2q24.2	85461	1861
116	TPR	1q31.1	7175	2363

117	TRIO	5p15.2	7204	3097		
118	VPS16	20p13	64601	839		
119	XYLT1	16p12.3	64131	959		
120	CAMTA1	1p36.31	23261	1673		
121	COL6A3	2q37.3	1293	3177		
122	FARP1	13q32.2	10160	1045		
123	COLEC12	18p11.32	81035	742		
124	HECTD1	14q12	25831	2610		
125	FRYL	4p11	285527	3013		
126	CAPN2	1q41	824	700		
127	PTCH1	9q22.32	5727	1447		
128	DYNC1H1	14q32.31	1778	4646		
129	PYGB	20p11.21	5834	843		
130	IQGAP2	5q13.3	10788	1575		
131	LRIG1	3p14.1	26018	1093		
132	KIAA1217	10p12.2	56243	1943		
133	EHBP1	2p15	23301	1231		
134	USP45	6q16.2	85015	814		
135	ERCC4	16p13.12	2072	916		
136	SVIL	10p11.23	6840	2214		
137	CELSR3	3p21.31	1951	3312		
138	PYGL	14q22.1	5836	847		
139	MYOM1	18p11.31	8736	1685		
140	EXO1	1q43	9156	846		
141	РНКВ	16q12.1	5257	1093		
142	UGGT2	13q32.1	55757	1516		
143	PAX3	2q35	5077	479	New HSCR	
144	FZD3	8p21	7976	666	candidate genes	14.17
145	VANGL1	1p13.1	81839	524	(evidence from the	14-1/
146	VANGL2	1q22-q23	57216	521	ENS development)	

147	PRICKLE1	12q12	144165	831		
148	PRICKLE2	3p14.1	166336	844		
149	DVL1	1p36	1855	695		
150	DVL2	17p13.1	1856	736		
151	SHH	7q36	6469	462		
152	DLL3	19q13	10683	618		
153	GLI1	12q13.2-q13.3	2735	1106		
154	NOTCH1	9q34.3	4851	2555		
155	NOTCH2	1p13-p11	4853	2471		
156	DLL1	6q27	28514	723		
157	HES1	3q28-q29	3280	280		
158	HOXB5	17q21.3	3215	269		
159	TCOF1	5q32	6949	1488		
160	HMCN1	1q31.1	83872	5635		
161	DNAJC13	3q22.1	23317	2243		
162	LRP1B	2q22.1	53353	4599		
163	<i>RNF123</i>	3p21.31	63891	1314		
164	GAPVD1	9q33.3	26130	1478	Now USCD	
165	INVS	9q31.1	27130	1065	new HSCK	
166	USP13	3q26.33	8975	863	(avidence from the	
167	ABCA1	9q31.1	19	2261	(evidence from the	
168	ADAMTS17	15q26.3	170691	1095	web study)	
169	CFAP206 (C6orf165)	6q15	154313	622		
170	HHIPL2	1q41	79802	724		
171	MERTK	2q13	10461	999		
172	UBA6	4q13.2	55236	1052		

Supp. Table S2. Quality of the targeted NGS data

Item	Clean data (Mb)	Aligned (%)	Effective sequence on target (Mb)	Fraction of effective bases on target (%)	Average sequencing depth on target	Fraction of target covered at least 10×(%)	Fraction of target covered at least 20×(%)
Average	582.5	99.33	276.2	51.40	266.8	92.30	85.20
Maximum	1693.7	99.88	633.9	64.40	614.9	99.50	98.90
Minimum	153.3	97.74	76.9	23.50	74.2	74.90	61.50
Medium	557.1	99.38	273.7	53.10	264.2	92.30	84.80

	HS	CR patients (N	(= 83)	Controls (N=316)		
Gene symbol	Number of LGD _{strict} variants	Туре	Novel or reported	Number of LGD _{strict} variants	Туре	Novel or reported
ENO3	1	Stop-gain	rs550460218	0	NA	NA
PTPN13	1	Stop-gain	Novel	0	NA	NA
RET	7	5 Stop-gain 1 Frameshift 1 Splicing	6 Novel 1 Reported (rs775711017)	0	NA	NA
SACS	1	Frameshift	rs761184491	1	Frameshift	rs761200300
PLEKHH1	1	Stop-gain	rs111462449	0	NA	NA
TRAP1	1	Frameshift	Novel	1	Stop-gain	rs371020906
EXO1	1	Stop-gain	Novel	0	NA	NA
ZEB2	1	Stop-gain	Reported (Pathogenic)	0	NA	NA
AGL	1	Stop-gain	rs781580050 (Pathogenic)	1	Frameshift	rs760589837
SEMA3D	1	Stop-gain	Novel	0	NA	NA
РНКВ	1	Stop-gain	Novel	0	NA	NA
HHIPL2	1	Frameshift	rs748262144	2	Splicing	rs199911924 rs577700102
TLX2	1	Frameshift	Novel	0	NA	NA

Supp. Table S3. Comparison of the frequency, type and novelty of likely gene-disrupting variants in 13 genes in the HSCR cases and controls

NA: not available.

8		
Genes	P value	FDR
ZFHX3	2.54E-12	3.32E-10
RET	5.20E-11	3.41E-09
NRG1	4.17E-07	1.82E-05
CFTR	6.84E-07	2.24E-05
AGL	4.11E-05	0.001077
IQGAP2	9.69E-05	0.002116
LAMA1	0.000332	0.005641
NID2	0.000377	0.005641
RERE	0.000388	0.005641
IFIH1	0.000714	0.009359
MYOF	0.000993	0.011829
APC	0.001155	0.012067
ZEB2	0.001208	0.012067
PTPN13	0.00129	0.012067
DMD	0.001659	0.014491
TRAP1	0.001857	0.015202
CELSR3	0.002226	0.01715
ADAMTS17	0.004172	0.01793
PHACTR4	0.004194	0.01793
KANK1	0.004208	0.01793
NUP155	0.004229	0.01793
EML4	0.004252	0.01793
FARP1	0.004258	0.01793
CREBBP	0.004259	0.01793
NOTCH2	0.004268	0.01793
CFAP206	0.004297	0.01793
FBN2	0.0043	0.01793
SH3PXD2A	0.004316	0.01793
ABCA1	0.004322	0.01793
AP3B2	0.004413	0.01793
HMCN1	0.004447	0.01793
ARVCF	0.004579	0.01793
TSR1	0.004589	0.01793
FLNB	0.004654	0.01793
PATJ	0.005278	0.019755
COL11A1	0.006813	0.024792
SORL1	0.008282	0.029113
NOTCH1	0.008445	0.029113
AGRN	0.011116	0.029871
EXO1	0.013108	0.029871

Supp. Table S4. Results of sequence kernel association test on LGD_{broad} variants implicating genes with a FDR <0.05

UBR4	0.013383	0.029871
ADGRV1	0.013506	0.029871
PYGB	0.013561	0.029871
MICAL2	0.013584	0.029871
TENM3	0.013672	0.029871
BIRC6	0.013738	0.029871
ECE1	0.013805	0.029871
PRICKLE1	0.013828	0.029871
ENO3	0.013861	0.029871
PLEKHH1	0.013873	0.029871
HERC1	0.013894	0.029871
APPL2	0.01395	0.029871
SACS	0.013963	0.029871
SRRM1	0.013995	0.029871
DMXL2	0.014051	0.029871
PTCH1	0.014063	0.029871
MYH9	0.014085	0.029871
GRIN2B	0.014085	0.029871
USP45	0.014141	0.029871
SVIL	0.014164	0.029871
PHKB	0.014286	0.029871
ATM	0.014355	0.029871
XYLT1	0.014365	0.029871
EHBP1	0.014714	0.030118
KIAA1109	0.021628	0.04359
MACF1	0.024251	0.048052
VPS13C	0.024576	0.048052

Supplementary Fig. S1

Supplementary Fig. S2

Supplementary Fig. S4

References

- 1. Chatterjee, S. *et al.* Enhancer variants synergistically drive dysfunction of a gene regulatory network in Hirschsprung disease. *Cell.* **167**, 355-368 (2016).
- 2. Jiang, Q. *et al.* Functional loss of semaphorin 3C and/or semaphorin 3D and their epistatic interaction with ret are critical to Hirschsprung disease liability. *Am. J. Hum. Genet.* **96**, 581-596 (2015).
- 3. Borrego, S., Ruiz-Ferrer, M., Fernández, R. M., & Antiñolo, G. Hirschsprung's disease as a model of complex genetic etiology. *Histol. Histopathol.* 28, 1117-1136 (2013).
- 4. Garcia-Barcelo, M. M. *et al.* Genome-wide association study identifies NRG1 as a susceptibility locus for Hirschsprung's disease. *Proc. Natl. Acad. Sci. USA.* **106**, 2694-2699 (2009).
- Brooks, A.S. *et al.* Homozygous nonsense mutations in KIAA1279 are associated with malformations of the central and enteric nervous systems. *Am. J. Hum. Genet.* 77, 120-126 (2005).
- 6. Nunez, M. I., Ludes-Meyers, J., & Aldaz, C. M. WWOX protein expression in normal human tissues. *J. Mol. Histol.* **37**, 115-125 (2006).
- 7. Sherwood, R. I., Chen, T. Y., & Melton, D. A. Transcriptional dynamics of endodermal organ formation. *Dev. Dyn.* **238**, 29-42 (2009).
- Jiang, Q., Ho, Y. Y., Hao, L., Nichols, Berrios, C., & Chakravarti, A. Copy number variants in candidate genes are genetic modifiers of Hirschsprung disease. *PLoS. One.* 6, e21219 (2011).
- Heanue, T.A., & Pachnis, V. Expression profiling the developing mammalian enteric nervous system identifies marker and candidate Hirschsprung disease genes. *Proc. Natl. Acad. Sci. USA.* 103, 6919-6924 (2006).
- 10. Pritchard, C. A., Bolin, L., Slattery, R., Murray, R., & McMahon, M. Post-natal lethality and neurological and gastrointestinal defects in mice with targeted disruption of the A-Raf protein kinase gene. *Curr Biol.* **6**, 614-617 (1996).
- Hatano, M. *et al.* A novel pathogenesis of megacolon in Ncx/Hox11L.1 deficient mice. *J. Clin. Invest.* 100, 795-801 (1997).
- Zhang, Y., Kim, T.H., & Niswander, L. Phactr4 regulates directional migration of enteric neural crest through PP1, integrin signaling, and cofilin activity. *Genes. Dev.* 26, 69-81 (2012).
- Elms, P., Siggers, P., Napper, D., Greenfield, A., & Arkell, R. Zic2 is required for neural crest formation and hindbrain patterning during mouse development. *Dev. Biol.* 264, 391-406 (2003).
- Ngan, E. S. *et al.* Hedgehog/Notch-induced premature gliogenesis represents a new disease mechanism for Hirschsprung disease in mice and humans. *J. Clin. Invest.* 121, 3467-3478 (2011).
- Jia, H., Zhang, K., Chen, Q., Gao, H., & Wang, W. Downregulation of Notch-1/Jagged-2 in human colon tissues from Hirschsprung disease patients. *Int. J. Colorectal. Dis.* 27, 37-41 (2012).
- Sasselli, V., Boesmans, W., Vanden, Berghe, P., Tissir, F., Goffinet, A. M., & Pachnis,
 V. Planar cell polarity genes control the connectivity of enteric neurons. J. Clin.

Invest. 123, 1763-1772 (2013).

17. Obermayr, F., Hotta, R., Enomoto, H., & Young, H. M. Development and developmental disorders of the enteric nervous system. *Nat. Rev. Gastroenterol. Hepatol.* **10**, 43-57 (2013).